import numpy as np from ctypes import * lib = np.ctypeslib.load_library("lossdistribgomez", "/home/share/CorpCdos/code/R") lib.fitprob.restype = None lib.fitprob.argtypes = [np.ctypeslib.ndpointer('double', ndim=1, flags='F'), np.ctypeslib.ndpointer('double', ndim=1, flags='F'), POINTER(c_int), POINTER(c_double), POINTER(c_double), np.ctypeslib.ndpointer('double', ndim=1, flags='F,writeable')] lib.stochasticrecov.restype = None lib.stochasticrecov.argtypes = [POINTER(c_double), POINTER(c_double), np.ctypeslib.ndpointer('double', ndim=1, flags='F'), np.ctypeslib.ndpointer('double', ndim=1, flags='F'), POINTER(c_int), POINTER(c_double), POINTER(c_double), POINTER(c_double), np.ctypeslib.ndpointer('double', ndim=1, flags='F,writeable')] def stochasticrecov(R, Rtilde, Z, w, rho, porig, pmod): q = np.zeros_like(Z) lib.stochasticrecov(byref(c_double(R)), byref(c_double(Rtilde)), Z, w, byref(c_int(Z.size)), byref(c_double(rho)), byref(c_double(porig)), byref(c_double(pmod)), q) return q def lossdistZ(p, w, S, N, defaultflag= False, rho, Z, wZ): q = np.zeros_like(Z) lib.lossdistrib_Z(byref()) def fitprob(Z, w, rho, p0): result = np.empty_like(Z) lib.fitprob(Z, w, byref(c_int(Z.size)), byref(c_double(rho)), byref(c_double(p0)), result) return result