import cvxpy import datetime import math import numpy as np import pandas as pd from pandas.tseries.offsets import BDay from arch import arch_model from db import dbengine, dbconn from scipy.interpolate import interp1d from analytics import Index from dates import bond_cal serenitasdb = dbengine('serenitasdb') def get_daily_pnl(index, series, tenor, coupon=1): sql_str = "SELECT date, adjcloseprice AS close, closespread AS spread, duration, theta FROM index_quotes " \ "WHERE index=%s and series=%s and tenor = %s" df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date'], params=(index, series, tenor)) df.sort_index(inplace=True) df['dt'] = df.index.to_series().diff().astype('timedelta64[D]') df['pnl'] = df['close'].ffill().diff() + df.dt/360*coupon return df def daily_spreads(index, series, tenor): """computes daily spreads returns Parameters ---------- index : string series : int tenor : string """ sql_str = "SELECT date, closespread AS spread FROM index_quotes " \ "WHERE index=%s and series=%s and tenor = %s" df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date'], params=(index.upper(), series, tenor)) df.sort_index(inplace=True) return df.spread.pct_change().dropna() def insert_quotes(): # backpopulate some version i+1 quotes one day before they start trading so that # we get continuous time series in the returns dates = pd.DatetimeIndex(['2014-05-21', '2015-02-19', '2015-03-05','2015-06-23']) df = pd.read_sql_query("SELECT DISTINCT ON (date) * FROM index_quotes " \ "WHERE index='HY' AND tenor='5yr' " \ "ORDER BY date, series DESC, version DESC", serenitasdb, parse_dates=['date'], index_col=['date']) df = df.loc[dates] for tup in df.itertuples(): result = serenitasdb.execute("SELECT indexfactor, cumulativeloss FROM index_version " \ "WHERE index = 'HY' AND series=%s AND version in (%s, %s)" \ "ORDER BY version", (tup.series, tup.version, tup.version+1)) factor1, cumloss1 = result.fetchone() factor2, cumloss2 = result.fetchone() recovery = 1-(cumloss2-cumloss1) version2_price = (factor1 * tup.closeprice - 100*recovery)/factor2 print(version2_price) serenitasdb.execute("INSERT INTO index_quotes(date, index, series, version, tenor, closeprice)" \ "VALUES(%s, %s, %s, %s, %s, %s)", (tup.Index, 'HY', tup.series, tup.version+1, tup.tenor, version2_price)) def index_returns(date=None, years=3, index="IG", tenor="5yr"): """computes on the run spread returns""" if date is None: date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date() sql_str = "SELECT date, series, version, closespread AS spread FROM index_quotes " \ "WHERE index=%s and date>=%s and tenor = %s" df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date', 'series', 'version'], params=(index.upper(), date, tenor)) df.sort_index(inplace=True) return (df.groupby(level=['series', 'version']). transform(lambda x: x.pct_change()). dropna(). groupby(level='date'). last()) def index_price_returns(date=None, years=3, index="IG", tenor="5yr"): """computes on the run price returns taking coupons into account""" if date is None: date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date() sql_str = "SELECT date, series, version, closeprice AS price FROM index_quotes " \ "WHERE index=%s and date>=%s and tenor = %s" df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date', 'series', 'version'], params=(index.upper(), date, tenor)) df.sort_index(inplace=True) ## get rid of holidays dates = df.index.levels[0] holidays = bond_cal().holidays(start=dates[0], end=dates[-1]) df = df.loc(axis=0)[dates.difference(holidays),:,:] def returns(df, coupon=1): df['returns'] = df.price.pct_change() + \ coupon * df.index.levels[0].to_series().diff().dt.days/360/df.price return df return (df.groupby(level=['series', 'version']). apply(returns, (1 if index=='IG' else 5,)). groupby(level='date')['returns'].last()) def realized_vol(index, series, tenor, date=None, years=None): """computes the realized spread volatility""" if date is None: if years is None: raise ValueError("need to provide at least one of date or years") date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date() returns = daily_spreads(index, series, tenor) # GARCH(1,1) volatility process with constant mean am = arch_model(returns) res = am.fit(update_freq=0, disp='off') return (res.conditional_volatility * math.sqrt(252), res) def lr_var(res): """ computes long run variance of the garch process .. math:: \sigma^2=\frac{\omega}{1-\sum_{i=1}^p \alpha_i + \sum_{i=1}^q \beta_i} """ names = res.model.volatility.parameter_names() ## names[0] is omega, rest is alpha[1],..., alpha[p], beta[1],...,beta[q] var = res.params[names[0]]/(1 - res.params[names[1:]]) return math.sqrt(var * 252) def atm_vol_fun(v, ref_is_price=False, moneyness=0.2): f = interp1d(v.strike.values, v.vol.values, fill_value='extrapolate') atm_val = v['fwdspread'].iat[0] otm_val = atm_val * (1 + moneyness) ## doesn't make sense for HY return pd.Series(f(np.array([atm_val, otm_val])), index = ['atm_vol', 'otm_vol']) def atm_vol(index, series, moneyness=0.2): df = pd.read_sql_query('SELECT quotedate, expiry, strike, vol from swaption_quotes ' \ 'WHERE index = %s and series = %s', serenitasdb, index_col=['quotedate', 'expiry'], params = (index.upper(), series)) index_data = pd.read_sql_query( 'SELECT quotedate, expiry, fwdspread from swaption_ref_quotes ' \ 'WHERE index= %s and series = %s', serenitasdb, index_col = ['quotedate', 'expiry'], params = (index.upper(), series)) df = df.join(index_data) df = df.groupby(level=['quotedate', 'expiry']).filter(lambda x: len(x)>=2) df = df.groupby(level=['quotedate', 'expiry']).apply(atm_vol_fun, index=="HY", moneyness) df = df.reset_index(level=-1) #move expiry back to the column return df def atm_vol_date(index, date): df = pd.read_sql_query('SELECT quotedate, series, expiry, strike, vol ' \ 'FROM swaption_quotes ' \ 'WHERE index = %s and quotedate >= %s', serenitasdb, index_col=['quotedate', 'expiry', 'series'], params=(index.upper(), date)) index_data = pd.read_sql_query( 'SELECT quotedate, expiry, series, fwdspread FROM swaption_ref_quotes ' \ 'WHERE index= %s and quotedate >= %s', serenitasdb, index_col=['quotedate', 'expiry', 'series'], params = (index.upper(), date)) df = df.join(index_data) df = df.groupby(df.index).filter(lambda x: len(x)>=2) df = df.groupby(level=['quotedate', 'expiry', 'series']).apply(atm_vol_fun) df = df.reset_index(level=['expiry', 'series']) #move expiry and series back to the columns return df def rolling_vol(df, col='atm_vol', term=[3]): """compute the rolling volatility for various terms""" df = df.groupby(df.index).filter(lambda x: len(x)>2) def aux(s, col, term): k = s.index[0] f = interp1d(s.expiry.values.astype('float'), s[col].values, fill_value='extrapolate') x = np.array([(k + pd.DateOffset(months=t)).to_datetime64().astype('float') \ for t in term]) return pd.Series(f(x), index=[str(t)+'m' for t in term]) df = df.groupby(level='quotedate').apply(aux, col, term) # MS quotes don't have fwdspread so they end up as NA return df.dropna() def vol_var(percentile=0.99, index='IG'): df = atm_vol_date("IG", datetime.date(2014, 6, 11)) df = rolling_vol(df, term=[1,2,3]) df = df.sort_index() df = df.groupby(df.index.date).last() return df.pct_change().quantile(percentile) def index_rolling_returns(date=None, years=3, index="IG", tenor="5yr"): """computes on the run returns""" if date is None: date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date() sql_str = "SELECT date, series, closespread AS spread FROM index_quotes " \ "WHERE index=%s and date>=%s and tenor = %s" df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date', 'series'], params=(index.upper(), date, tenor)) df.sort_index(inplace=True) df = df.groupby(level='series').pct_change() return df.groupby(level='date').last() def get_index_spread(index, series, date, conn): with conn.cursor() as c: c.execute("SELECT closespread from index_quotes " \ "WHERE index=%s and series=%s and date=%s and tenor='5yr'", (index, series, date)) try: spread, = c.fetchone() except TypeError: spread = None conn.commit() return spread def get_index_ref(index, series, date, expiry, conn): with conn.cursor() as c: c.execute("SELECT ref, fwdspread from swaption_ref_quotes " \ "WHERE index=%s and series=%s and quotedate::date=%s "\ "AND expiry=%s ORDER BY quotedate desc", (index, series, date, expiry)) try: ref, fwdspread = c.fetchone() except TypeError: ref, fwdspread = None, None conn.commit() return ref, fwdspread def get_option_pnl(strike, expiry, index, series, start_date, engine): for s in [strike, strike+2.5, strike-2.5, strike+5]: df = pd.read_sql_query("SELECT quotedate, (pay_bid+pay_offer)/2 AS pay_mid, " \ "(rec_bid+rec_offer)/2 AS rec_mid FROM swaption_quotes " \ "WHERE strike=%s and expiry=%s and index=%s and series=%s" \ "and quotedate>=%s", engine, params=(s, expiry, index, series, start_date), index_col='quotedate', parse_dates=['quotedate']) if not df.empty and df.index[0].date() == start_date: strike = s break else: raise ValueError("Couldn't find data starting from that date") if not pd.api.types.is_datetime64tz_dtype(df.index): df.index = df.index.tz_localize('utc') df = df.groupby(df.index.normalize()).last() if expiry < datetime.date.today(): spread = get_index_spread(index, series, expiry, engine.raw_connection()) underlying = Index.from_name(index, series, "5yr", expiry, 1e4) underlying.spread = spread pv = underlying.pv underlying.spread = strike if spread > strike: pay_mid, rec_mid = pv-underlying.pv, 0 else: pay_mid, rec_mid = 0, underlying.pv - pv pv = underlying.pv df = df.append(pd.DataFrame([[pay_mid, rec_mid]], columns=['pay_mid', 'rec_mid'], index=[pd.Timestamp(expiry, tz='UTC')])) return df, strike def sell_vol_strategy(index="IG", months=3): engine = dbengine('serenitasdb') conn = engine.raw_connection() with conn.cursor() as c1, conn.cursor() as c2: c1.execute("SELECT DISTINCT series, expiry FROM " \ "swaption_quotes ORDER BY expiry, series desc") d = {} for series, expiry in c1: start_date = BDay().rollback(expiry - pd.DateOffset(months=months)).date() if start_date > datetime.date.today(): break c2.execute("SELECT max(quotedate::date) FROM swaption_quotes WHERE " \ "index=%s AND series=%s AND expiry=%s AND quotedate<=%s", (index, series, expiry, start_date)) actual_start_date, = c2.fetchone() if actual_start_date is None or (start_date - actual_start_date).days > 5: continue ref, fwdspread = get_index_ref(index, series, actual_start_date, expiry, conn) if fwdspread is None: fwdspread = ref + months / 50 #TODO: use actual values strike = round(fwdspread/2.5) * 2.5 pnl, strike = get_option_pnl(strike, expiry, index, series, actual_start_date, engine) d[(series, strike, expiry)] = pnl conn.commit() return d def aggregate_trades(d): r = pd.Series() for v in d.values(): r = r.add(-v.sum(1).diff().dropna(), fill_value=0) return r def compute_allocation(df): Sigma = df.cov().values gamma = cvxpy.Parameter(sign='positive') mu = df.mean().values w = cvxpy.Variable(3) ret = mu.T*w risk = cvxpy.quad_form(w, Sigma) prob = cvxpy.Problem(cvxpy.Maximize(ret - gamma * risk), [cvxpy.sum_entries(w) == 1, w >= -2, w <= 2]) gamma_x = np.linspace(0, 0.02, 500) W = np.empty((3, gamma_x.size)) for i, val in enumerate(gamma_x): gamma.value = val prob.solve() W[:,i] = np.asarray(w.value).squeeze() fund_return = mu @ W fund_vol= np.array([math.sqrt(W[:,i] @ Sigma @W[:,i]) for i in range(gamma_x.size)]) return (W, fund_return, fund_vol) if __name__ == "__main__": d1 = sell_vol_strategy(months=1) d2 = sell_vol_strategy(months=2) d3 = sell_vol_strategy(months=3) all_tenors = pd.concat([aggregate_trades(d) for d in [d1, d2, d3]], axis=1) all_tenors.columns = ['1m', '2m', '3m'] all_tenors['optimal'] = ((1.2*all_tenors['1m']). sub(1.2*all_tenors['2m'], fill_value=0). add(all_tenors['3m'], fill_value=0))