from bbg_helpers import init_bbg_session, retreive_data, process_msgs import pandas as pd from sqlalchemy import create_engine from pandas.tseries.offsets import BDay engine = create_engine('postgresql://dawn_user@debian/dawndb') session = init_bbg_session('192.168.0.14', 8194) fields = ["START_ACC_DT", "MTG_FACTOR_PAY_DT", "CUR_CPN", "INT_ACC", "DAYS_ACC", "MTG_FACE_AMT", "MTG_FACTOR", "MTG_PREV_FACTOR", "MTG_FACTOR_PRINC_PAY", "MTG_PRINC_LOSSES", "CRNCY"] workdate = pd.datetime(2015, 7, 24) securities = pd.read_sql_query("select * from list_positions(%s)", engine, params=(workdate.date(),)) securities.loc[securities.identifier.str.endswith('_A'),'bbg_id'] = securities.identifier.str.slice(stop=9) securities.loc[~securities.identifier.str.endswith('_A'),'bbg_id'] = securities.identifier.str.slice(stop=12) sec = [s + " Mtge" if s!='XS0295516776' else s +" Corp" for s in securities.bbg_id.tolist()] data = retreive_data(session, sec, fields, workdate) df = process_msgs(data, fields) df.to_csv('pomme6.csv')