import datetime import numpy as np import pandas as pd from analytics.utils import tenor_t from pandas.tseries.offsets import BDay from dateutil.relativedelta import relativedelta from yieldcurve import get_curve from db import dbengine from pyisda.legs import FeeLeg, ContingentLeg from pyisda.curve import SpreadCurve from pyisda.date import previous_twentieth serenitas_engine = dbengine('serenitasdb') tenors = {"IG": ("3yr", "5yr", "7yr", "10yr"), "HY": ("3yr", "5yr", "7yr"), "EU": ("3yr", "5yr", "7yr", "10yr"), "XO": ("3yr", "5yr", "7yr", "10yr")} sql_str = "INSERT INTO index_risk VALUES(%s, %s, %s)" def get_legs(index, series, tenors): fee_legs = {} contingent_legs = {} df = pd.read_sql_query("SELECT tenor, maturity, coupon, issue_date " "FROM index_maturity " "WHERE index=%s AND series=%s and tenor IN %s " "ORDER BY maturity", serenitas_engine, params=(index, series, tenors), parse_dates=['maturity', 'issue_date']) df.coupon *= 1e-4 for tenor, maturity, coupon, issue_date in df.itertuples(index=False): maturity_short = maturity - relativedelta(years=1) fee_legs[tenor] = (FeeLeg(issue_date, maturity, True, 1., 1.), FeeLeg(issue_date, maturity_short, True, 1., coupon)) contingent_legs[tenor] = (ContingentLeg(issue_date, maturity, True), ContingentLeg(issue_date, maturity_short, True)) # number of seconds since epoch df.maturity = df.maturity.view(int) // int(86400 * 1e9) # number of days between 1900-1-1 and epoch df.maturity += 134774 return fee_legs, contingent_legs, df def index_pv(fl, cl, value_date, step_in_date, cash_settle_date, yc, sc, recovery): dl_pv = cl.pv(value_date, step_in_date, cash_settle_date, yc, sc, recovery) cl_pv = fl.pv(value_date, step_in_date, cash_settle_date, yc, sc, True) return dl_pv - cl_pv conn = serenitas_engine.raw_connection() for index in ["IG", "HY", "EU", "XO"]: if index in ["HY", "XO"]: recoveries = np.full(len(tenors[index]), 0.3) else: recoveries = np.full(len(tenors[index]), 0.4) for series in range(18, 32): if index in ["EU", "XO"] and series == 31: continue fee_legs, contingent_legs, df = \ get_legs(index, series, tenors[index]) index_quotes = pd.read_sql_query( "SELECT id, date, tenor, close_price FROM index_quotes_pre " "LEFT JOIN index_risk USING (id) " "WHERE index=%s AND series=%s " "AND source='MKIT' AND duration is NULL AND tenor IN %s", serenitas_engine, params=(index, series, tenors[index]), parse_dates=['date'], index_col='id') if index_quotes.empty: continue index_quotes.tenor = index_quotes.tenor.astype(tenor_t) index_quotes = index_quotes.sort_values('tenor') index_quotes['close_price'] = 1. - index_quotes['close_price'] / 100 with conn.cursor() as c: for value_date, data in index_quotes.groupby('date'): yc = get_curve(value_date, "USD" if index in ["IG", "HY"] else "EUR") # right_index?? is it a bug? data = data.merge(df, on='tenor', right_index=True) step_in_date = value_date + datetime.timedelta(days=1) cash_settle_date = value_date + 3 * BDay() start_date = previous_twentieth(value_date) sc = SpreadCurve(value_date, yc, start_date, step_in_date, cash_settle_date, data.maturity.values, data.coupon.values, data.close_price.values, recoveries) for r in data[['coupon', 'tenor', 'close_price']].itertuples(): fl, fl_short = fee_legs[r.tenor] cl, cl_short = contingent_legs[r.tenor] duration = fl.pv(value_date, step_in_date, cash_settle_date, yc, sc, True) if cl_short.end_date <= value_date.date(): theta = None else: pv = index_pv(fl_short, cl_short, value_date, step_in_date, cash_settle_date, yc, sc, recoveries[0]) theta = r.close_price - pv + r.coupon c.execute("INSERT INTO index_risk VALUES(%s, %s, %s)", (r.Index, theta, duration)) conn.commit() conn.close()