diff options
| -rw-r--r-- | src/lossdistrib.c | 1682 |
1 files changed, 841 insertions, 841 deletions
diff --git a/src/lossdistrib.c b/src/lossdistrib.c index e5f2c53..61f3c84 100644 --- a/src/lossdistrib.c +++ b/src/lossdistrib.c @@ -1,841 +1,841 @@ -#include <R.h>
-#include <Rmath.h>
-#include <string.h>
-#include <omp.h>
-#include "lossdistrib.h"
-
-#define MIN(x, y) (((x) < (y)) ? (x) : (y))
-
-extern int dgemv_(char* trans, int *m, int *n, double* alpha, double* A, int* lda,
- double* x, int* incx, double* beta, double* y, int* incy);
-extern double ddot_(int* n, double* dx, int* incx, double* dy, int* incy);
-extern int dscal_(int* n, double* da, double* dx, int* incx);
-extern int daxpy_(int* n, double* da, double* dx, int* incx, double* dy, int* incy);
-extern int dstev_(char* JOBZ, int* n, double* D, double* E, double* Z, int* ldz, double* WORK, int* INFO);
-
-extern void openblas_set_num_threads(int);
-
-void GHquad(int* n, double* Z, double* w) {
- // Setup for eigenvalue computations
- char JOBZ = 'V'; // Compute eigenvalues & vectors
- int INFO;
- int i;
- // Initialize array for workspace
- double * WORK = malloc(sizeof(double)*(2*(*n)-2));
-
- // Initialize array for eigenvectors
- double * V = malloc(sizeof(double)*(*n)*(*n));
-
- for(i = 0; i<(*n)-1; i++){
- w[i] = sqrt((i+1.)/2);
- }
-
- // Run eigen decomposition
- dstev_(&JOBZ, n, Z, w, V, n, WORK, &INFO);
-
- for (i=0; i<(*n); i++) {
- w[i] = V[i*(*n)] * V[i*(*n)];
- Z[i] *= sqrt(2);
- }
-
- // Deallocate temporary arrays
- free(WORK);
- free(V);
-}
-
-void lossdistrib(double *p, int *np, double *w, double *S, int *N, int *defaultflag,
- double *q) {
- /* recursive algorithm with first order correction for computing
- the loss distribution.
- p vector of default probabilities
- np length of p
- w issuer weights
- S vector of severities (should be same length as p)
- N number of ticks in the grid
- defaultflag if true compute the default distribution
- q the loss distribution */
-
- int i, j, d1, d2, M;
- double lu, d, p1, p2, sum;
- double *qtemp;
-
- lu = 1./(*N-1);
- qtemp = calloc(*N, sizeof(double));
- q[0] = 1;
- M = 1;
- for(i=0; i<(*np); i++){
- d = (*defaultflag)? w[i]/lu : S[i] * w[i]/ lu;
- d1 = floor(d);
- d2 = ceil(d);
- p1 = p[i] * (d2-d);
- p2 = p[i] - p1;
- memcpy(qtemp, q, MIN(M, *N) * sizeof(double));
- for(j=0; j < MIN(M, *N); j++){
- q[j] = (1-p[i]) * q[j];
- }
- for(j=0; j < MIN(M, *N-d2); j++){
- q[d1+j] += p1 * qtemp[j];
- q[d2+j] += p2 * qtemp[j];
- };
- M+=d2;
- }
-
- /* correction for weight loss */
- if(M > *N){
- sum = 0;
- for(j=0; j<MIN(M, *N); j++){
- sum += q[j];
- }
- q[*N-1] += 1-sum;
- }
- free(qtemp);
-}
-
-void lossdistrib_blas(double *p, int *np, double *w, double *S, int *N, int *defaultflag,
- double *q) {
- /* recursive algorithm with first order correction for computing
- the loss distribution.
- p: vector of default probabilities
- np: length of p
- w: issuer weights
- S: vector of severities (should be same length as p)
- N: number of ticks in the grid
- defaultflag: if true compute the default distribution
- q: the loss distribution */
-
- int i, j, d1, d2, M;
- double lu, d, p1, p2, sum;
- double *qtemp;
- int bound;
- double pbar;
- int one = 1;
- openblas_set_num_threads(1);
- lu = 1./(*N-1);
- qtemp = calloc(*N, sizeof(double));
- q[0] = 1;
- M = 1;
- for(i=0; i<(*np); i++){
- d = (*defaultflag)? w[i]/lu : S[i] * w[i]/ lu;
- d1 = floor(d);
- d2 = ceil(d);
- p1 = p[i] * (d2-d);
- p2 = p[i] - p1;
- memcpy(qtemp, q, MIN(M, *N) * sizeof(double));
- pbar = 1-p[i];
- bound = MIN(M, *N);
- dscal_(&bound, &pbar, q, &one);
- bound = MIN(M, *N-d2);
- daxpy_(&bound, &p1, qtemp, &one, q+d1, &one);
- daxpy_(&bound, &p2, qtemp, &one, q+d2, &one);
- M += d2;
- }
- /* correction for weight loss */
- if(M > *N){
- sum = 0;
- for(j=0; j<MIN(M, *N); j++){
- sum += q[j];
- }
- q[*N-1] += 1-sum;
- }
- free(qtemp);
-}
-
-void lossdistrib_Z(double *p, int *np, double *w, double *S, int *N, int *defaultflag,
- double *rho, double *Z, int *nZ, double *q){
- int i, j;
- double* pshocked = malloc(sizeof(double) * (*np) * (*nZ));
-
- #pragma omp parallel for private(j)
- for(i = 0; i < *nZ; i++){
- for(j = 0; j < *np; j++){
- pshocked[j + (*np) * i] = shockprob(p[j], rho[j], Z[i], 0);
- }
- lossdistrib_blas(pshocked + (*np) * i, np, w, S + (*np) * i, N,
- defaultflag, q + (*N) * i);
- }
- free(pshocked);
-}
-
-void lossdistrib_truncated(double *p, int *np, double *w, double *S, int *N,
- int *T, int *defaultflag, double *q) {
- /* recursive algorithm with first order correction for computing
- the loss distribution.
- input:
- p vector of default probabilities
- np length of p
- S vector of severities (should be same length as p)
- N number of ticks in the grid
- T where to truncate the distribution
- defaultflag if true computes the default distribution
- output:
- q the loss distribution */
-
- int i, j, d1, d2, M;
- double lu, d, p1, p2;
- double *q1, *q2;
-
- lu = 1./(*N-1);
- q1 = calloc( *T, sizeof(double));
- q2 = calloc( *T, sizeof(double));
- q[0] = 1;
- M = 1;
- for(i=0; i<(*np); i++){
- d = (*defaultflag)? w[i] / lu : S[i] * w[i] / lu;
- d1 = floor(d);
- d2 = ceil(d);
- p1 = p[i] * (d2-d);
- p2 = p[i] - p1;
- for(j=0; j < MIN(M, *T); j++){
- q1[j] = p1 * q[j];
- q2[j] = p2 * q[j];
- q[j] = (1-p[i]) * q[j];
- }
- for(j=0; j < MIN(M, *T-d1); j++){
- q[d1+j] += q1[j];
- };
- for(j=0; j < MIN(M, *T-d2); j++){
- q[d2+j] += q2[j];
- };
- M += d2;
- }
- free(q1);
- free(q2);
-}
-
-void lossdistrib_joint(double *p, int *np, double *w, double *S, int *N, int *defaultflag, double *q) {
- /* recursive algorithm with first order correction
- computes jointly the loss and recovery distribution
- p vector of default probabilities
- np length of p
- w vector of issuer weights (length np)
- S vector of severities (should be same length as p)
- N number of ticks in the grid
- defaultflag if true computes the default distribution
- q the joint probability distribution */
-
- int i, j, k, m, n;
- int Mx, My;
- double lu, x, y, sum;
- double alpha1, alpha2, beta1, beta2;
- double w1, w2, w3, w4;
- double *qtemp;
-
- lu = 1./(*N-1);
- qtemp = calloc( (*N) * (*N), sizeof(double));
- q[0] = 1;
- Mx=1;
- My=1;
- for(k=0; k<(*np); k++){
- x = (*defaultflag)? w[k] /lu : S[k] * w[k] / lu;
- y = (1-S[k]) * w[k] / lu;
- i = floor(x);
- j = floor(y);
- alpha1 = i + 1 - x;
- alpha2 = 1 - alpha1;
- beta1 = j + 1 - y;
- beta2 = 1 - beta1;
- w1 = alpha1 * beta1;
- w2 = alpha1 * beta2;
- w3 = alpha2 * beta2;
- w4 = alpha2 * beta1;
-
- for(n=0; n<MIN(My, *N); n++){
- memcpy(qtemp+n*(*N), q+n*(*N), MIN(Mx, *N) * sizeof(double));
- }
- for(n=0; n<MIN(My, *N); n++){
- for(m=0; m<MIN(Mx, *N); m++){
- q[m+(*N)*n] = (1-p[k])* q[m+(*N)*n];
- }
- }
- for(n=0; n < MIN(My, *N-j-1); n++){
- for(m=0; m < MIN(Mx, *N-i-1); m++){
- q[i+m+(*N)*(j+n)] += w1 * p[k] * qtemp[m+(*N)*n];
- q[i+m+(*N)*(j+1+n)] += w2 * p[k] * qtemp[m+(*N)*n];
- q[i+1+m+(*N)*(j+1+n)] += w3 * p[k] * qtemp[m+(*N)*n];
- q[i+1+m+(*N)*(j+n)] += w4 * p[k] *qtemp[m+(*N)*n];
- }
- }
- Mx += i+1;
- My += j+1;
- }
- /* correction for weight loss */
- if(Mx>*N || My>*N){
- sum = 0;
- for(m=0; m < MIN(Mx, *N); m++){
- for(n=0; n < MIN(My, *N); n++){
- sum += q[m+n*(*N)];
- }
- }
- q[MIN(*N, Mx)*MIN(My,*N)-1] += 1 - sum;
- }
- free(qtemp);
-}
-
-void lossdistrib_joint_blas(double *p, int *np, double *w, double *S, int *N, int *defaultflag, double *q) {
- /* recursive algorithm with first order correction
- computes jointly the loss and recovery distribution
- p vector of default probabilities
- np length of p
- w vector of issuer weights (length np)
- S vector of severities (should be same length as p)
- N number of ticks in the grid
- defaultflag if true computes the default distribution
- q the joint probability distribution */
-
- int i, j, k, m, n;
- int Mx, My;
- double lu, x, y, sum, pbar;
- double alpha1, alpha2, beta1, beta2;
- double w1, w2, w3, w4;
- double *qtemp;
- int bound;
- int one = 1;
-
- /* only use one thread, performance is horrible if use multiple threads */
- openblas_set_num_threads(1);
-
- lu = 1./(*N-1);
- qtemp = calloc( (*N) * (*N), sizeof(double));
- q[0] = 1;
- Mx=1;
- My=1;
- for(k=0; k<(*np); k++){
- x = (*defaultflag)? w[k] /lu : S[k] * w[k] / lu;
- y = (1-S[k]) * w[k] / lu;
- i = floor(x);
- j = floor(y);
- alpha1 = i + 1 - x;
- alpha2 = 1 - alpha1;
- beta1 = j + 1 - y;
- beta2 = 1 - beta1;
- w1 = alpha1 * beta1 * p[k];
- w2 = alpha1 * beta2 * p[k];
- w3 = alpha2 * beta2 * p[k];
- w4 = alpha2 * beta1 * p[k];
-
- for(n=0; n<MIN(My, *N); n++){
- memcpy(qtemp+n*(*N), q+n*(*N), MIN(Mx, *N) * sizeof(double));
- }
-
- bound = MIN(Mx, *N);
- pbar = 1-p[k];
- for(n=0; n<MIN(My, *N); n++){
- dscal_(&bound, &pbar, q+(*N)*n, &one);
- }
- bound = MIN(Mx, *N-i-1);
- for(n=0; n < MIN(My, *N-j-1); n++){
- daxpy_(&bound, &w1, qtemp+(*N)*n, &one, q+i+(*N)*(j+n), &one);
- daxpy_(&bound, &w2, qtemp+(*N)*n, &one, q+i+(*N)*(j+1+n), &one);
- daxpy_(&bound, &w3, qtemp+(*N)*n, &one, q+i+1+(*N)*(j+1+n), &one);
- daxpy_(&bound, &w4, qtemp+(*N)*n, &one, q+i+1+(*N)*(j+n), &one);
- }
- Mx += i+1;
- My += j+1;
- }
- /* correction for weight loss */
- if(Mx>*N || My>*N){
- sum = 0;
- for(m=0; m < MIN(Mx, *N); m++){
- for(n=0; n < MIN(My, *N); n++){
- sum += q[m+n*(*N)];
- }
- }
- q[MIN(*N, Mx)*MIN(My,*N)-1] += 1 - sum;
- }
- free(qtemp);
-}
-
-void recovdist(double *dp, double *pp, int *n, double *w, double *S, int *N, double *q) {
- /* recursive algorithm with first order correction for computing
- the recovery distribution in case of prepayment.
- dp vector of default probabilities
- pp vector of prepay probabilities
- n length of p
- S vector of severities (should be same length as p)
- w vector of weights
- N number of ticks in the grid
- q the loss distribution */
-
- int i, j, d1l, d1u, d2l, d2u;
- int M;
- double lu, d1, d2, dp1, dp2, pp1, pp2, sum;
- double *qtemp;
-
- lu = 1./(*N - 1);
- qtemp = calloc( (*N), sizeof(double));
- q[0] = 1;
- M=1;
- for(i=0; i<(*n); i++){
- d1 = w[i] * (1-S[i]) /lu;
- d2 = w[i]/lu;
- d1l = floor(d1);
- d1u = d1l + 1;
- d2l = floor(d2);
- d2u = d2l + 1;
- dp1 = dp[i] * (d1u - d1);
- dp2 = dp[i] - dp1;
- pp1 = pp[i] * (d2u - d2);
- pp2 = pp[i] - pp1;
- memcpy(qtemp, q, MIN(M, *N) * sizeof(double));
- for(j = 0; j< MIN(M, *N); j++){
- q[j] = (1-dp[i]-pp[i]) * q[j];
- }
- for(j=0; j < MIN(M, *N-d2u); j++){
- q[d1l+j] += dp1 * qtemp[j];
- q[d1u+j] += dp2 * qtemp[j];
- q[d2l+j] += pp1 * qtemp[j];
- q[d2u+j] += pp2 * qtemp[j];
- };
- M += d2u;
- }
- /* correction for weight loss */
- if(M>*N){
- sum = 0;
- for(j=0; j<MIN(M, *N); j++){
- sum += q[j];
- }
- q[*N-1] += 1-sum;
- }
- free(qtemp);
-}
-
-void lossdistrib_prepay_joint(double *dp, double *pp, int *ndp, double *w,
- double *S, int *N, int *defaultflag, double *q) {
- int i, j1, j2, k, m, n;
- double lu, x, y1, y2, sum;
- double alpha1, alpha2, beta1, beta2;
- double dpw1, dpw2, dpw3, dpw4;
- double ppw1, ppw2, ppw3;
- double *qtemp;
- int Mx, My;
-
- lu = 1./(*N-1);
- qtemp = calloc((*N) * (*N), sizeof(double));
- q[0] = 1;
- Mx=1;
- My=1;
-
- for(k=0; k<(*ndp); k++){
- y1 = (1-S[k]) * w[k]/lu;
- y2 = w[k]/lu;
- x = (*defaultflag)? y2: y2-y1;
- i = floor(x);
- j1 = floor(y1);
- j2 = floor(y2);
- alpha1 = i + 1 - x;
- alpha2 = 1 - alpha1;
- beta1 = j1 + 1 - y1;
- beta2 = 1 - beta1;
- dpw1 = alpha1 * beta1 * dp[k];
- dpw2 = alpha1 * beta2 * dp[k];
- dpw3 = alpha2 * beta2 * dp[k];
- dpw4 = alpha2 * beta1 * dp[k];
-
- /* by default distribution, we mean names fractions of names that disappeared
- either because of default or prepayment */
- for(n=0; n<MIN(My, *N); n++){
- memcpy(qtemp+n*(*N), q+n*(*N), MIN(Mx, *N) * sizeof(double));
- }
- for(n=0; n<MIN(My, *N); n++){
- for(m=0; m<MIN(Mx, *N); m++){
- q[m+(*N)*n] = (1-dp[k]-pp[k]) * q[m+(*N)*n];
- }
- }
- if(*defaultflag){
- ppw1 = alpha1 * alpha1 * pp[k];
- ppw2 = alpha1 * alpha2 * pp[k];
- ppw3 = alpha2 * alpha2 * pp[k];
- for(n=0; n < MIN(My, *N-j2-1); n++){
- for(m=0; m < MIN(Mx, *N-i-1); m++){
- q[i+m+(*N)*(j1+n)] += dpw1 * qtemp[m+(*N)*n];
- q[i+m+(*N)*(j1+1+n)] += dpw2 * qtemp[m+(*N)*n];
- q[i+1+m+(*N)*(j1+1+n)] += dpw3 * qtemp[m+(*N)*n];
- q[i+1+m+(*N)*(j1+n)] += dpw4 * qtemp[m+(*N)*n];
-
- q[i+m+(*N)*(j2+n)] += ppw1 * qtemp[m+(*N)*n];
- q[i+m+(*N)*(j2+1+n)] += ppw2 * qtemp[m+(*N)*n];
- q[i+1+m+(*N)*(j2+1+n)] += ppw3 * qtemp[m+(*N)*n];
- q[i+1+m+(*N)*(j2+n)] += ppw2 * qtemp[m+(*N)*n];
- }
- }
- }else{
- for(n=0; n < MIN(My, *N-j2-1); n++){
- for(m=0; m < MIN(Mx, *N-i-1); m++){
- q[i+m+(*N)*(j1+n)] += dpw1 * qtemp[m+(*N)*n];
- q[i+m+(*N)*(j1+1+n)] += dpw2 * qtemp[m+(*N)*n];
- q[i+1+m+(*N)*(j1+1+n)] += dpw3 * qtemp[m+(*N)*n];
- q[i+1+m+(*N)*(j1+n)] += dpw4 * qtemp[m+(*N)*n];
- q[m+(*N)*(j2+n)] += pp[k]*(j2+1-y2) * qtemp[m+(*N)*n];
- q[m+(*N)*(j2+1+n)] += pp[k]*(y2-j2) * qtemp[m+(*N)*n];
- }
- }
- }
- Mx += i + 1;
- My += j2 + 1;
- }
- /* correction for weight loss */
- if(Mx>*N || My>*N){
- sum = 0;
- for(m=0; m < MIN(Mx, *N); m++){
- for(n=0; n < MIN(My, *N); n++){
- sum += q[m+n*(*N)];
- }
- }
- q[MIN(*N, Mx)*MIN(My,*N)-1] += 1 - sum;
- }
- free(qtemp);
-}
-
-void lossdistrib_prepay_joint_blas(double *dp, double *pp, int *ndp, double *w,
- double *S, int *N, int *defaultflag, double *q) {
- int i, j1, j2, k, m, n;
- double lu, x, y1, y2, sum;
- double alpha1, alpha2, beta1, beta2;
- double dpw1, dpw2, dpw3, dpw4;
- double ppw1, ppw2, ppw3;
- double *qtemp;
- int Mx, My, bound;
- double pbar;
- int one = 1;
-
- lu = 1./(*N-1);
- qtemp = calloc((*N) * (*N), sizeof(double));
- q[0] = 1;
- Mx=1;
- My=1;
-
- /* only use one thread, performance is horrible if use multiple threads */
- openblas_set_num_threads(1);
- for(k=0; k<(*ndp); k++){
- y1 = (1-S[k]) * w[k]/lu;
- y2 = w[k]/lu;
- x = (*defaultflag)? y2: y2-y1;
- i = floor(x);
- j1 = floor(y1);
- j2 = floor(y2);
- alpha1 = i + 1 - x;
- alpha2 = 1 - alpha1;
- beta1 = j1 + 1 - y1;
- beta2 = 1 - beta1;
- dpw1 = alpha1 * beta1 * dp[k];
- dpw2 = alpha1 * beta2 * dp[k];
- dpw3 = alpha2 * beta2 * dp[k];
- dpw4 = alpha2 * beta1 * dp[k];
-
- /* by default distribution, we mean names fractions of names that disappeared
- either because of default or prepayment */
- for(n=0; n<MIN(My, *N); n++){
- memcpy(qtemp+n*(*N), q+n*(*N), MIN(Mx, *N) * sizeof(double));
- }
- bound = MIN(Mx, *N);
- pbar = 1-dp[k]-pp[k];
- for(n=0; n<MIN(My, *N); n++){
- dscal_(&bound, &pbar, q+(*N)*n, &one);
- }
- bound = MIN(Mx, *N-i-1);
- if(*defaultflag){
- ppw1 = alpha1 * alpha1 * pp[k];
- ppw2 = alpha1 * alpha2 * pp[k];
- ppw3 = alpha2 * alpha2 * pp[k];
- for(n=0; n < MIN(My, *N-j2-1); n++){
- daxpy_(&bound, &dpw1, qtemp+(*N)*n, &one, q+i+(*N)*(j1+n), &one);
- daxpy_(&bound, &dpw2, qtemp+(*N)*n, &one, q+i+(*N)*(j1+1+n), &one);
- daxpy_(&bound, &dpw3, qtemp+(*N)*n, &one, q+i+1+(*N)*(j1+1+n), &one);
- daxpy_(&bound, &dpw4, qtemp+(*N)*n, &one, q+i+1+(*N)*(j1+n), &one);
-
- daxpy_(&bound, &ppw1, qtemp+(*N)*n, &one, q+i+(*N)*(j2+n), &one);
- daxpy_(&bound, &ppw2, qtemp+(*N)*n, &one, q+i+(*N)*(j2+1+n), &one);
- daxpy_(&bound, &ppw3, qtemp+(*N)*n, &one, q+i+1+(*N)*(j2+1+n), &one);
- daxpy_(&bound, &ppw2, qtemp+(*N)*n, &one, q+i+1+(*N)*(j2+n), &one);
- }
- }else{
- ppw1 = pp[k] * (j2+1-y2);
- ppw2 = pp[k] * (y2-j2);
- for(n=0; n < MIN(My, *N-j2-1); n++){
- daxpy_(&bound, &dpw1, qtemp+(*N)*n, &one, q+i+(*N)*(j1+n), &one);
- daxpy_(&bound, &dpw2, qtemp+(*N)*n, &one, q+i+(*N)*(j1+1+n), &one);
- daxpy_(&bound, &dpw3, qtemp+(*N)*n, &one, q+i+1+(*N)*(j1+1+n), &one);
- daxpy_(&bound, &dpw4, qtemp+(*N)*n, &one, q+i+1+(*N)*(j1+n), &one);
- daxpy_(&bound, &ppw1, qtemp+(*N)*n, &one, q+(*N)*(j2+n), &one);
- daxpy_(&bound, &ppw2, qtemp+(*N)*n, &one, q+(*N)*(j2+1+n), &one);
- }
- }
- Mx += i + 1;
- My += j2 + 1;
- }
- /* correction for weight loss */
- if(Mx>*N || My>*N){
- sum = 0;
- for(m=0; m < MIN(Mx, *N); m++){
- for(n=0; n < MIN(My, *N); n++){
- sum += q[m+n*(*N)];
- }
- }
- q[MIN(*N, Mx)*MIN(My,*N)-1] += 1 - sum;
- }
- free(qtemp);
-}
-
-double shockprob(double p, double rho, double Z, int give_log){
- if(rho==1){
- return((double)(Z<=qnorm(p, 0, 1, 1, 0)));
- }else{
- return( pnorm( (qnorm(p, 0, 1, 1, 0) - sqrt(rho) * Z)/sqrt(1 - rho), 0, 1, 1, give_log));
- }
-}
-
-double dqnorm(double x){
- return 1/dnorm(qnorm(x, 0, 1, 1, 0), 0, 1, 0);
-}
-
-double dshockprob(double p, double rho, double Z){
- return( dnorm((qnorm(p, 0, 1, 1, 0) - sqrt(rho) * Z)/sqrt(1-rho), 0, 1, 0) * dqnorm(p)/sqrt(1-rho) );
-}
-
-void shockprobvec2(double p, double rho, double* Z, int nZ, double *q){
- /* return a two column vectors with shockprob in the first column
- and dshockprob in the second column*/
- int i;
- #pragma omp parallel for
- for(i = 0; i < nZ; i++){
- q[i] = shockprob(p, rho, Z[i], 0);
- q[i + nZ] = dshockprob(p, rho, Z[i]);
- }
-}
-
-double shockseverity(double S, double Z, double rho, double p){
- if(p==0){
- return 0;
- }else{
- return( exp(shockprob(S * p, rho, Z, 1) - shockprob(p, rho, Z, 1)) );
- }
-}
-
-double quantile(double* Z, double* w, int nZ, double p0){
- double cumw;
- int i;
- cumw = 0;
- for(i=0; i<nZ; i++){
- cumw += w[i];
- if(cumw > p0){
- break;
- }
- }
- return( Z[i] );
-}
-
-void fitprob(double* Z, double* w, int* nZ, double* rho, double* p0, double* result){
- double eps = 1e-12;
- int one = 1;
- double *q = malloc( 2 * (*nZ) * sizeof(double));
- double dp, p, phi;
-
- if(*p0 == 0){
- *result = 0;
- }else if(*rho == 1){
- *result = pnorm(quantile(Z, w, *nZ, *p0), 0, 1, 1, 0);
- }else{
- shockprobvec2(*p0, *rho, Z, *nZ, q);
- dp = (ddot_(nZ, q, &one, w, &one) - *p0)/ddot_(nZ, q + *nZ, &one, w, &one);
- p = *p0;
- while(fabs(dp) > eps){
- phi = 1;
- while( (p - phi * dp) < 0 || (p - phi * dp) > 1){
- phi *= 0.8;
- }
- p -= phi * dp;
- shockprobvec2(p, *rho, Z, *nZ, q);
- dp = (ddot_(nZ, q, &one, w, &one) - *p0)/ddot_(nZ, q + *nZ, &one, w, &one);
- }
- *result = p;
- }
- free(q);
-}
-
-void stochasticrecov(double* R, double* Rtilde, double* Z, double* w, int* nZ,
- double* rho, double* porig, double* pmod, double* q){
- double ptemp, ptilde;
- int i;
- if(*porig==0){
- for(i = 0; i < *nZ; i++){
- q[i] = *R;
- }
- }else{
- ptemp = (1 - *R) / (1 - *Rtilde) * *porig;
- fitprob(Z, w, nZ, rho, &ptemp, &ptilde);
- #pragma omp parallel for
- for(i = 0; i < *nZ; i++){
- q[i] = fabs(1 - (1 - *Rtilde) * exp( shockprob(ptilde, *rho, Z[i], 1) -
- shockprob(*pmod, *rho, Z[i], 1)));
- }
- }
-}
-
-void lossdistrib_prepay_joint_Z(double *dp, double *pp, int *ndp, double *w,
- double *S, int *N, int *defaultflag, double *rho,
- double *Z, double *wZ, int *nZ, double *q) {
- int i, j;
- double* dpshocked = malloc(sizeof(double) * (*ndp) * (*nZ));
- double* ppshocked = malloc(sizeof(double) * (*ndp) * (*nZ));
- int N2 = (*N) * (*N);
- double* qmat = malloc(sizeof(double) * N2 * (*nZ));
-
- double alpha = 1;
- double beta = 0;
- int one = 1;
-
-#pragma omp parallel for private(j)
- for(i = 0; i < *nZ; i++){
- for(j = 0; j < *ndp; j++){
- dpshocked[j + (*ndp) * i] = shockprob(dp[j], rho[j], Z[i], 0);
- ppshocked[j + (*ndp) * i] = shockprob(pp[j], rho[j], -Z[i], 0);
- }
- lossdistrib_prepay_joint_blas(dpshocked + (*ndp) * i, ppshocked + (*ndp) * i, ndp,
- w, S + (*ndp) * i, N, defaultflag, qmat + N2 * i);
- }
-
- dgemv_("n", &N2, nZ, &alpha, qmat, &N2, wZ, &one, &beta, q, &one);
-
- free(dpshocked);
- free(ppshocked);
- free(qmat);
-}
-
-void lossdistrib_joint_Z(double *dp, int *ndp, double *w,
- double *S, int *N, int *defaultflag, double *rho,
- double *Z, double *wZ, int *nZ, double *q) {
- int i, j;
- double* dpshocked = malloc(sizeof(double) * (*ndp) * (*nZ));
- int N2 = (*N) * (*N);
- double* qmat = malloc(sizeof(double) * N2 * (*nZ));
-
- double alpha = 1;
- double beta = 0;
- int one = 1;
-
-#pragma omp parallel for private(j)
- for(i = 0; i < *nZ; i++){
- for(j = 0; j < *ndp; j++){
- dpshocked[j + (*ndp) * i] = shockprob(dp[j], rho[j], Z[i], 0);
- }
- lossdistrib_joint_blas(dpshocked + (*ndp) * i, ndp, w, S + (*ndp) * i, N,
- defaultflag, qmat + N2 * i);
- }
-
- dgemv_("n", &N2, nZ, &alpha, qmat, &N2, wZ, &one, &beta, q, &one);
-
- free(dpshocked);
- free(qmat);
-}
-
-void BCloss_recov_dist(double *defaultprob, int *dim1, int *dim2,
- double *issuerweights, double *recov, double *Z, double *w,
- int *n, double *rho, int *N, int *defaultflag,
- double *L, double *R) {
- /*
- computes the loss and recovery distribution over time with a flat gaussian
- correlation
- inputs:
- defaultprob: matrix of size dim1 x dim2. dim1 is the number of issuers
- and dim2 number of time steps
- issuerweights: vector of issuer weights (length dim1)
- recov: vector of recoveries (length dim1)
- Z: vector of factor values (length n)
- w: vector of factor weights (length n)
- rho: correlation beta vector (length dim1)
- N: number of ticks in the grid
- defaultflag: if true, computes the default distribution
- outputs:
- L: matrix of size (N, dim2)
- R: matrix of size (N, dim2)
- */
- int t, i, j;
- double g;
- double *gshocked, *Rshocked, *Sshocked, *Lw, *Rw;
- int one = 1;
- double alpha = 1;
- double beta = 0;
-
- gshocked = malloc((*dim1) * (*n) * sizeof(double));
- Rshocked = malloc((*dim1) * (*n) * sizeof(double));
- Sshocked = malloc((*dim1) * (*n) * sizeof(double));
- Lw = malloc((*N) * (*n) * sizeof(double));
- Rw = malloc((*N) * (*n) * sizeof(double));
-
-
- for(t=0; t < (*dim2); t++) {
- memset(Lw, 0, (*N) * (*n) * sizeof(double));
- memset(Rw, 0, (*N) * (*n) * sizeof(double));
- #pragma omp parallel for private(j, g)
- for(i=0; i < *n; i++){
- for(j=0; j < (*dim1); j++){
- g = defaultprob[j + (*dim1) * t];
- gshocked[j+(*dim1)*i] = shockprob(g, rho[j], Z[i], 0);
- Sshocked[j+(*dim1)*i] = shockseverity(1-recov[j], Z[i], rho[j], g);
- Rshocked[j+(*dim1)*i] = 1 - Sshocked[j+(*dim1)*i];
- }
- lossdistrib_blas(gshocked + (*dim1) * i, dim1, issuerweights, Sshocked + (*dim1)*i, N, defaultflag,
- Lw + i * (*N));
- lossdistrib_blas(gshocked + (*dim1) * i, dim1, issuerweights, Rshocked + (*dim1)*i, N, defaultflag,
- Rw + i * (*N));
- }
- dgemv_("n", N, n, &alpha, Lw, N, w, &one, &beta, L + t * (*N), &one);
- dgemv_("n", N, n, &alpha, Rw, N, w, &one, &beta, R + t * (*N), &one);
- }
- free(gshocked);
- free(Rshocked);
- free(Sshocked);
- free(Lw);
- free(Rw);
-}
-
-
-void BCloss_dist(double *defaultprob, int *dim1, int *dim2,
- double *issuerweights, double *recov, double *Z, double *w,
- int *n, double *rho, int *N, int *defaultflag,
- double *L) {
- /*
- computes the loss distribution over time with a flat gaussian
- correlation
- inputs:
- defaultprob: matrix of size dim1 x dim2. dim1 is the number of issuers
- and dim2 number of time steps
- issuerweights: vector of issuer weights (length dim1)
- recov: vector of recoveries (length dim1)
- Z: vector of factor values (length n)
- w: vector of factor weights (length n)
- rho: correlation beta vector (length dim1)
- N: number of ticks in the grid
- defaultflag: if true, computes the default distribution
- outputs:
- L: matrix of size (N, dim2)
- */
- int t, i, j;
- double g;
- double *gshocked, *Sshocked, *Lw;
- int one = 1;
- double alpha = 1;
- double beta = 0;
-
- gshocked = malloc((*dim1) * (*n) * sizeof(double));
- Sshocked = malloc((*dim1) * (*n) * sizeof(double));
- Lw = malloc((*N) * (*n) * sizeof(double));
-
- for(t=0; t < (*dim2); t++) {
- memset(Lw, 0, (*N) * (*n) * sizeof(double));
- #pragma omp parallel for private(j, g)
- for(i=0; i < *n; i++){
- for(j=0; j < (*dim1); j++){
- g = defaultprob[j + (*dim1) * t];
- gshocked[j+(*dim1)*i] = shockprob(g, rho[j], Z[i], 0);
- Sshocked[j+(*dim1)*i] = shockseverity(1-recov[j], Z[i], rho[j], g);
- }
- lossdistrib_blas(gshocked + (*dim1) * i, dim1, issuerweights, Sshocked + (*dim1)*i, N, defaultflag,
- Lw + i * (*N));
- }
- dgemv_("n", N, n, &alpha, Lw, N, w, &one, &beta, L + t * (*N), &one);
- }
- free(gshocked);
- free(Sshocked);
- free(Lw);
-}
+#include <R.h> +#include <Rmath.h> +#include <string.h> +#include <omp.h> +#include "lossdistrib.h" + +#define MIN(x, y) (((x) < (y)) ? (x) : (y)) + +extern int dgemv_(char* trans, int *m, int *n, double* alpha, double* A, int* lda, + double* x, int* incx, double* beta, double* y, int* incy); +extern double ddot_(int* n, double* dx, int* incx, double* dy, int* incy); +extern int dscal_(int* n, double* da, double* dx, int* incx); +extern int daxpy_(int* n, double* da, double* dx, int* incx, double* dy, int* incy); +extern int dstev_(char* JOBZ, int* n, double* D, double* E, double* Z, int* ldz, double* WORK, int* INFO); + +extern void openblas_set_num_threads(int); + +void GHquad(int* n, double* Z, double* w) { + // Setup for eigenvalue computations + char JOBZ = 'V'; // Compute eigenvalues & vectors + int INFO; + int i; + // Initialize array for workspace + double * WORK = malloc(sizeof(double)*(2*(*n)-2)); + + // Initialize array for eigenvectors + double * V = malloc(sizeof(double)*(*n)*(*n)); + + for(i = 0; i<(*n)-1; i++){ + w[i] = sqrt((i+1.)/2); + } + + // Run eigen decomposition + dstev_(&JOBZ, n, Z, w, V, n, WORK, &INFO); + + for (i=0; i<(*n); i++) { + w[i] = V[i*(*n)] * V[i*(*n)]; + Z[i] *= sqrt(2); + } + + // Deallocate temporary arrays + free(WORK); + free(V); +} + +void lossdistrib(double *p, int *np, double *w, double *S, int *N, int *defaultflag, + double *q) { + /* recursive algorithm with first order correction for computing + the loss distribution. + p vector of default probabilities + np length of p + w issuer weights + S vector of severities (should be same length as p) + N number of ticks in the grid + defaultflag if true compute the default distribution + q the loss distribution */ + + int i, j, d1, d2, M; + double lu, d, p1, p2, sum; + double *qtemp; + + lu = 1./(*N-1); + qtemp = calloc(*N, sizeof(double)); + q[0] = 1; + M = 1; + for(i=0; i<(*np); i++){ + d = (*defaultflag)? w[i]/lu : S[i] * w[i]/ lu; + d1 = floor(d); + d2 = ceil(d); + p1 = p[i] * (d2-d); + p2 = p[i] - p1; + memcpy(qtemp, q, MIN(M, *N) * sizeof(double)); + for(j=0; j < MIN(M, *N); j++){ + q[j] = (1-p[i]) * q[j]; + } + for(j=0; j < MIN(M, *N-d2); j++){ + q[d1+j] += p1 * qtemp[j]; + q[d2+j] += p2 * qtemp[j]; + } + M+=d2; + } + + /* correction for weight loss */ + if(M > *N){ + sum = 0; + for(j=0; j<MIN(M, *N); j++){ + sum += q[j]; + } + q[*N-1] += 1-sum; + } + free(qtemp); +} + +void lossdistrib_blas(double *p, int *np, double *w, double *S, int *N, int *defaultflag, + double *q) { + /* recursive algorithm with first order correction for computing + the loss distribution. + p: vector of default probabilities + np: length of p + w: issuer weights + S: vector of severities (should be same length as p) + N: number of ticks in the grid + defaultflag: if true compute the default distribution + q: the loss distribution */ + + int i, j, d1, d2, M; + double lu, d, p1, p2, sum; + double *qtemp; + int bound; + double pbar; + int one = 1; + openblas_set_num_threads(1); + lu = 1./(*N-1); + qtemp = calloc(*N, sizeof(double)); + q[0] = 1; + M = 1; + for(i=0; i<(*np); i++){ + d = (*defaultflag)? w[i]/lu : S[i] * w[i]/ lu; + d1 = floor(d); + d2 = ceil(d); + p1 = p[i] * (d2-d); + p2 = p[i] - p1; + memcpy(qtemp, q, MIN(M, *N) * sizeof(double)); + pbar = 1-p[i]; + bound = MIN(M, *N); + dscal_(&bound, &pbar, q, &one); + bound = MIN(M, *N-d2); + daxpy_(&bound, &p1, qtemp, &one, q+d1, &one); + daxpy_(&bound, &p2, qtemp, &one, q+d2, &one); + M += d2; + } + /* correction for weight loss */ + if(M > *N){ + sum = 0; + for(j=0; j<MIN(M, *N); j++){ + sum += q[j]; + } + q[*N-1] += 1-sum; + } + free(qtemp); +} + +void lossdistrib_Z(double *p, int *np, double *w, double *S, int *N, int *defaultflag, + double *rho, double *Z, int *nZ, double *q){ + int i, j; + double* pshocked = malloc(sizeof(double) * (*np) * (*nZ)); + +#pragma omp parallel for private(j) + for(i = 0; i < *nZ; i++){ + for(j = 0; j < *np; j++){ + pshocked[j + (*np) * i] = shockprob(p[j], rho[j], Z[i], 0); + } + lossdistrib_blas(pshocked + (*np) * i, np, w, S + (*np) * i, N, + defaultflag, q + (*N) * i); + } + free(pshocked); +} + +void lossdistrib_truncated(double *p, int *np, double *w, double *S, int *N, + int *T, int *defaultflag, double *q) { + /* recursive algorithm with first order correction for computing + the loss distribution. + input: + p vector of default probabilities + np length of p + S vector of severities (should be same length as p) + N number of ticks in the grid + T where to truncate the distribution + defaultflag if true computes the default distribution + output: + q the loss distribution */ + + int i, j, d1, d2, M; + double lu, d, p1, p2; + double *q1, *q2; + + lu = 1./(*N-1); + q1 = calloc( *T, sizeof(double)); + q2 = calloc( *T, sizeof(double)); + q[0] = 1; + M = 1; + for(i=0; i<(*np); i++){ + d = (*defaultflag)? w[i] / lu : S[i] * w[i] / lu; + d1 = floor(d); + d2 = ceil(d); + p1 = p[i] * (d2-d); + p2 = p[i] - p1; + for(j=0; j < MIN(M, *T); j++){ + q1[j] = p1 * q[j]; + q2[j] = p2 * q[j]; + q[j] = (1-p[i]) * q[j]; + } + for(j=0; j < MIN(M, *T-d1); j++){ + q[d1+j] += q1[j]; + }; + for(j=0; j < MIN(M, *T-d2); j++){ + q[d2+j] += q2[j]; + }; + M += d2; + } + free(q1); + free(q2); +} + +void lossdistrib_joint(double *p, int *np, double *w, double *S, int *N, int *defaultflag, double *q) { + /* recursive algorithm with first order correction + computes jointly the loss and recovery distribution + p vector of default probabilities + np length of p + w vector of issuer weights (length np) + S vector of severities (should be same length as p) + N number of ticks in the grid + defaultflag if true computes the default distribution + q the joint probability distribution */ + + int i, j, k, m, n; + int Mx, My; + double lu, x, y, sum; + double alpha1, alpha2, beta1, beta2; + double w1, w2, w3, w4; + double *qtemp; + + lu = 1./(*N-1); + qtemp = calloc( (*N) * (*N), sizeof(double)); + q[0] = 1; + Mx=1; + My=1; + for(k=0; k<(*np); k++){ + x = (*defaultflag)? w[k] /lu : S[k] * w[k] / lu; + y = (1-S[k]) * w[k] / lu; + i = floor(x); + j = floor(y); + alpha1 = i + 1 - x; + alpha2 = 1 - alpha1; + beta1 = j + 1 - y; + beta2 = 1 - beta1; + w1 = alpha1 * beta1; + w2 = alpha1 * beta2; + w3 = alpha2 * beta2; + w4 = alpha2 * beta1; + + for(n=0; n<MIN(My, *N); n++){ + memcpy(qtemp+n*(*N), q+n*(*N), MIN(Mx, *N) * sizeof(double)); + } + for(n=0; n<MIN(My, *N); n++){ + for(m=0; m<MIN(Mx, *N); m++){ + q[m+(*N)*n] = (1-p[k])* q[m+(*N)*n]; + } + } + for(n=0; n < MIN(My, *N-j-1); n++){ + for(m=0; m < MIN(Mx, *N-i-1); m++){ + q[i+m+(*N)*(j+n)] += w1 * p[k] * qtemp[m+(*N)*n]; + q[i+m+(*N)*(j+1+n)] += w2 * p[k] * qtemp[m+(*N)*n]; + q[i+1+m+(*N)*(j+1+n)] += w3 * p[k] * qtemp[m+(*N)*n]; + q[i+1+m+(*N)*(j+n)] += w4 * p[k] *qtemp[m+(*N)*n]; + } + } + Mx += i+1; + My += j+1; + } + /* correction for weight loss */ + if(Mx>*N || My>*N){ + sum = 0; + for(m=0; m < MIN(Mx, *N); m++){ + for(n=0; n < MIN(My, *N); n++){ + sum += q[m+n*(*N)]; + } + } + q[MIN(*N, Mx)*MIN(My,*N)-1] += 1 - sum; + } + free(qtemp); +} + +void lossdistrib_joint_blas(double *p, int *np, double *w, double *S, int *N, int *defaultflag, double *q) { + /* recursive algorithm with first order correction + computes jointly the loss and recovery distribution + p vector of default probabilities + np length of p + w vector of issuer weights (length np) + S vector of severities (should be same length as p) + N number of ticks in the grid + defaultflag if true computes the default distribution + q the joint probability distribution */ + + int i, j, k, m, n; + int Mx, My; + double lu, x, y, sum, pbar; + double alpha1, alpha2, beta1, beta2; + double w1, w2, w3, w4; + double *qtemp; + int bound; + int one = 1; + + /* only use one thread, performance is horrible if use multiple threads */ + openblas_set_num_threads(1); + + lu = 1./(*N-1); + qtemp = calloc( (*N) * (*N), sizeof(double)); + q[0] = 1; + Mx=1; + My=1; + for(k=0; k<(*np); k++){ + x = (*defaultflag)? w[k] /lu : S[k] * w[k] / lu; + y = (1-S[k]) * w[k] / lu; + i = floor(x); + j = floor(y); + alpha1 = i + 1 - x; + alpha2 = 1 - alpha1; + beta1 = j + 1 - y; + beta2 = 1 - beta1; + w1 = alpha1 * beta1 * p[k]; + w2 = alpha1 * beta2 * p[k]; + w3 = alpha2 * beta2 * p[k]; + w4 = alpha2 * beta1 * p[k]; + + for(n=0; n<MIN(My, *N); n++){ + memcpy(qtemp+n*(*N), q+n*(*N), MIN(Mx, *N) * sizeof(double)); + } + + bound = MIN(Mx, *N); + pbar = 1-p[k]; + for(n=0; n<MIN(My, *N); n++){ + dscal_(&bound, &pbar, q+(*N)*n, &one); + } + bound = MIN(Mx, *N-i-1); + for(n=0; n < MIN(My, *N-j-1); n++){ + daxpy_(&bound, &w1, qtemp+(*N)*n, &one, q+i+(*N)*(j+n), &one); + daxpy_(&bound, &w2, qtemp+(*N)*n, &one, q+i+(*N)*(j+1+n), &one); + daxpy_(&bound, &w3, qtemp+(*N)*n, &one, q+i+1+(*N)*(j+1+n), &one); + daxpy_(&bound, &w4, qtemp+(*N)*n, &one, q+i+1+(*N)*(j+n), &one); + } + Mx += i+1; + My += j+1; + } + /* correction for weight loss */ + if(Mx>*N || My>*N){ + sum = 0; + for(m=0; m < MIN(Mx, *N); m++){ + for(n=0; n < MIN(My, *N); n++){ + sum += q[m+n*(*N)]; + } + } + q[MIN(*N, Mx)*MIN(My,*N)-1] += 1 - sum; + } + free(qtemp); +} + +void recovdist(double *dp, double *pp, int *n, double *w, double *S, int *N, double *q) { + /* recursive algorithm with first order correction for computing + the recovery distribution in case of prepayment. + dp vector of default probabilities + pp vector of prepay probabilities + n length of p + S vector of severities (should be same length as p) + w vector of weights + N number of ticks in the grid + q the loss distribution */ + + int i, j, d1l, d1u, d2l, d2u; + int M; + double lu, d1, d2, dp1, dp2, pp1, pp2, sum; + double *qtemp; + + lu = 1./(*N - 1); + qtemp = calloc( (*N), sizeof(double)); + q[0] = 1; + M=1; + for(i=0; i<(*n); i++){ + d1 = w[i] * (1-S[i]) /lu; + d2 = w[i]/lu; + d1l = floor(d1); + d1u = d1l + 1; + d2l = floor(d2); + d2u = d2l + 1; + dp1 = dp[i] * (d1u - d1); + dp2 = dp[i] - dp1; + pp1 = pp[i] * (d2u - d2); + pp2 = pp[i] - pp1; + memcpy(qtemp, q, MIN(M, *N) * sizeof(double)); + for(j = 0; j< MIN(M, *N); j++){ + q[j] = (1-dp[i]-pp[i]) * q[j]; + } + for(j=0; j < MIN(M, *N-d2u); j++){ + q[d1l+j] += dp1 * qtemp[j]; + q[d1u+j] += dp2 * qtemp[j]; + q[d2l+j] += pp1 * qtemp[j]; + q[d2u+j] += pp2 * qtemp[j]; + }; + M += d2u; + } + /* correction for weight loss */ + if(M>*N){ + sum = 0; + for(j=0; j<MIN(M, *N); j++){ + sum += q[j]; + } + q[*N-1] += 1-sum; + } + free(qtemp); +} + +void lossdistrib_prepay_joint(double *dp, double *pp, int *ndp, double *w, + double *S, int *N, int *defaultflag, double *q) { + int i, j1, j2, k, m, n; + double lu, x, y1, y2, sum; + double alpha1, alpha2, beta1, beta2; + double dpw1, dpw2, dpw3, dpw4; + double ppw1, ppw2, ppw3; + double *qtemp; + int Mx, My; + + lu = 1./(*N-1); + qtemp = calloc((*N) * (*N), sizeof(double)); + q[0] = 1; + Mx=1; + My=1; + + for(k=0; k<(*ndp); k++){ + y1 = (1-S[k]) * w[k]/lu; + y2 = w[k]/lu; + x = (*defaultflag)? y2: y2-y1; + i = floor(x); + j1 = floor(y1); + j2 = floor(y2); + alpha1 = i + 1 - x; + alpha2 = 1 - alpha1; + beta1 = j1 + 1 - y1; + beta2 = 1 - beta1; + dpw1 = alpha1 * beta1 * dp[k]; + dpw2 = alpha1 * beta2 * dp[k]; + dpw3 = alpha2 * beta2 * dp[k]; + dpw4 = alpha2 * beta1 * dp[k]; + + /* by default distribution, we mean names fractions of names that disappeared + either because of default or prepayment */ + for(n=0; n<MIN(My, *N); n++){ + memcpy(qtemp+n*(*N), q+n*(*N), MIN(Mx, *N) * sizeof(double)); + } + for(n=0; n<MIN(My, *N); n++){ + for(m=0; m<MIN(Mx, *N); m++){ + q[m+(*N)*n] = (1-dp[k]-pp[k]) * q[m+(*N)*n]; + } + } + if(*defaultflag){ + ppw1 = alpha1 * alpha1 * pp[k]; + ppw2 = alpha1 * alpha2 * pp[k]; + ppw3 = alpha2 * alpha2 * pp[k]; + for(n=0; n < MIN(My, *N-j2-1); n++){ + for(m=0; m < MIN(Mx, *N-i-1); m++){ + q[i+m+(*N)*(j1+n)] += dpw1 * qtemp[m+(*N)*n]; + q[i+m+(*N)*(j1+1+n)] += dpw2 * qtemp[m+(*N)*n]; + q[i+1+m+(*N)*(j1+1+n)] += dpw3 * qtemp[m+(*N)*n]; + q[i+1+m+(*N)*(j1+n)] += dpw4 * qtemp[m+(*N)*n]; + + q[i+m+(*N)*(j2+n)] += ppw1 * qtemp[m+(*N)*n]; + q[i+m+(*N)*(j2+1+n)] += ppw2 * qtemp[m+(*N)*n]; + q[i+1+m+(*N)*(j2+1+n)] += ppw3 * qtemp[m+(*N)*n]; + q[i+1+m+(*N)*(j2+n)] += ppw2 * qtemp[m+(*N)*n]; + } + } + }else{ + for(n=0; n < MIN(My, *N-j2-1); n++){ + for(m=0; m < MIN(Mx, *N-i-1); m++){ + q[i+m+(*N)*(j1+n)] += dpw1 * qtemp[m+(*N)*n]; + q[i+m+(*N)*(j1+1+n)] += dpw2 * qtemp[m+(*N)*n]; + q[i+1+m+(*N)*(j1+1+n)] += dpw3 * qtemp[m+(*N)*n]; + q[i+1+m+(*N)*(j1+n)] += dpw4 * qtemp[m+(*N)*n]; + q[m+(*N)*(j2+n)] += pp[k]*(j2+1-y2) * qtemp[m+(*N)*n]; + q[m+(*N)*(j2+1+n)] += pp[k]*(y2-j2) * qtemp[m+(*N)*n]; + } + } + } + Mx += i + 1; + My += j2 + 1; + } + /* correction for weight loss */ + if(Mx>*N || My>*N){ + sum = 0; + for(m=0; m < MIN(Mx, *N); m++){ + for(n=0; n < MIN(My, *N); n++){ + sum += q[m+n*(*N)]; + } + } + q[MIN(*N, Mx)*MIN(My,*N)-1] += 1 - sum; + } + free(qtemp); +} + +void lossdistrib_prepay_joint_blas(double *dp, double *pp, int *ndp, double *w, + double *S, int *N, int *defaultflag, double *q) { + int i, j1, j2, k, m, n; + double lu, x, y1, y2, sum; + double alpha1, alpha2, beta1, beta2; + double dpw1, dpw2, dpw3, dpw4; + double ppw1, ppw2, ppw3; + double *qtemp; + int Mx, My, bound; + double pbar; + int one = 1; + + lu = 1./(*N-1); + qtemp = calloc((*N) * (*N), sizeof(double)); + q[0] = 1; + Mx=1; + My=1; + + /* only use one thread, performance is horrible if use multiple threads */ + openblas_set_num_threads(1); + for(k=0; k<(*ndp); k++){ + y1 = (1-S[k]) * w[k]/lu; + y2 = w[k]/lu; + x = (*defaultflag)? y2: y2-y1; + i = floor(x); + j1 = floor(y1); + j2 = floor(y2); + alpha1 = i + 1 - x; + alpha2 = 1 - alpha1; + beta1 = j1 + 1 - y1; + beta2 = 1 - beta1; + dpw1 = alpha1 * beta1 * dp[k]; + dpw2 = alpha1 * beta2 * dp[k]; + dpw3 = alpha2 * beta2 * dp[k]; + dpw4 = alpha2 * beta1 * dp[k]; + + /* by default distribution, we mean names fractions of names that disappeared + either because of default or prepayment */ + for(n=0; n<MIN(My, *N); n++){ + memcpy(qtemp+n*(*N), q+n*(*N), MIN(Mx, *N) * sizeof(double)); + } + bound = MIN(Mx, *N); + pbar = 1-dp[k]-pp[k]; + for(n=0; n<MIN(My, *N); n++){ + dscal_(&bound, &pbar, q+(*N)*n, &one); + } + bound = MIN(Mx, *N-i-1); + if(*defaultflag){ + ppw1 = alpha1 * alpha1 * pp[k]; + ppw2 = alpha1 * alpha2 * pp[k]; + ppw3 = alpha2 * alpha2 * pp[k]; + for(n=0; n < MIN(My, *N-j2-1); n++){ + daxpy_(&bound, &dpw1, qtemp+(*N)*n, &one, q+i+(*N)*(j1+n), &one); + daxpy_(&bound, &dpw2, qtemp+(*N)*n, &one, q+i+(*N)*(j1+1+n), &one); + daxpy_(&bound, &dpw3, qtemp+(*N)*n, &one, q+i+1+(*N)*(j1+1+n), &one); + daxpy_(&bound, &dpw4, qtemp+(*N)*n, &one, q+i+1+(*N)*(j1+n), &one); + + daxpy_(&bound, &ppw1, qtemp+(*N)*n, &one, q+i+(*N)*(j2+n), &one); + daxpy_(&bound, &ppw2, qtemp+(*N)*n, &one, q+i+(*N)*(j2+1+n), &one); + daxpy_(&bound, &ppw3, qtemp+(*N)*n, &one, q+i+1+(*N)*(j2+1+n), &one); + daxpy_(&bound, &ppw2, qtemp+(*N)*n, &one, q+i+1+(*N)*(j2+n), &one); + } + }else{ + ppw1 = pp[k] * (j2+1-y2); + ppw2 = pp[k] * (y2-j2); + for(n=0; n < MIN(My, *N-j2-1); n++){ + daxpy_(&bound, &dpw1, qtemp+(*N)*n, &one, q+i+(*N)*(j1+n), &one); + daxpy_(&bound, &dpw2, qtemp+(*N)*n, &one, q+i+(*N)*(j1+1+n), &one); + daxpy_(&bound, &dpw3, qtemp+(*N)*n, &one, q+i+1+(*N)*(j1+1+n), &one); + daxpy_(&bound, &dpw4, qtemp+(*N)*n, &one, q+i+1+(*N)*(j1+n), &one); + daxpy_(&bound, &ppw1, qtemp+(*N)*n, &one, q+(*N)*(j2+n), &one); + daxpy_(&bound, &ppw2, qtemp+(*N)*n, &one, q+(*N)*(j2+1+n), &one); + } + } + Mx += i + 1; + My += j2 + 1; + } + /* correction for weight loss */ + if(Mx>*N || My>*N){ + sum = 0; + for(m=0; m < MIN(Mx, *N); m++){ + for(n=0; n < MIN(My, *N); n++){ + sum += q[m+n*(*N)]; + } + } + q[MIN(*N, Mx)*MIN(My,*N)-1] += 1 - sum; + } + free(qtemp); +} + +double shockprob(double p, double rho, double Z, int give_log){ + if(rho==1){ + return((double)(Z<=qnorm(p, 0, 1, 1, 0))); + }else{ + return( pnorm( (qnorm(p, 0, 1, 1, 0) - sqrt(rho) * Z)/sqrt(1 - rho), 0, 1, 1, give_log)); + } +} + +double dqnorm(double x){ + return 1/dnorm(qnorm(x, 0, 1, 1, 0), 0, 1, 0); +} + +double dshockprob(double p, double rho, double Z){ + return( dnorm((qnorm(p, 0, 1, 1, 0) - sqrt(rho) * Z)/sqrt(1-rho), 0, 1, 0) * dqnorm(p)/sqrt(1-rho) ); +} + +void shockprobvec2(double p, double rho, double* Z, int nZ, double *q){ + /* return a two column vectors with shockprob in the first column + and dshockprob in the second column*/ + int i; + #pragma omp parallel for + for(i = 0; i < nZ; i++){ + q[i] = shockprob(p, rho, Z[i], 0); + q[i + nZ] = dshockprob(p, rho, Z[i]); + } +} + +double shockseverity(double S, double Z, double rho, double p){ + if(p==0){ + return 0; + }else{ + return( exp(shockprob(S * p, rho, Z, 1) - shockprob(p, rho, Z, 1)) ); + } +} + +double quantile(double* Z, double* w, int nZ, double p0){ + double cumw; + int i; + cumw = 0; + for(i=0; i<nZ; i++){ + cumw += w[i]; + if(cumw > p0){ + break; + } + } + return( Z[i] ); +} + +void fitprob(double* Z, double* w, int* nZ, double* rho, double* p0, double* result){ + double eps = 1e-12; + int one = 1; + double *q = malloc( 2 * (*nZ) * sizeof(double)); + double dp, p, phi; + + if(*p0 == 0){ + *result = 0; + }else if(*rho == 1){ + *result = pnorm(quantile(Z, w, *nZ, *p0), 0, 1, 1, 0); + }else{ + shockprobvec2(*p0, *rho, Z, *nZ, q); + dp = (ddot_(nZ, q, &one, w, &one) - *p0)/ddot_(nZ, q + *nZ, &one, w, &one); + p = *p0; + while(fabs(dp) > eps){ + phi = 1; + while( (p - phi * dp) < 0 || (p - phi * dp) > 1){ + phi *= 0.8; + } + p -= phi * dp; + shockprobvec2(p, *rho, Z, *nZ, q); + dp = (ddot_(nZ, q, &one, w, &one) - *p0)/ddot_(nZ, q + *nZ, &one, w, &one); + } + *result = p; + } + free(q); +} + +void stochasticrecov(double* R, double* Rtilde, double* Z, double* w, int* nZ, + double* rho, double* porig, double* pmod, double* q){ + double ptemp, ptilde; + int i; + if(*porig==0){ + for(i = 0; i < *nZ; i++){ + q[i] = *R; + } + }else{ + ptemp = (1 - *R) / (1 - *Rtilde) * *porig; + fitprob(Z, w, nZ, rho, &ptemp, &ptilde); +#pragma omp parallel for + for(i = 0; i < *nZ; i++){ + q[i] = fabs(1 - (1 - *Rtilde) * exp( shockprob(ptilde, *rho, Z[i], 1) - + shockprob(*pmod, *rho, Z[i], 1))); + } + } +} + +void lossdistrib_prepay_joint_Z(double *dp, double *pp, int *ndp, double *w, + double *S, int *N, int *defaultflag, double *rho, + double *Z, double *wZ, int *nZ, double *q) { + int i, j; + double* dpshocked = malloc(sizeof(double) * (*ndp) * (*nZ)); + double* ppshocked = malloc(sizeof(double) * (*ndp) * (*nZ)); + int N2 = (*N) * (*N); + double* qmat = malloc(sizeof(double) * N2 * (*nZ)); + + double alpha = 1; + double beta = 0; + int one = 1; + + #pragma omp parallel for private(j) + for(i = 0; i < *nZ; i++){ + for(j = 0; j < *ndp; j++){ + dpshocked[j + (*ndp) * i] = shockprob(dp[j], rho[j], Z[i], 0); + ppshocked[j + (*ndp) * i] = shockprob(pp[j], rho[j], -Z[i], 0); + } + lossdistrib_prepay_joint_blas(dpshocked + (*ndp) * i, ppshocked + (*ndp) * i, ndp, + w, S + (*ndp) * i, N, defaultflag, qmat + N2 * i); + } + + dgemv_("n", &N2, nZ, &alpha, qmat, &N2, wZ, &one, &beta, q, &one); + + free(dpshocked); + free(ppshocked); + free(qmat); +} + +void lossdistrib_joint_Z(double *dp, int *ndp, double *w, + double *S, int *N, int *defaultflag, double *rho, + double *Z, double *wZ, int *nZ, double *q) { + int i, j; + double* dpshocked = malloc(sizeof(double) * (*ndp) * (*nZ)); + int N2 = (*N) * (*N); + double* qmat = malloc(sizeof(double) * N2 * (*nZ)); + + double alpha = 1; + double beta = 0; + int one = 1; + +#pragma omp parallel for private(j) + for(i = 0; i < *nZ; i++){ + for(j = 0; j < *ndp; j++){ + dpshocked[j + (*ndp) * i] = shockprob(dp[j], rho[j], Z[i], 0); + } + lossdistrib_joint_blas(dpshocked + (*ndp) * i, ndp, w, S + (*ndp) * i, N, + defaultflag, qmat + N2 * i); + } + + dgemv_("n", &N2, nZ, &alpha, qmat, &N2, wZ, &one, &beta, q, &one); + + free(dpshocked); + free(qmat); +} + +void BCloss_recov_dist(double *defaultprob, int *dim1, int *dim2, + double *issuerweights, double *recov, double *Z, double *w, + int *n, double *rho, int *N, int *defaultflag, + double *L, double *R) { + /* + computes the loss and recovery distribution over time with a flat gaussian + correlation + inputs: + defaultprob: matrix of size dim1 x dim2. dim1 is the number of issuers + and dim2 number of time steps + issuerweights: vector of issuer weights (length dim1) + recov: vector of recoveries (length dim1) + Z: vector of factor values (length n) + w: vector of factor weights (length n) + rho: correlation beta vector (length dim1) + N: number of ticks in the grid + defaultflag: if true, computes the default distribution + outputs: + L: matrix of size (N, dim2) + R: matrix of size (N, dim2) + */ + int t, i, j; + double g; + double *gshocked, *Rshocked, *Sshocked, *Lw, *Rw; + int one = 1; + double alpha = 1; + double beta = 0; + + gshocked = malloc((*dim1) * (*n) * sizeof(double)); + Rshocked = malloc((*dim1) * (*n) * sizeof(double)); + Sshocked = malloc((*dim1) * (*n) * sizeof(double)); + Lw = malloc((*N) * (*n) * sizeof(double)); + Rw = malloc((*N) * (*n) * sizeof(double)); + + + for(t=0; t < (*dim2); t++) { + memset(Lw, 0, (*N) * (*n) * sizeof(double)); + memset(Rw, 0, (*N) * (*n) * sizeof(double)); + #pragma omp parallel for private(j, g) + for(i=0; i < *n; i++){ + for(j=0; j < (*dim1); j++){ + g = defaultprob[j + (*dim1) * t]; + gshocked[j+(*dim1)*i] = shockprob(g, rho[j], Z[i], 0); + Sshocked[j+(*dim1)*i] = shockseverity(1-recov[j], Z[i], rho[j], g); + Rshocked[j+(*dim1)*i] = 1 - Sshocked[j+(*dim1)*i]; + } + lossdistrib_blas(gshocked + (*dim1) * i, dim1, issuerweights, Sshocked + (*dim1)*i, N, defaultflag, + Lw + i * (*N)); + lossdistrib_blas(gshocked + (*dim1) * i, dim1, issuerweights, Rshocked + (*dim1)*i, N, defaultflag, + Rw + i * (*N)); + } + dgemv_("n", N, n, &alpha, Lw, N, w, &one, &beta, L + t * (*N), &one); + dgemv_("n", N, n, &alpha, Rw, N, w, &one, &beta, R + t * (*N), &one); + } + free(gshocked); + free(Rshocked); + free(Sshocked); + free(Lw); + free(Rw); +} + + +void BCloss_dist(double *defaultprob, int *dim1, int *dim2, + double *issuerweights, double *recov, double *Z, double *w, + int *n, double *rho, int *N, int *defaultflag, + double *L) { + /* + computes the loss distribution over time with a flat gaussian + correlation + inputs: + defaultprob: matrix of size dim1 x dim2. dim1 is the number of issuers + and dim2 number of time steps + issuerweights: vector of issuer weights (length dim1) + recov: vector of recoveries (length dim1) + Z: vector of factor values (length n) + w: vector of factor weights (length n) + rho: correlation beta vector (length dim1) + N: number of ticks in the grid + defaultflag: if true, computes the default distribution + outputs: + L: matrix of size (N, dim2) + */ + int t, i, j; + double g; + double *gshocked, *Sshocked, *Lw; + int one = 1; + double alpha = 1; + double beta = 0; + + gshocked = malloc((*dim1) * (*n) * sizeof(double)); + Sshocked = malloc((*dim1) * (*n) * sizeof(double)); + Lw = malloc((*N) * (*n) * sizeof(double)); + + for(t=0; t < (*dim2); t++) { + memset(Lw, 0, (*N) * (*n) * sizeof(double)); + #pragma omp parallel for private(j, g) + for(i=0; i < *n; i++){ + for(j=0; j < (*dim1); j++){ + g = defaultprob[j + (*dim1) * t]; + gshocked[j+(*dim1)*i] = shockprob(g, rho[j], Z[i], 0); + Sshocked[j+(*dim1)*i] = shockseverity(1-recov[j], Z[i], rho[j], g); + } + lossdistrib_blas(gshocked + (*dim1) * i, dim1, issuerweights, Sshocked + (*dim1)*i, N, defaultflag, + Lw + i * (*N)); + } + dgemv_("n", N, n, &alpha, Lw, N, w, &one, &beta, L + t * (*N), &one); + } + free(gshocked); + free(Sshocked); + free(Lw); +} |
