import pandas as pd from functools import reduce from position import get_list from sqlalchemy import create_engine from dates import bus_day, imm_dates def pnl_explain(identifier, start_date = None, end_date = None, uri = 'postgresql://dawn_user@debian/dawndb'): """ if start_date is None, pnl since inception""" engine = create_engine(uri) trades = pd.read_sql_query("SELECT * FROM bonds where identifier=%s", engine, params=(identifier,), parse_dates=['trade_date', 'settle_date'], index_col=['settle_date']) marks = pd.read_sql_query("SELECT * FROM marks where identifier=%s", engine, params=(identifier,), parse_dates = ['date'], index_col='date') factors = pd.read_sql_query("SELECT * FROM factors_history where identifier=%s", engine, params=(identifier,), parse_dates = ['last_pay_date', 'prev_cpn_date'], index_col=['last_pay_date']) for key in ['faceamount', 'principal_payment', 'accrued_payment']: trades.loc[~trades.buysell, key] = -trades[key][~trades.buysell] df = (marks[['price']].join(factors, how='outer'). join(trades[['principal_payment', 'accrued_payment', 'faceamount']], how='outer')) df.sort_index(inplace=True) if start_date is None: start_date = trades.index.min() if end_date is None: end_date = pd.datetime.today() dates = pd.date_range(start_date, end_date, freq = bus_day) keys1 = ['price','factor', 'coupon', 'prev_cpn_date'] df[keys1] = df[keys1].fillna(method='ffill') keys2 = ['losses', 'principal','interest', 'faceamount','accrued_payment', 'principal_payment'] df[keys2] = df[keys2].fillna(value=0) df.faceamount = df.faceamount.cumsum() keys = keys1 + ['faceamount'] df1 = df.reindex(dates, keys, method='ffill') keys = ['losses', 'principal','interest', 'accrued_payment', 'principal_payment'] df2 = df.reindex(dates, keys, fill_value=0) daily = pd.concat([df1, df2], axis = 1) daily['unrealized_pnl'] = daily.price.diff() * daily.factor.shift()/100 * daily.faceamount daily['realized_pnl'] = (daily.price/100*daily.factor.diff()+daily.principal/100) * daily.faceamount daily['clean_nav'] = daily.price/100 * daily.factor * daily.faceamount daily['realized_accrued'] = daily.interest/100 * daily.faceamount days_accrued = daily.index - daily.prev_cpn_date daily['unrealized_accrued'] = days_accrued.dt.days/360*daily.coupon/100*daily.factor*daily.faceamount extra_pnl = daily.clean_nav.diff() - daily.principal_payment daily.loc[daily.principal_payment>0 , 'unrealized_pnl'] += extra_pnl[daily.principal_payment>0] daily.loc[daily.principal_payment<0, 'realized_pnl'] += extra_pnl[daily.principal_payment<0] daily['realized_accrued'] -= daily.accrued_payment daily['accrued'] = daily.unrealized_accrued.diff() + daily.realized_accrued return daily[['unrealized_pnl', 'realized_pnl', 'unrealized_accrued', 'realized_accrued', 'accrued']].iloc[1:,] def pnl_explain_list(engine, id_list, start_date = None, end_date = None): return reduce(lambda x,y: x.add(y, fill_value=0), (pnl_explain(engine, identifier, start_date, end_date) for identifier in id_list)) def cds_explain(engine, index, series, tenor, attach = None, detach = None, start_date = None, end_date = None): factors = pd.read_sql_query("SELECT * FROM index_desc WHERE index=%s AND series=%s AND tenor=%s "\ "ORDER BY lastdate", engine, parse_dates=['lastdate'], index_col='lastdate', params = (index, series, tenor)) if attach is None: quotes = pd.read_sql_query("SELECT * from index_quotes WHERE index=%s AND series=%s AND tenor=%s " \ "ORDER BY date", engine, parse_dates=['date'], index_col='date', params = (index, series, tenor)) else: quotes = pd.read_sql_query("SELECT quotedate, upfront_mid AS closeprice, tranche_spread " \ "FROM markit_tranche_quotes JOIN index_version " \ "USING (basketid) WHERE index=%s AND series=%s " \ "AND tenor=%s AND attach=%s AND detach=%s " \ "ORDER by quotedate", engine, parse_dates=['quotedate'], index_col='quotedate', params = (index, series, tenor, attach, detach)) if start_date is None: start_date = quotes.index.min() if end_date is None: end_date = pd.datetime.today() coupon = 0.01 dates = pd.date_range(start_date, end_date, freq = bus_day) yearfrac = imm_dates(start_date, end_date) yearfrac = yearfrac.to_series().reindex(dates, method='ffill') yearfrac = yearfrac.index-yearfrac yearfrac = (yearfrac.dt.days+1)/360 yearfrac.name = 'yearfrac' quotes = quotes.reindex(dates, method='ffill') recovery = -factors.indexfactor.diff()-factors.cumulativeloss.diff() recovery.name = 'recovery' recovery = recovery.shift(-1)/100 recovery = recovery.reindex(dates, fill_value=0).shift() df = (quotes. join(factors[['indexfactor']], how='left'). join(recovery).join(yearfrac)) df.indexfactor = df.indexfactor.bfill()/100 df.loc[df.indexfactor.isnull(), 'indexfactor'] = factors.indexfactor.iat[-1]/100 df['unrealized_accrued'] = df.yearfrac*coupon*df.indexfactor df['accrued'] = df.unrealized_accrued.diff() df['realized_accrued'] = -df.accrued.where(df.accrued<0, 0) df.accrued = df.accrued.where(df.accrued>0, df.unrealized_accrued) df.loc[df.realized_accrued>0, 'realized_accrued'] += df.loc[df.realized_accrued>0, 'accrued'] df['unrealized_pnl'] = df.closeprice.diff() * df.indexfactor.shift()/100 df['realized_pnl'] = df.closeprice/100*df.indexfactor.diff()+df.recovery return df if __name__=="__main__": # workdate = pd.datetime.today() # clo_list = get_list(workdate, 'Subprime') # df = pnl_explain_list(engine, clo_list.identifier.tolist(), '2015-10-30', '2015-11-30') engine = create_engine("postgresql://serenitas_user@debian/serenitasdb") df = cds_explain(engine, 'IG', 9, '10yr')