aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/option.py
blob: 32f4f947a350bd91f69e409471584aae16ed7567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from .black import black
from .utils import GHquad
from yieldcurve import roll_yc
from pandas.tseries.offsets import BDay

class Option:
    def __init__(self, index, exercise_date, strike, option_type="payer"):
        self.index = index
        self._exercise_date = exercise_date
        self._forward_yc = roll_yc(self.index._yc, self.exercise_date)
        self.exercise_date_settle = (pd.Timestamp(self.exercise_date) + 3* BDay()).date()
        self._T = None
        self.strike = strike
        self.option_type = option_type.lower()
        self._Z, self._w = GHquad(50)
        self.notional = 1

    @property
    def exercise_date(self):
        return self._exercise_date

    @exercise_date.setter
    def exercise_date(self, d : datetime.date):
        self._exercise_date = d
        self.exercise_date_settle = (pd.Timestamp(d) + 3* BDay()).date()
        self._forward_yc = roll_yc(self.index._yc, self.exercise_date)

    @property
    def pv(self):
        fp = self.index.forward_pv(self.exercise_date) / self.index.notional
        T = self.T
        tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
        rolled_curve = roll_yc(self.index._yc, self.exercise_date)
        args = (fp, self.exercise_date, self.exercise_date_settle,
                self.index, self._forward_yc, tilt, self._w)
        eta = 1.1
        a = self.index.spread
        b = self.index.spread * eta
        while True:
            if calib(*((b,) + args)) > 0:
                break
            b *= eta

        S0 = brentq(calib, a, b, args)

        G = g(self.index, self.strike, self.exercise_date)
        if T == 0:
            pv = self.notional * (g(self.index, self.index.spread, self.exercise_date) - G)
            if self.option_type == "payer":
                return pv if self.index.spread > self.strike else 0
            else:
                return - pv if self.index.spread < self.strike else 0

        Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \
                (self.sigma * math.sqrt(T))

        if self.option_type == "payer":
            Z = Zstar + np.logspace(0, 1.5, 300) - 1
        elif self.option_type == "receiver":
            Z = Zstar - np.logspace(0, 1.5, 300) + 1
        else:
            raise ValueError("option_type needs to be either 'payer' or 'receiver'")
        S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
        a, b = strike_vec(S * 1e-4, rolled_curve, self.exercise_date,
                          self.exercise_date_settle,
                          self.index.start_date, self.index.end_date, self.index.recovery)
        val = ((a - b * self.index.fixed_rate*1e-4) - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
        df_scale = self.index._yc.discount_factor(self.exercise_date_settle)
        return self.notional * simps(val, Z) * df_scale

    @property
    def pv2(self):
        G = g(self.index, self.strike, self.exercise_date)
        fp = self.index.forward_pv(self.exercise_date) / self.index.notional
        forward_annuity = self.index.forward_annuity(self.exercise_date)
        DA_forward_spread = fp / forward_annuity + self.index.fixed_rate * 1e-4
        strike_tilde = self.index.fixed_rate * 1e-4 + G  / forward_annuity
        return forward_annuity * black(DA_forward_spread,
                                       strike_tilde,
                                       self.T,
                                       self.sigma,
                                       self.option_type) * self.notional

    @property
    def delta(self):
        old_index_pv = self.index.pv
        old_pv = self.pv
        self.index.spread += 0.1
        notional_ratio = self.index.notional/self.notional
        delta = (self.pv - old_pv)/(self.index.pv - old_index_pv) * notional_ratio
        self.index.spread -= 0.1
        return delta


    @property
    def T(self):
        if self._T:
            return self._T
        else:
            return year_frac(self.index.trade_date, self.exercise_date) + 1/365

    @property
    def gamma(self):
        pass

    @property
    def theta(self):
        old_pv = self.pv
        self._T = self.T - 1/365
        theta = self.pv - old_pv
        self._T = None
        return theta

    @property
    def vega(self):
        old_pv = self.pv
        self.sigma += 0.01
        vega = self.pv - old_pv
        self.sigma -= 0.01
        return vega