import unittest import numpy as np import pandas as pd from analytics import CreditIndex, BlackSwaption, Portfolio, BlackSwaptionVolSurface from pandas.tseries.offsets import BDay from analytics.scenarios import (run_portfolio_scenarios, run_swaption_scenarios, run_index_scenarios) class TestSenarios(unittest.TestCase): option_delta = CreditIndex.from_tradeid(874) option1 = BlackSwaption.from_tradeid(7, option_delta) option2 = BlackSwaption.from_tradeid(8, option_delta) portf = Portfolio([option1, option2, option_delta]) date_range = pd.bdate_range(option_delta.value_date, pd.Timestamp('2017-05-17') - BDay(), freq='5B') def test_portfolio(self): """ check that run_portfolio_scenarios match the sum of the individual pieces""" vol_shock = np.arange(-0.15, 0.3, 0.01) spread_shock = np.arange(-0.2, 0.3, 0.01) vs = BlackSwaptionVolSurface("IG", 28, value_date=self.option_delta.value_date) vol_surface = vs[vs.list(source="BAML")[-1]] df = run_portfolio_scenarios(self.portf, self.date_range, spread_shock=spread_shock, vol_shock=vol_shock, vol_surface=vol_surface) df = df.set_index(['spread', 'vol_shock'], append=True) df1 = run_swaption_scenarios(self.option1, self.date_range, spread_shock, vol_shock, vol_surface, ["pnl"]) df2 = run_swaption_scenarios(self.option2, self.date_range, spread_shock, vol_shock, vol_surface, ["pnl"]) df_index = run_index_scenarios(self.option_delta, self.date_range, spread_shock) df1 = df1.set_index(['spread', 'vol_shock'], append=True) df2 = df2.set_index(['spread', 'vol_shock'], append=True) df_index = df_index.set_index(['spread'], append=True) df_swaptions = df1 + df2 df_swaptions = df_swaptions.reset_index(level='vol_shock') df_orig = df_index.add(df_swaptions, fill_value=0) df_orig = df_orig.set_index('vol_shock', append=True) self.assertFalse(np.any((df-df_orig).values)) if __name__ == "__main__": unittest.main()