summaryrefslogtreecommitdiffstats
path: root/src/lossdistrib.cpp
blob: 27841be12baf727798073f014f5c5d6e9db401d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
#include <omp.h>
#include "lossdistrib.hpp"
#include <Rcpp.h>
#include <cstring>

#define USE_BLAS

using namespace Rcpp;

// [[Rcpp::plugins(cpp11, openmp)]]

// [[Rcpp::export]]
List GHquadCpp(int n) {
    // Setup for eigenvalue computations
    char JOBZ   = 'V'; // Compute eigenvalues & vectors
    int INFO;
    // Initialize array for workspace
    double * WORK   = new double[2*n-2];

    // Initialize array for eigenvectors
    double * V      = new double[n*n];

    std::vector<double> w(n);
    std::vector<double> Z(n);
    for(int i = 0; i<n-1; i++) {
      w[i] = sqrt((i+1.)/2);
    }

    // Run eigen decomposition
    dstev_(&JOBZ, &n, Z.data(), w.data(), V, &n, WORK, &INFO);

    for (int i=0; i<n; i++) {
      w[i] = V[i*n] * V[i*n];
      Z[i] *= sqrt(2);
    }

    // Deallocate temporary arrays
    delete[] WORK;
    delete[] V;
    return List::create(Named("Z") = Z,
                        Named("w") = w);
}

void lossdistrib(const std::vector<double>& p, const std::vector<double>& w,
                 const double S[], const int N, const int T, double q[],
                 bool defaultflag = false) {
    /* recursive algorithm with first order correction for computing
       the loss distribution.
       p: vector of default probabilities
       w: issuer weights
       S: vector of severities (should be same length as p)
       N: number of ticks in the grid
       defaultflag: if true compute the default distribution */

    int d1, d2;
    double d, p1, p2;
    double* qtemp = new double[T];
    q[0] = 1;
    int bound;
    double pbar;
    int one = 1;
    openblas_set_num_threads(1);
    double lu = 1./(N-1);

    int M = 1;
    for(size_t i = 0; i < p.size(); i++){
        d = defaultflag? w[i]/lu : S[i] * w[i]/ lu;
        d1 = floor(d);
        d2 = ceil(d);
        p1 = p[i] * (d2-d);
        p2 = p[i] - p1;
        std::memcpy(qtemp, q, std::min(M, T) * sizeof(double));
        pbar = 1-p[i];
        bound = std::min(M, T);
#ifdef USE_BLAS
        dscal_(&bound, &pbar, q, &one);
#else
        for(int j=0; j < bound; j++) {
            q[j] *= pbar * q[j];
        }
#endif
        bound = std::min(M, T-d2);
#ifdef USE_BLAS
        daxpy_(&bound, &p1, qtemp, &one, q+d1, &one);
        daxpy_(&bound, &p2, qtemp, &one, q+d2, &one);
#else
        for(int j=0; j < bound; j++) {
            q[d1+j] += p1 * qtemp[j];
            q[d2+j] += p2 * qtemp[j];
        }
#endif
        M += d2;
    }
    /* correction for weight loss */
    if(M > N && T==N){
        double sum = 0;
        for(int j=0; j < std::min(M, N); j++){
            sum += q[j];
        }
        q[N-1] += 1-sum;
    }
    delete[] qtemp;
}

// [[Rcpp::export]]
inline NumericVector  lossdistrib(const NumericVector& p, const NumericVector& w,
                                  const NumericVector& S, const int N,
                                  bool defaultflag = false) {
    double* q = new double[N];
    lossdistrib(as<std::vector<double>>(p), as<std::vector<double>>(w),
                S.begin(), N, N, q, defaultflag);
    NumericVector r(N, q);
    delete[] q;
    return r;
}

inline std::vector<double> lossdistrib(const NumericVector& p, const NumericVector& w,
                                       const NumericVector& S, const int N, const int T,
                                       bool defaultflag = false) {
    std::vector<double> q(T);
    lossdistrib(as<std::vector<double>>(p), as<std::vector<double>>(w),
                S.begin(), N, T, q.data(), defaultflag);
    return q;
}

// [[Rcpp::export]]
NumericMatrix lossdistrib_Z(const std::vector<double>& p, const std::vector<double>& w,
                            const NumericMatrix S, int N, const std::vector<double>& rho,
                            const std::vector<double>& Z, bool defaultflag=false){

    double* q = new double[N*Z.size()];
    int p_size = p.size();
    #pragma omp parallel for
    for(size_t i = 0; i < Z.size(); i++) {
        std::vector<double> pshocked(p.size());
        for(size_t j = 0; j < p_size; j++){
            pshocked[j] = shockprob(p[j], rho[j], Z[i], 0);
        }
        lossdistrib(pshocked, w, S(_,i).begin(), N, N, q+N*i, defaultflag);
    }
    NumericMatrix qmat(N, Z.size(), q);
    delete[] q;
    return qmat;
}

static inline double* posK(int T, double K, double lu){
    double* val = new double[T];
    for(int i = 0; i < T; i++){
        val[i] = K-lu*i;
    }
    return val;
}

// [[Rcpp::export]]
double exp_trunc(const NumericVector& p, const NumericVector& w, const NumericVector& S, int N, double K) {
    double lu = 1./(N+1);
    int T = (int) floor(K * N)+1;
    int one = 1;
    double* q  = new double[T];
    lossdistrib(as<std::vector<double>>(p), as<std::vector<double>>(w),
                S.begin(), N, T, q);
    double* val = posK(T, K, lu);
    int r = ddot_(&T, val, &one, q, &one);
    delete[] q;
    delete[] val;
    return r;
}

void lossdistrib_joint(const std::vector<double>& p, const std::vector<double>& w,
                       const double S[], int N, matrix& q, bool defaultflag=false) {
    /* recursive algorithm with first order correction
       computes jointly the loss and recovery distribution
       p vector of default probabilities
       w vector of issuer weights (same length as p)
       S vector of severities (should be same length as p)
       N number of ticks in the grid
       defaultflag if true computes the default distribution
       returns the joint probability distribution */

    int i, j;
    double x, y;
    double alpha1, alpha2, beta1, beta2;
    double w1, w2, w3, w4;
    matrix qtemp(N, N);
    double lu = 1./(N-1);
    q(0,0) = 1;
    int Mx=1, My=1;
    int one = 1;
    for(size_t k = 0; k < p.size(); k++) {
        x = defaultflag? w[k] /lu : S[k] * w[k] / lu;
        y = (1-S[k]) * w[k] / lu;
        i = floor(x);
        j = floor(y);
        alpha1 = i + 1 - x;
        alpha2 = 1 - alpha1;
        beta1 = j + 1 - y;
        beta2 = 1 - beta1;
        w1 = alpha1 * beta1 * p[k];
        w2 = alpha1 * beta2 * p[k];
        w3 = alpha2 * beta2 * p[k];
        w4 = alpha2 * beta1 * p[k];

        for(int n=0; n<std::min(My, N); n++) {
            std::memcpy(qtemp(n), q(n), std::min(Mx, N) * sizeof(double));
        }
        int bound = std::min(Mx, N);
        double pbar = 1-p[k];
        for(int n=0; n < std::min(My, N); n++) {
#ifdef USE_BLAS
            dscal_(&bound, &pbar, q(n), &one);
#else
            for(int m=0; m < bound; m++){
                q(m, n) *= pbar;
            }
#endif
        }
        bound = std::min(Mx, N-i-1);
        for(int n=0; n < std::min(My, N-j-1); n++) {
#ifdef USE_BLAS
            daxpy_(&bound, &w1, qtemp(n), &one, &q(i,j+n), &one);
            daxpy_(&bound, &w2, qtemp(n), &one, &q(i,j+1+n), &one);
            daxpy_(&bound, &w3, qtemp(n), &one, &q(i+1,j+1+n), &one);
            daxpy_(&bound, &w4, qtemp(n), &one, &q(i+1,j+n), &one);
#else
            double temp;
            for(int m = 0; m < bound; m++) {
                temp = qtemp(m,n);
                q(i+m,j+n) += w1 * temp;
                q(i+m,j+1+n) += w2 * temp;
                q(i+1+m,j+1+n] += w3 * temp;
                q(i+1+m,j+n) += w4 * temp;
            }
#endif
        }
        Mx += i+1;
        My += j+1;
    }
    /* correction for weight loss */
    if(Mx>N || My>N){
        double sum = 0;
        for(int n=0; n < std::min(My, N); n++){
            for(int m=0; n < std::min(Mx, N); m++){
                sum += q(m,n);
            }
        }
        q[std::min(N, Mx) * std::min(N, My)-1] += 1 - sum;
    }
}

// [[Rcpp::export]]
NumericMatrix lossdistrib_joint(const std::vector<double>& p, const std::vector<double>& w,
                                const NumericVector S, int N, bool defaultflag=false) {
    matrix q(N,N);
    lossdistrib_joint(p, w, S.begin(), N, q, defaultflag);
    NumericMatrix M(N, N, q.data());
    return M;
}

// [[Rcpp::export]]
NumericVector recovdist(const NumericVector& dp, const NumericVector& pp,
                        const NumericVector& w, const NumericVector& S, int N) {
    /* recursive algorithm with first order correction for computing
       the recovery distribution in case of prepayment.
       dp vector of default probabilities
       pp vector of prepay probabilities
       S vector of severities (should be same length as p)
       w vector of weights
       N number of ticks in the grid
       returns the loss distribution */

    int d1l, d1u, d2l, d2u;
    double d1, d2, dp1, dp2, pp1, pp2;

    double lu = 1./(N - 1);
    NumericVector qtemp(N);
    NumericVector q(N);
    q[0] = 1;
    int M = 1;
    for(size_t i=0; i<dp.size(); i++) {
        d1 = w[i] * (1-S[i]) /lu;
        d2 = w[i]/lu;
        d1l = floor(d1);
        d1u = d1l + 1;
        d2l = floor(d2);
        d2u = d2l + 1;
        dp1 = dp[i] * (d1u - d1);
        dp2 = dp[i] - dp1;
        pp1 = pp[i] * (d2u - d2);
        pp2 = pp[i] - pp1;
        std::copy_n(q.begin(), std::min(M, N), qtemp.begin());
        for(int j = 0; j< std::min(M, N); j++) {
            q[j] = (1-dp[i]-pp[i]) * q[j];
        }
        for(int j=0; j < std::min(M, N-d2u); j++) {
            q[d1l+j] += dp1 * qtemp[j];
            q[d1u+j] += dp2 * qtemp[j];
            q[d2l+j] += pp1 * qtemp[j];
            q[d2u+j] += pp2 * qtemp[j];
        };
        M += d2u;
    }
    /* correction for weight loss */
    if(M > N) {
        double sum = 0;
        for(int j=0; j < std::min(M, N); j++) {
            sum += q[j];
        }
        q[N-1] += 1-sum;
    }
    return q;
}

NumericVector lossdistrib_prepay_joint(const NumericVector& dp, const NumericVector& pp,
                                       const NumericVector& w, const NumericVector& S,
                                       int N, bool defaultflag=false) {
    int i, j1, j2;
    double x, y1, y2;
    double alpha1, alpha2, beta1, beta2;
    double dpw1, dpw2, dpw3, dpw4;
    double ppw1, ppw2, ppw3;

    double lu = 1./(N-1);
    double* qtemp = new double[N*N];
    double* q = new double[N*N];
    q[0] = 1;

    int Mx = 1;
    int My = 1;
    for(size_t k = 0; k < dp.size(); k++) {
        y1 = (1-S[k]) * w[k]/lu;
        y2 = w[k]/lu;
        x = defaultflag? y2: y2-y1;
        i = floor(x);
        j1 = floor(y1);
        j2 = floor(y2);
        alpha1 = i + 1 - x;
        alpha2 = 1 - alpha1;
        beta1 = j1 + 1 - y1;
        beta2 = 1 - beta1;
        dpw1 = alpha1 * beta1 * dp[k];
        dpw2 = alpha1 * beta2 * dp[k];
        dpw3 = alpha2 * beta2 * dp[k];
        dpw4 = alpha2 * beta1 * dp[k];

        /* by default distribution, we mean names fractions of names that disappeared
           either because of default or prepayment */
        for(int n=0; n<std::min(My, N); n++){
            std::memcpy(qtemp+n*N, q+n*N, std::min(Mx, N) * sizeof(double));
        }
        int bound = std::min(Mx, N);
        double pbar = 1-dp[k]-pp[k];
        int one;
        for(int n = 0; n < std::min(My, N); n++) {
#ifdef USE_BLAS
            dscal_(&bound, &pbar, q+N*n, &one);
#else
            for(int m=0; m < bound; m++) {
                q[m+N*n] *= pbar;
            }
#endif
        }
        double temp;
        double* begin;
        if(defaultflag) {
            ppw1 = alpha1 * alpha1 * pp[k];
            ppw2 = alpha1 * alpha2 * pp[k];
            ppw3 = alpha2 * alpha2 * pp[k];
            bound = std::min(Mx, N-i-1);
            for(int n=0; n < std::min(My, N-j2-1); n++) {
                begin = qtemp+N*n;
#ifdef USE_BLAS

                daxpy_(&bound, &dpw1, begin, &one, q+i+N*(j1+n), &one);
                daxpy_(&bound, &dpw2, begin, &one, q+i+N*(j1+1+n), &one);
                daxpy_(&bound, &dpw3, begin, &one, q+i+1+N*(j1+1+n), &one);
                daxpy_(&bound, &dpw4, begin, &one, q+i+1+N*(j1+n), &one);

                daxpy_(&bound, &ppw1, begin, &one, q+i+N*(j2+n), &one);
                daxpy_(&bound, &ppw2, begin, &one, q+i+N*(j2+1+n), &one);
                daxpy_(&bound, &ppw3, begin, &one, q+i+1+N*(j2+1+n), &one);
                daxpy_(&bound, &ppw2, begin, &one, q+i+1+N*(j2+n), &one);
#else
                for(int m=0; m < bound; m++) {
                    temp = *(begin + m);
                    q[i+m+N*(j1+n)] += dpw1 * temp;
                    q[i+1+m+N*(j1+n)] += dpw4 * temp;
                    q[i+m+N*(j1+1+n)] += dpw2 * temp;
                    q[i+1+m+N*(j1+1+n)] += dpw3 * temp;

                    q[i+m+N*(j2+n)] += ppw1 * temp;
                    q[i+1+m+N*(j2+n)] += ppw2 * temp;
                    q[i+m+N*(j2+1+n)] += ppw2 * temp;
                    q[i+1+m+N*(j2+1+n)] += ppw3 * temp;

                }
#endif
            }
        } else {
            ppw1 = pp[k] * (j2+1-y2);
            ppw2 = pp[k] * (y2-j2);
            bound = std::min(Mx, N-i-1);
            for(int n = 0; n < std::min(My, N-j2-1); n++) {
                begin = qtemp + N*n;
#ifdef USE_BLAS

                daxpy_(&bound, &dpw1, begin, &one, q+i+N*(j1+n), &one);
                daxpy_(&bound, &dpw2, begin, &one, q+i+N*(j1+1+n), &one);
                daxpy_(&bound, &dpw3, begin, &one, q+i+1+N*(j1+1+n), &one);
                daxpy_(&bound, &dpw4, begin, &one, q+i+1+N*(j1+n), &one);
                daxpy_(&bound, &ppw1, begin, &one, q+N*(j2+n), &one);
                daxpy_(&bound, &ppw2, begin, &one, q+N*(j2+1+n), &one);
#else
                for(int m = 0; m < bound; m++) {
                    temp = *(begin+m);

                    q[i+m+N*(j1+n)] += dpw1 * temp;
                    q[i+1+m+N*(j1+n)] += dpw4 * temp;
                    q[i+m+N*(j1+1+n)] += dpw2 * temp;
                    q[i+1+m+N*(j1+1+n)] += dpw3 * temp;

                    q[m+N*(j2+n)] +=  ppw1 * temp;
                    q[m+N*(j2+1+n)] +=  ppw2 * temp;
                }
#endif
            }
        }
        Mx += i + 1;
        My += j2 + 1;
    }
    /* correction for weight loss */
    if(Mx > N || My > N){
        double sum = 0;
        for(int m = 0; m < std::min(Mx, N); m++) {
            for(int n=0; n < std::min(My, N); n++) {
                sum += q[m+n*N];
            }
        }
        q[std::min(N, Mx)*std::min(My,N)-1] += 1 - sum;
    }
    free(qtemp);
}

double shockprob(double p, double rho, double Z, bool give_log=false) {
    if(rho==1){
        return((double)(Z<=R::qnorm(p, 0, 1, 1, 0)));
    }else{
        return( R::pnorm( (R::qnorm(p, 0, 1, 1, 0) - sqrt(rho) * Z)/sqrt(1 - rho), 0, 1, 1, give_log));
    }
}

static inline double dqnorm(double x){
    return 1/R::dnorm(R::qnorm(x, 0, 1, 1, 0), 0, 1, 0);
}

double dshockprob(double p, double rho, double Z){
    return( R::dnorm((R::qnorm(p, 0, 1, 1, 0) - sqrt(rho) * Z)/sqrt(1-rho), 0, 1, 0) * dqnorm(p)/sqrt(1-rho) );
}

NumericMatrix shockprobvec2(double p, double rho, NumericVector Z){
    /* return a two column matrix with shockprob in the first column
       and dshockprob in the second column*/
    NumericMatrix q(Z.size(), 2);
    #pragma omp parallel for
    for(size_t i = 0; i < Z.size(); i++){
        q[i] = shockprob(p, rho, Z[i]);
        q[i + Z.size()] = dshockprob(p, rho, Z[i]);
    }
    return q;
}

double shockseverity(double S, double Z, double rho, double p){
    if(p==0){
        return 0;
    }else{
        return( exp(shockprob(S * p, rho, Z, true) - shockprob(p, rho, Z, true)) );
    }
}

double quantile(const NumericVector& Z, const NumericVector& w, double p0){
    double cumw = 0;
    size_t i;
    for(i=0; i < Z.size(); i++) {
        cumw += w[i];
        if(cumw > p0) {
            break;
        }
    }
    return( Z[i] );
}

// [[Rcpp::export]]
double fitprob(const NumericVector& Z, const NumericVector& w, double rho, double p0){
    if(p0 == 0){
        return 0.;
    }else if(rho == 1){
        return R::pnorm(quantile(Z, w, p0), 0, 1, 1, 0);
    }else{
        int one = 1;
        double eps = 1e-12;
        NumericMatrix q = shockprobvec2(p0, rho, Z);
        int nZ = Z.size();
        double dp = (ddot_(&nZ, q(_,0).begin(), &one, w.begin(), &one) - p0) /
            ddot_(&nZ, q(_,1).begin(), &one, w.begin(), &one);
        double p = p0;
        double phi = 1;
        while(fabs(dp) > eps){
            while( (p - phi * dp) < 0 || (p - phi * dp) > 1){
                phi *= 0.8;
            }
            p -= phi * dp;
            q = shockprobvec2(p, rho, Z);
            dp = (ddot_(&nZ, q(_,0).begin(), &one, w.begin(), &one) - p0) /
                ddot_(&nZ, q(_,1).begin(), &one, w.begin(), &one);
        }
        return p;
    }
}

// [[Rcpp::export]]
std::vector<double> stochasticrecov(double R, double Rtilde,
                                    const NumericVector& Z, const NumericVector& w,
                                    double rho, double porig, double pmod){
    if(porig==0){
        std::vector<double> q(Z.size(), R);
        return q;
    }else{
        double ptemp = (1 - R) / (1 - Rtilde) * porig;
        double ptilde = fitprob(Z, w, rho, ptemp);
        std::vector<double> q(Z.size());
        #pragma omp parallel for
        for(size_t i = 0; i < Z.size(); i++){
            q[i] = fabs(1 - (1 - Rtilde) * exp( shockprob(ptilde, rho, Z[i], true) -
                                                shockprob(pmod, rho, Z[i], true)));
        }
        return q;
    }
}

// void lossdistrib_prepay_joint_Z(double *dp, double *pp, int *ndp, double *w,
//                                 double *S, int *N, int *defaultflag, double *rho,
//                                 double *Z, double *wZ, int *nZ, double *q) {
//     int i, j;
//     double* dpshocked = malloc(sizeof(double) * (*ndp) * (*nZ));
//     double* ppshocked = malloc(sizeof(double) * (*ndp) * (*nZ));
//     int N2 = (*N) * (*N);
//     double* qmat = malloc(sizeof(double) * N2 * (*nZ));

//     double alpha = 1;
//     double beta = 0;
//     int one = 1;

//     #pragma omp parallel for private(j)
//     for(i = 0; i < *nZ; i++){
//         for(j = 0; j < *ndp; j++){
//             dpshocked[j + (*ndp) * i] = shockprob(dp[j], rho[j], Z[i], 0);
//             ppshocked[j + (*ndp) * i] = shockprob(pp[j], rho[j], -Z[i], 0);
//         }
//         lossdistrib_prepay_joint_blas(dpshocked + (*ndp) * i, ppshocked + (*ndp) * i, ndp,
//                                       w, S + (*ndp) * i, N, defaultflag, qmat + N2 * i);
//     }

//     dgemv_("n", &N2, nZ, &alpha, qmat, &N2, wZ, &one, &beta, q, &one);

//     free(dpshocked);
//     free(ppshocked);
//     free(qmat);
// }

NumericMatrix lossdistrib_joint_Z(const std::vector<double>& dp, const std::vector<double>& w,
                                  const NumericMatrix S, int N, bool defaultflag, const std::vector<double>& rho,
                                  const std::vector<double>& Z, const std::vector<double>& wZ) {

    int m = Z.size(), ndp = dp.size();
    NumericMatrix q(N, N);
    int N2 = N * N;
    double* qmat = new double[N2 * m];
    double alpha = 1;
    double beta = 0;
    int one = 1;

    #pragma omp parallel for
    for(size_t i = 0; i < m; i++) {
        std::vector<double> dpshocked(ndp);
        matrix qZ(N, N, qmat+i);
        for(size_t j =0; j < ndp; j++) {
            dpshocked[j] = shockprob(dp[j], rho[j], Z[i], 0);
        }
        lossdistrib_joint(dpshocked, w, S(_,i).begin(), N, qZ, defaultflag);
    }
    dgemv_((char*)"n", &N2, &m, &alpha, qmat, &N2, wZ.data(), &one, &beta, q.begin(), &one);
    delete[] qmat;
    return q;
}

// [[Rcpp::export]]
List BCloss_recov_dist(NumericMatrix defaultprob,
                       const std::vector<double>& issuerweights, NumericVector recov,
                       NumericVector Z, NumericVector w,
                       NumericVector rho, int N, bool defaultflag = false) {
    /*
      computes the loss and recovery distribution over time with a flat gaussian
      correlation
      inputs:
      defaultprob: matrix of size dim1 x dim2. dim1 is the number of issuers
      and dim2 number of time steps
      issuerweights: vector of issuer weights (length dim1)
      recov: vector of recoveries (length dim1)
      Z: vector of factor values (length n)
      w: vector of factor weights (length n)
      rho: correlation beta vector (length dim1)
      N: number of ticks in the grid
      defaultflag: if true, computes the default distribution
      outputs:
      L: matrix of size (N, dim2)
      R: matrix of size (N, dim2)
    */
    int one = 1;
    double alpha = 1;
    double beta = 0;

    NumericMatrix L(N, defaultprob.ncol());
    NumericMatrix R(N, defaultprob.ncol());
    double* Lw = new double[N*Z.size()];
    double* Rw = new double[N*Z.size()];
    for(int t = 0; t < defaultprob.ncol(); t++) {
        #pragma omp parallel
        {
            std::vector<double> gshocked(defaultprob.nrow());
            double* Rshocked = new double[defaultprob.nrow()];
            double* Sshocked = new double[defaultprob.nrow()];
            double g;
            #pragma omp for
            for(int i=0; i < Z.size(); i++) {
                for(int j = 0; j < defaultprob.nrow(); j++) {
                    g = defaultprob(j, t);;
                    gshocked[j] = shockprob(g, rho[j], Z[i], 0);
                    Sshocked[j] = shockseverity(1-recov[j], Z[i], rho[j], g);
                    Rshocked[j] = 1 - Sshocked[j];
                }
                lossdistrib(gshocked, issuerweights, Sshocked, N, N,
                            Lw+i*N, defaultflag);
                lossdistrib(gshocked, issuerweights, Rshocked, N, N,
                            Rw+i*N, defaultflag);
            }
            delete[] Rshocked;
            delete[] Sshocked;
        }
        int n = Z.size();
        dgemv_((char*)"n", &N, &n, &alpha, Lw, &N, w.begin(), &one, &beta, L(_,t).begin(), &one);
        dgemv_((char*)"n", &N, &n, &alpha, Rw, &N, w.begin(), &one, &beta, R(_,t).begin(), &one);
    }
    delete[] Lw;
    delete[] Rw;
    return List::create(Named("L")=L, Named("R")=R);
}

// void BCloss_recov_trunc(double *defaultprob, int *dim1, int *dim2,
//                         double *issuerweights, double *recov, double *Z, double *w,
//                         int *n, double *rho, int *N, double * K, int *defaultflag,
//                         double *ELt, double *ERt) {
//     /*
//       computes EL_t = E[(K-L_t)^+] and ER_t = E[(K-(1-R_t))^+]
//        the the put options on loss and recovery over time
//        with a flat gaussian correlation.
//       inputs:
//       defaultprob: matrix of size dim1 x dim2. dim1 is the number of issuers
//       and dim2 number of time steps
//       issuerweights: vector of issuer weights (length dim1)
//       recov: vector of recoveries (length dim1)
//       Z: vector of factor values (length n)
//       w: vector of factor weights (length n)
//       rho: correlation beta vector (length dim1)
//       N: number of ticks in the grid
//       K: the strike
//       defaultflag: if true, computes the default distribution
//       outputs:
//       ELt: vector of length dim2
//       ERt: vector of length dim2
//     */
//     int t, i, j;
//     double g, Ktilde;
//     int one = 1;
//     int T = (int) floor((*K) * (*N))+1;
//     int Ttilde;
//     double lu = 1./(*N+1);
//     double* valL = malloc( T * sizeof(double));
//     posK(T, *K, lu, valL);
//     double* EL = malloc( (*n) * sizeof(double));
//     double* ER = malloc( (*n) * sizeof(double));
//     double* Lw = malloc(T * (*n) * sizeof(double));
//     double alpha = 1;
//     double beta = 0;

//     for(t=0; t < (*dim2); t++) {
//         memset(Lw, 0, T * (*n) * sizeof(double));
//         #pragma omp parallel for private(j, g, Ktilde, Ttilde)
//         for(i=0; i < *n; i++){
//             double* Rw = NULL;
//             double* Rshocked = malloc((*dim1) * sizeof(double));
//             double* Sshocked = malloc((*dim1) * sizeof(double));
//             double* gshocked = malloc((*dim1) * sizeof(double));
//             double* gshockedbar = malloc((*dim1) * sizeof(double));
//             double* valR = NULL;

//             for(j=0; j < (*dim1); j++){
//                 g = defaultprob[j + (*dim1) * t];
//                 gshocked[j] = shockprob(g, rho[j], Z[i], 0);
//                 Sshocked[j] = shockseverity(1-recov[j], Z[i], rho[j], g);
//                 gshockedbar[j] = 1 - gshocked[j];
//                 Rshocked[j] = 1 - Sshocked[j];
//             }

//             lossdistrib_truncated(gshocked, dim1, issuerweights, Sshocked,
//                                   N, &T, defaultflag, Lw + i * T);
//             ER[i] = 0;
//             Ktilde = *K - ddot_(dim1, issuerweights, &one, Sshocked, &one);
//             if(Ktilde > 0){
//                 Ttilde = (int) floor(Ktilde * (*N))+1;
//                 Rw = calloc(Ttilde, sizeof(double));
//                 lossdistrib_truncated(gshockedbar, dim1, issuerweights, Rshocked,
//                                       N, &Ttilde, defaultflag, Rw);
//                 valR = malloc(Ttilde * sizeof(double));
//                 posK(Ttilde, Ktilde, lu, valR);
//                 ER[i] = ddot_(&Ttilde, Rw, &one, valR, &one);
//             }
//             if(Rw != NULL){
//                 free(Rw);
//             }
//             if(valR != NULL){
//                 free(valR);
//             }
//             free(Rshocked);
//             free(Sshocked);
//             free(gshocked);
//             free(gshockedbar);
//         }
//         dgemv_("t", &T, n, &alpha, Lw, &T, valL, &one, &beta, EL, &one);
//         ELt[t] = ddot_(n, EL, &one, w, &one);
//         ERt[t] = ddot_(n, ER, &one, w, &one);
//     }
//     free(Lw);
//     free(EL);
//     free(ER);
//     free(valL);
// }

// void BCloss_dist(double *defaultprob, int *dim1, int *dim2,
//                  double *issuerweights, double *recov, double *Z, double *w,
//                  int *n, double *rho, int *N, int *defaultflag,
//                  double *L) {
//     /*
//       computes the loss distribution over time with a flat gaussian
//       correlation
//       inputs:
//       defaultprob: matrix of size dim1 x dim2. dim1 is the number of issuers
//       and dim2 number of time steps
//       issuerweights: vector of issuer weights (length dim1)
//       recov: vector of recoveries (length dim1)
//       Z: vector of factor values (length n)
//       w: vector of factor weights (length n)
//       rho: correlation beta vector (length dim1)
//       N: number of ticks in the grid
//       defaultflag: if true, computes the default distribution
//       outputs:
//       L: matrix of size (N, dim2)
//     */
//     int t, i, j;
//     double g;
//     double *gshocked, *Sshocked, *Lw;
//     int one = 1;
//     double alpha = 1;
//     double beta = 0;

//     gshocked = malloc((*dim1) * (*n) * sizeof(double));
//     Sshocked = malloc((*dim1) * (*n) * sizeof(double));
//     Lw = malloc((*N) * (*n) * sizeof(double));

//     for(t=0; t < (*dim2); t++) {
//         memset(Lw, 0, (*N) * (*n) * sizeof(double));
//         #pragma omp parallel for private(j, g)
//         for(i=0; i < *n; i++){
//             for(j=0; j < (*dim1); j++){
//                 g = defaultprob[j + (*dim1) * t];
//                 gshocked[j+(*dim1)*i] = shockprob(g, rho[j], Z[i], 0);
//                 Sshocked[j+(*dim1)*i] = shockseverity(1-recov[j], Z[i], rho[j], g);
//             }
//             lossdistrib_blas(gshocked + (*dim1) * i, dim1, issuerweights, Sshocked + (*dim1)*i, N, defaultflag,
//                              Lw + i * (*N));
//         }
//         dgemv_("n", N, n, &alpha, Lw, N, w, &one, &beta, L + t * (*N), &one);
//     }
//     free(gshocked);
//     free(Sshocked);
//     free(Lw);
// }
//