aboutsummaryrefslogtreecommitdiffstats
path: root/jpa_test/convex_optimization.py
diff options
context:
space:
mode:
Diffstat (limited to 'jpa_test/convex_optimization.py')
-rw-r--r--jpa_test/convex_optimization.py65
1 files changed, 21 insertions, 44 deletions
diff --git a/jpa_test/convex_optimization.py b/jpa_test/convex_optimization.py
index dd93b05..ef54892 100644
--- a/jpa_test/convex_optimization.py
+++ b/jpa_test/convex_optimization.py
@@ -1,4 +1,5 @@
import theano
+import cascade_creation
from theano import tensor, function
import numpy as np
import cvxopt
@@ -12,47 +13,11 @@ def l1obj_l2constraint(M_val, w_val):
s.t theta_j <= 0
|e^{M*theta} - (1 - w)|_2 <= 1
"""
- m, n = M_val.shape
- c = cvxopt.matrix(-1.0, (n,1))
+ assert len(M_val) == len(w_val)
- theta = tensor.row().T
- z = tensor.row().T
- theta_ = theta.flatten()
- z_ = z.flatten()
- M = theano.shared(M_val.astype(theano.config.floatX))
- w = theano.shared(w_val.astype(theano.config.floatX))
- y = (tensor.exp(M.dot(theta_)) - (1 - w)).norm(2) - 1
- y_diff = tensor.grad(y, theta_)
- y_hess = z[0] * theano.gradient.hessian(y, theta_)
- f_x = theano.function([theta], [y, y_diff], allow_input_downcast=True)
- f_xz = theano.function([theta, z], [y, y_diff, y_hess], allow_input_downcast=True)
+ if M_val.dtype == bool:
+ M_val = M_val.astype('float32')
- def F(x=None, z=None):
- if x is None:
- return 1, cvxopt.matrix(1.0, (n,1))
- elif z is None:
- y, y_diff = f_x(x)
- return cvxopt.matrix(float(y), (1, 1)),\
- cvxopt.matrix(y_diff.astype("float64")).T
- else:
- y, y_diff, y_hess = f_xz(x, z)
- return cvxopt.matrix(float(y), (1, 1)), \
- cvxopt.matrix(y_diff.astype("float64")).T, \
- cvxopt.matrix(y_hess.astype("float64"))
-
- G = cvxopt.spdiag([1 for i in xrange(n)])
- h = cvxopt.matrix(0.0, (n,1))
-
- return cvxopt.solvers.cpl(c,F, G, h)['x']
-
-
-def l1obj_l2regl(M_val, w_val, lbda):
- """
- Solves:
- min - sum_j theta_j + lbda * |e^{M*theta} - (1 - w)|_2
- s.t theta_j <= 0
- """
- #TODO!!!!!!!
m, n = M_val.shape
c = cvxopt.matrix(-1.0, (n,1))
@@ -70,7 +35,7 @@ def l1obj_l2regl(M_val, w_val, lbda):
def F(x=None, z=None):
if x is None:
- return 1, cvxopt.matrix(1.0, (n,1))
+ return 1, cvxopt.matrix(.0001, (n,1))
elif z is None:
y, y_diff = f_x(x)
return cvxopt.matrix(float(y), (1, 1)),\
@@ -84,16 +49,28 @@ def l1obj_l2regl(M_val, w_val, lbda):
G = cvxopt.spdiag([1 for i in xrange(n)])
h = cvxopt.matrix(0.0, (n,1))
- return cvxopt.solvers.cpl(c,F, G, h)['x']
+ cvxopt.solvers.options['show_progress'] = False
+ try:
+ theta = cvxopt.solvers.cpl(c,F, G, h)['x']
+ except ArithmeticError:
+ print "ArithmeticError thrown, change initial point"+\
+ " given to the solver"
+
+ return 1 - np.exp(theta), theta
def test():
"""
unit test
"""
- M_val = np.random.rand(100, 20)
- w_val = np.random.rand(100)
- print l1obj_l2regl(M_val, w_val, 1)
+ G = cascade_creation.InfluenceGraph(max_proba=.5)
+ G.erdos_init(n=100, p = .8)
+ A = cascade_creation.generate_cascades(G, .1, 20)
+ M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 0)
+ assert len(M_val) == len(w_val)
+ print np.linalg.matrix_rank(M_val)
+ p_vec, theta = l1obj_l2constraint(M_val, w_val)
+ print len(p_vec)
if __name__=="__main__":
test()