1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import datetime\n",
"from pandas.tseries.offsets import BDay, MonthEnd\n",
"import globeop_reports as go\n",
"import pandas as pd\n",
"import serenitas.analytics\n",
"import numpy as np\n",
"\n",
"from serenitas.analytics.index_data import get_index_quotes\n",
"from serenitas.analytics.scenarios import run_portfolio_scenarios\n",
"from serenitas.analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n",
"\n",
"from serenitas.utils.db import dbconn, dbengine\n",
"\n",
"from risk.tranches import get_tranche_portfolio\n",
"from risk.swaptions import get_swaption_portfolio\n",
"from risk.bonds import subprime_risk, clo_risk, crt_risk\n",
"\n",
"dawn_engine = dbengine('dawndb')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
"#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
"fund='BRINKER'\n",
"sql_string = \"SELECT * FROM bond_trades WHERE buysell IS False and fund = %s order by trade_date desc\"\n",
"df = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
" params=[fund,],\n",
" index_col = 'trade_date')\n",
"df = df.groupby(pd.Grouper(freq='M')).sum()\n",
"\n",
"brinker_nav = pd.read_sql_query(\"select distinct accounting_date, total_net_assets from bbh_val order by accounting_date desc\",\n",
" dawn_engine,\n",
" parse_dates=[\"accounting_date\"],\n",
" index_col=[\"accounting_date\"])\n",
"\n",
"start_date = datetime.date(2019,3,18)\n",
"end_date = datetime.date.today()\n",
"cf = pd.read_sql_query(\"SELECT * FROM cashflow_history where date > %s and date <= %s\", dawn_engine,\n",
" params=[start_date, end_date],\n",
" parse_dates=['date'],\n",
" index_col=['date']).sort_index()\n",
"sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n",
"pos = {}\n",
"for d in cf.index.unique():\n",
" for ac in ['Subprime', 'CRT']:\n",
" pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n",
"pos = pd.concat(pos, names=['date', 'asset_class'])\n",
"pos = pos.reset_index(level=[1,2])\n",
"\n",
"cf_1 = pd.merge_asof(cf, pos.sort_index(), left_index=True, right_index=True, by='identifier')\n",
"cf_1 = cf_1.dropna(subset=['notional'])\n",
"cf_1 = cf_1[(cf_1.principal_bal != 0) & (cf_1.principal != 0)]\n",
"cf_1['paydown'] = cf_1.apply(lambda df: df.notional * df.factor/df.principal_bal * df.principal, axis=1)\n",
"paydowns = cf_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n",
"turnover = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n",
"brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n",
"turnover = (turnover.sum(axis=1)/brinker_nav.total_net_assets).rolling(min(13, len(turnover))-1).sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PNL over different time frames\n",
"sql_string = \"SELECT * from bbh_val\"\n",
"df = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates=['accounting_date'],\n",
" index_col = 'accounting_date')\n",
"sql_string = \"SELECT * from subscription_and_fee where fund = 'BRINKER'\"\n",
"flow = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates=['date'],\n",
" index_col = 'date')\n",
"df = df.groupby('accounting_date').nth(-1)\n",
"df = df.merge(flow, how='left', left_index=True, right_index=True)\n",
"df.fillna(0, inplace=True)\n",
"df['beg_nav'] = df.total_net_assets.shift(1) + df.subscription.shift(1) - df.redemption\n",
"df.loc['2019-3-19','total_net_asset'] = 110000000\n",
"df['ret'] = (df.total_net_assets - df.beg_nav)/df.beg_nav\n",
"cum_ret = (df.ret+1).cumprod()\n",
"\n",
"monthly= cum_ret.groupby(pd.Grouper(freq='M')).nth(-1)\n",
"\n",
"#monthly.pct_change().plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PNL breakdown\n",
"sql_string = \"SELECT * from bbh_pnl\"\n",
"pnl = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates=['accounting_date'])\n",
"sql_string = \"SELECT * from securities\"\n",
"bonds = pd.read_sql_query(sql_string, dawn_engine, index_col = 'cusip')\n",
"pnl = pnl.merge(bonds, how='left', left_on='security_id', right_on='cusip')\n",
"pnl.loc[(pnl.sub_security_type_code == 'CXT'),'asset_class'] = 'Corporate Tranches'\n",
"pnl.loc[(pnl.sub_security_type_code == 'CDX'),'asset_class'] = 'Corporate Tranches'\n",
"pnl.loc[(pnl.sub_security_type_code == 'SWP'),'asset_class'] = 'IR-Hedges'\n",
"pnl.asset_class.fillna('Others', inplace=True)\n",
"pnl.set_index(['accounting_date', 'asset_class'], inplace=True)\n",
"base_change = pnl['base_change_total'].groupby(['accounting_date', 'asset_class']).sum()\n",
"base_change.unstack()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Export to spreadsheet\n",
"df.sort_index(ascending=False)[['total_net_assets', 'subscription', 'redemption']].to_clipboard()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Export to spreadsheet 2\n",
"base_change.unstack().sort_index(ascending=False).to_clipboard()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#load bbh val reports\n",
"import load_bbh_reports as load\n",
"load_date = datetime.date(2020,9,7)\n",
"load.load_reports(load_date)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1-final"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|