aboutsummaryrefslogtreecommitdiffstats
path: root/python/swaption.py
blob: 68486cc8e53503078b8a7f1a03b7749abc3dee44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from pyisda.flat_hazard import strike_vec
from quantlib.time.api import Date
import array
from scipy.optimize import brentq
from scipy.integrate import simps
import datetime
import numpy as np
import pandas as pd
from pandas.tseries.offsets import BDay
from tranche_functions import GHquad
from yieldcurve import roll_yc
from scipy.stats import norm

def year_frac(d1, d2, day_count_conv = "Actual/365"):
    """ compute the year fraction between two dates """
    if day_count_conv.lower() in ["actual/365", "act/365"]:
        return (d2-d1).days/365
    elif day_count_conv.lower() in ["actual/360", "act/360"]:
        return (d2-d1).days/360

def calib(S0, fp, exercise_date, exercise_date_settle, index,
          rolled_curve, tilt, w):
    S = S0 * tilt * 1e-4
    a, b = strike_vec(S, rolled_curve, exercise_date, exercise_date_settle,
                      index.start_date, index.end_date, index.recovery)
    vec = a - index.fixed_rate * b * 1e-4
    return np.inner(vec, w) - fp

def g(index, spread, exercise_date, use_rolled_curve = True):
    """ computes the strike clean price using the expected forward yield curve """
    if use_rolled_curve:
        rolled_curve = roll_yc(index._yc, exercise_date)
    else:
        rolled_curve = index._yc
    step_in_date = exercise_date + datetime.timedelta(days=1)
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    sc = SpreadCurve(exercise_date, rolled_curve, index.start_date,
                     step_in_date, exercise_date_settle,
                     [index.end_date], array.array('d', [spread * 1e-4]),
                     index.recovery)
    a = index._fee_leg.pv(exercise_date, step_in_date, exercise_date_settle,
                          rolled_curve, sc, True)
    return (spread - index.fixed_rate) * a *1e-4

def ATMstrike(index, exercise_date):
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    fp = index.forward_pv(exercise_date)
    closure = lambda S: g(index, S, exercise_date) - fp
    eta = 1.1
    a = index.spread
    b = index.spread * eta
    while True:
        if closure(b) > 0:
            break
        b *= eta
    return brentq(closure, a, b)

class Option:
    def __init__(self, index, exercise_date, strike, option_type="payer"):
        self.index = index
        self._exercise_date = exercise_date
        self._forward_yc = roll_yc(self.index._yc, self.exercise_date)
        self.exercise_date_settle = (pd.Timestamp(self.exercise_date) + 3* BDay()).date()
        self._T = None
        self.strike = strike
        self.option_type = option_type.lower()
        self._Z, self._w = GHquad(50)
        self.notional = 1

    @property
    def exercise_date(self):
        return self._exercise_date

    @exercise_date.setter
    def exercise_date(self, d : datetime.date):
        self._exercise_date = d
        self.exercise_date_settle = (pd.Timestamp(d) + 3* BDay()).date()
        self._forward_yc = roll_yc(self.index._yc, self.exercise_date)

    @property
    def pv(self):
        fp = self.index.forward_pv(self.exercise_date) / self.index.notional
        T = self.T
        tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
        rolled_curve = roll_yc(self.index._yc, self.exercise_date)
        args = (fp, self.exercise_date, self.exercise_date_settle,
                self.index, self._forward_yc, tilt, self._w)
        eta = 1.1
        a = self.index.spread
        b = self.index.spread * eta
        while True:
            if calib(*((b,) + args)) > 0:
                break
            b *= eta

        S0 = brentq(calib, a, b, args)

        G = g(self.index, self.strike, self.exercise_date)
        if T == 0:
            pv = self.notional * (g(self.index, self.index.spread, self.exercise_date) - G)
            if self.option_type == "payer":
                return pv if self.index.spread > self.strike else 0
            else:
                return - pv if self.index.spread < self.strike else 0

        Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \
                (self.sigma * math.sqrt(T))

        if self.option_type == "payer":
            Z = Zstar + np.logspace(0, 1.5, 300) - 1
        elif self.option_type == "receiver":
            Z = Zstar - np.logspace(0, 1.5, 300) + 1
        else:
            raise ValueError("option_type needs to be either 'payer' or 'receiver'")
        S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
        a, b = strike_vec(S * 1e-4, rolled_curve, self.exercise_date,
                          self.exercise_date_settle,
                          self.index.start_date, self.index.end_date, self.index.recovery)
        val = ((a - b * self.index.fixed_rate*1e-4) - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
        df_scale = self.index._yc.discount_factor(self.exercise_date_settle)
        return self.notional * simps(val, Z) * df_scale

    @property
    def pv2(self):
        G = g(self.index, self.strike, self.exercise_date)
        fp = self.index.forward_pv(self.exercise_date) / self.index.notional
        forward_annuity = self.index.forward_annuity(self.exercise_date)
        DA_forward_spread = fp / forward_annuity + self.index.fixed_rate * 1e-4
        strike_tilde = self.index.fixed_rate * 1e-4 + G  / forward_annuity
        return forward_annuity * black(DA_forward_spread,
                                       strike_tilde,
                                       self.T,
                                       self.sigma,
                                       self.option_type) * self.notional

    @property
    def delta(self):
        old_index_pv = self.index.pv
        old_pv = self.pv
        self.index.spread += 0.1
        notional_ratio = self.index.notional/self.notional
        delta = (self.pv - old_pv)/(self.index.pv - old_index_pv) * notional_ratio
        self.index.spread -= 0.1
        return delta


    @property
    def T(self):
        if self._T:
            return self._T
        else:
            return year_frac(self.index.trade_date, self.exercise_date) + 1/365

    @property
    def gamma(self):
        pass

    @property
    def theta(self):
        old_pv = self.pv
        self._T = self.T - 1/365
        theta = self.pv - old_pv
        self._T = None
        return theta

    @property
    def vega(self):
        old_pv = self.pv
        self.sigma += 0.01
        vega = self.pv - old_pv
        self.sigma -= 0.01
        return vega

def d1(F, K, sigma, T):
    return (np.log(F / K) + sigma**2 * T / 2) / (sigma * np.sqrt(T))

def d2(F, K, sigma, T):
    return d1(F, K, sigma, T) - sigma * np.sqrt(T)

def black(F, K, T, sigma, option_type = "payer"):
    chi = 1 if option_type == "payer" else -1
    if option_type == "payer":
        return F * norm.cdf(d1(F, K, sigma, T)) - K * norm.cdf(d2(F, K, sigma, T))
    else:
       return K * norm.cdf(- d2(F, K, sigma, T)) - F * norm.cdf(- d1(F, K, sigma, T))

def option(index, exercise_date, sigma, K, option_type="payer"):
    """ computes the pv of an option using Pedersen's model """
    fp = index.forward_pv(exercise_date)/index.notional
    #forward_yc = yield_curve.expected_forward_curve(exercise_date)
    #expiry is end of day (not sure if this is right)
    T = year_frac(index.trade_date, exercise_date)
    Z, w = GHquad(50)
    tilt = np.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T))
    exercise_date_settle = (pd.Timestamp(exercise_date) + 3* BDay()).date()
    args = (fp, exercise_date, exercise_date_settle, index, tilt, w)
    ## atm forward is greater than spread
    eta = 1.1
    a = index.spread
    b = index.spread * eta
    while True:
        if calib(*((b,) + args)) > 0:
            break
        b *= eta
    S0 = brentq(calib, a, b, args)
    S =  S0 * tilt
    G = g(index, K, exercise_date)
    handle = lambda Z: g(index, S0 * math.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T)),
                         exercise_date) - G
    Zstar = brentq(handle, -3, 3)
    if option_type.lower() == "payer":
        Z = Zstar + np.logspace(0, 1.1, 300) - 1
    elif option_type.lower() == "receiver":
        Z = Zstar - np.logspace(0, 1.1, 300) + 1
    else:
        raise ValueError("option_type needs to be either 'payer' or 'receiver'")
    S = S0 * np.exp(-sigma**2/2 * T + sigma * Z * math.sqrt(T))
    a, b = strike_vec(S, index._yc, exercise_date, exercise_date_settle,
                      index.start_date, index.end_date, index.recovery)
    val = ((a - b * index.fixed_rate)/df - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
    return simps(val, Z) * yield_curve.discount_factor(exercise_date_settle)

if __name__ == "__main__":
    import datetime
    from analytics import Index
    from swaption import Option

    ig27_5yr = Index.from_name('ig', 27, '5yr', datetime.date(2016, 10, 24))
    ig27_5yr.spread = 74
    payer = Option(ig27_5yr, datetime.date(2016, 12, 21), 65)
    payer.sigma = 0.428
    payer.notional = 10e6