import datetime import numpy as np import pandas as pd from analytics.utils import tenor_t from pandas.tseries.offsets import BDay from yieldcurve import get_curve from db import dbengine from pyisda.legs import FeeLeg, ContingentLeg from pyisda.curve import SpreadCurve from pyisda.date import previous_twentieth serenitas_engine = dbengine('serenitasdb') tenors = {"IG": ("3yr", "5yr", "7yr", "10yr"), "HY": ("3yr", "5yr", "7yr"), "EU": ("3yr", "5yr", "7yr", "10yr"), "XO": ("3yr", "5yr", "7yr", "10yr")} sql_str = "INSERT INTO index_risk VALUES(%s, %s, %s)" def get_legs(index, series, tenors): fee_legs = {} contingent_legs = {} coupons = [] end_dates = [] df = pd.read_sql_query("SELECT tenor, maturity, coupon, issue_date " "FROM index_maturity " "WHERE index=%s AND series=%s and tenor IN %s " "ORDER BY maturity", serenitas_engine, params=(index, series, tenors), parse_dates=['maturity', 'issue_date']) df.coupon *= 1e-4 for tenor, maturity, coupon, issue_date in df.itertuples(index=False): fee_legs[tenor] = FeeLeg(issue_date, maturity, True, 1., coupon * 1e-4) contingent_legs[tenor] = ContingentLeg(issue_date, maturity, True) coupons.append(coupon * 1e-4) # number of seconds since epoch df.maturity = df.maturity.view(int) // int(86400 * 1e9) # number of days between 1900-1-1 and epoch df.maturity += 134774 return fee_legs, contingent_legs, df def credit_curve(value_date, quotes, end_dates, coupons, recoveries, yc): step_in_date = value_date + datetime.timedelta(days=1) cash_settle_date = pd.Timestamp(value_date) + 3 * BDay() start_date = previous_twentieth(value_date) sc = SpreadCurve(value_date, yc, start_date, step_in_date, cash_settle_date, end_dates, coupons, quotes, recoveries) return sc conn = serenitas_engine.raw_connection() for index in ["IG", "HY", "EU", "XO"]: if index in ["HY", "XO"]: recoveries = np.full(len(tenors[index]), 0.3) else: recoveries = np.full(len(tenors[index]), 0.4) for series in range(18, 31): if index in ["EU", "XO"] and series == 30: continue fee_legs, contingent_legs, df = \ get_legs(index, series, tenors[index]) index_quotes = pd.read_sql_query( "SELECT id, date, tenor, close_price FROM index_quotes_pre " "LEFT JOIN index_risk USING (id) " "WHERE index=%s AND series=%s " "AND source='MKIT' AND duration is NULL AND tenor IN %s", serenitas_engine, params=(index, series, tenors[index]), parse_dates=['date'], index_col='id') if index_quotes.empty: continue index_quotes.tenor = index_quotes.tenor.astype(tenor_t) index_quotes = index_quotes.sort_values('tenor') index_quotes['close_price'] = 1. - index_quotes['close_price'] / 100 with conn.cursor() as c: for k, v in index_quotes.groupby('date'): yc = get_curve(k, "USD" if index in ["IG", "HY"] else "EUR") v = v.merge(df, on='tenor') sc = credit_curve(k, v.close_price.values, v.maturity.values, v.coupon.values, recoveries, yc) for t in v.tenor.values: risky_annuity = fee_legs[t].( k, step_in_date, cash_settle_date, yc, sc, False) conn.commit() conn.close()