diff options
| author | Guillaume Horel <guillaume.horel@serenitascapital.com> | 2015-07-30 15:17:00 -0400 |
|---|---|---|
| committer | Guillaume Horel <guillaume.horel@serenitascapital.com> | 2015-07-30 15:17:00 -0400 |
| commit | d2e3b9cb9758b22887dfaf0118c9e3e1085e28d8 (patch) | |
| tree | e38df0cd40d2aaa982c3836d392ff86c6275e1aa /man | |
| parent | 3cab7807e4d31a1cda940b9b3e160a1a7cf10a09 (diff) | |
| download | lossdistrib-d2e3b9cb9758b22887dfaf0118c9e3e1085e28d8.tar.gz | |
add generated docs
Diffstat (limited to 'man')
| -rw-r--r-- | man/GHquad.Rd | 25 | ||||
| -rw-r--r-- | man/lossdist.joint.Rd | 34 | ||||
| -rw-r--r-- | man/lossdistrib.Rd | 24 | ||||
| -rw-r--r-- | man/lossdistrib.fft.Rd | 26 | ||||
| -rw-r--r-- | man/lossdistrib2.Rd | 28 | ||||
| -rw-r--r-- | man/lossdistrib2.truncated.Rd | 34 |
6 files changed, 171 insertions, 0 deletions
diff --git a/man/GHquad.Rd b/man/GHquad.Rd new file mode 100644 index 0000000..a72a1f2 --- /dev/null +++ b/man/GHquad.Rd @@ -0,0 +1,25 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/distrib.R +\name{GHquad} +\alias{GHquad} +\title{Gauss-Hermite quadrature weights} +\usage{ +GHquad(n) +} +\arguments{ +\item{n}{Integer, the number of nodes} +} +\value{ +A list with two components: + \item{Z}{the list of nodes} + \item{w}{the corresponding weights} +} +\description{ +\code{GHquad} computes the quadrature weights for integrating against a +Gaussian distribution. +} +\details{ +if f is a function, then with(GHquad(100), crossprod(f(Z), w)) +will compute \eqn{\frac{1}{\sqrt{2\pi}}\int_-\infty^\infty f(x)e^{-\frac{x^2}{2}}\,dx}. +} + diff --git a/man/lossdist.joint.Rd b/man/lossdist.joint.Rd new file mode 100644 index 0000000..c3354af --- /dev/null +++ b/man/lossdist.joint.Rd @@ -0,0 +1,34 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/distrib.R +\name{lossdist.joint} +\alias{lossdist.joint} +\title{recursive algorithm with first order correction to compute the joint +probability distribution of the loss and recovery. +For high severities, M can become bigger than N, and there is +some probability mass escaping.} +\usage{ +lossdist.joint(p, w, S, N, defaultflag = FALSE) +} +\arguments{ +\item{p}{Numeric, vector of default probabilities} + +\item{w}{Numeric, vector of weights} + +\item{S}{Numeric, vector of severities} + +\item{N}{Integer, number of ticks in the grid} + +\item{cutoff}{Integer, where to stop computing the exact probabilities} +} +\value{ +q Matrix of joint loss, recovery probability distribution +colSums(q) is the recovery distribution marginal +rowSums(q) is the loss distribution marginal +} +\description{ +recursive algorithm with first order correction to compute the joint +probability distribution of the loss and recovery. +For high severities, M can become bigger than N, and there is +some probability mass escaping. +} + diff --git a/man/lossdistrib.Rd b/man/lossdistrib.Rd new file mode 100644 index 0000000..3479628 --- /dev/null +++ b/man/lossdistrib.Rd @@ -0,0 +1,24 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/distrib.R +\name{lossdistrib} +\alias{lossdistrib} +\title{Loss distribution of a portfolio} +\usage{ +lossdistrib(p) +} +\arguments{ +\item{p}{Numeric vector, the vector of success probabilities} +} +\value{ +A vector q such that q[k]=P(S=k) +} +\description{ +\code{lossdistrib} computes the probability distribution of a sum +of independent Bernouilli variables with unequal probabilities. +} +\details{ +This uses the basic recursive algorithm of Andersen, Sidenius and Basu +We compute the probability distribution of S = \sum_{i=1}^n X_i +where X_i is Bernouilli(p_i) +} + diff --git a/man/lossdistrib.fft.Rd b/man/lossdistrib.fft.Rd new file mode 100644 index 0000000..7f86f10 --- /dev/null +++ b/man/lossdistrib.fft.Rd @@ -0,0 +1,26 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/distrib.R +\name{lossdistrib.fft} +\alias{lossdistrib.fft} +\title{Loss distribution of a portfolio} +\usage{ +lossdistrib.fft(p) +} +\arguments{ +\item{p}{Numeric vector, the vector of success probabilities} +} +\value{ +A vector such that q[k]=P(S=k) +} +\description{ +\code{lossdistrib.fft} computes the probability distribution of a sum +of independent Bernouilli variables with unequal probabilities. +} +\details{ +This uses the fft. Complexity is of order O(n m) + O(m\log{m}) +where m is the size of the grid and n, the number of probabilities. +It is slower than the recursive algorithm in practice. +We compute the probability distribution of S = \sum_{i=1}^n X_i +where X_i is Bernouilli(p_i) +} + diff --git a/man/lossdistrib2.Rd b/man/lossdistrib2.Rd new file mode 100644 index 0000000..d62afb4 --- /dev/null +++ b/man/lossdistrib2.Rd @@ -0,0 +1,28 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/distrib.R +\name{lossdistrib2} +\alias{lossdistrib2} +\title{recursive algorithm with first order correction} +\usage{ +lossdistrib2(p, w, S, N, defaultflag = FALSE) +} +\arguments{ +\item{p}{Numeric, vector of default probabilities} + +\item{w}{Numeric, vector of weights} + +\item{S}{Numeric, vector of severities} + +\item{N}{Integer, number of ticks in the grid} + +\item{defaultflag}{Boolean, if True, we compute the default distribution +(instead of the loss distribution).} +} +\value{ +a Numeric vector of size \code{N} computing the loss (resp. +default) distribution if \code{defaultflag} is FALSE (resp. TRUE). +} +\description{ +recursive algorithm with first order correction +} + diff --git a/man/lossdistrib2.truncated.Rd b/man/lossdistrib2.truncated.Rd new file mode 100644 index 0000000..2a488e9 --- /dev/null +++ b/man/lossdistrib2.truncated.Rd @@ -0,0 +1,34 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/distrib.R +\name{lossdistrib2.truncated} +\alias{lossdistrib2.truncated} +\title{recursive algorithm with first order correction truncated version +this is actually slower than lossdistrib2. But in C this is +twice as fast. +For high severities, M can become bigger than N, and there is +some probability mass escaping.} +\usage{ +lossdistrib2.truncated(p, w, S, N, cutoff = N) +} +\arguments{ +\item{p}{Numeric, vector of default probabilities} + +\item{w}{Numeric, vector of weights} + +\item{S}{Numeric, vector of severities} + +\item{N}{Integer, number of ticks in the grid} + +\item{cutoff}{Integer, where to stop computing the exact probabilities} +} +\value{ +a Numeric vector of size \code{N} computing the loss distribution +} +\description{ +recursive algorithm with first order correction truncated version +this is actually slower than lossdistrib2. But in C this is +twice as fast. +For high severities, M can become bigger than N, and there is +some probability mass escaping. +} + |
