diff options
Diffstat (limited to 'paper/sections/appendix.tex')
| -rw-r--r-- | paper/sections/appendix.tex | 23 |
1 files changed, 19 insertions, 4 deletions
diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex index 32e2775..22b87c2 100644 --- a/paper/sections/appendix.tex +++ b/paper/sections/appendix.tex @@ -5,11 +5,13 @@ the paper. \subsection{Proofs of Section~\ref{sec:results}} -\paragraph{Bounded gradient} The proof of Lemma~\ref{lem:ub} giving an upper -bound on the $\ell_{\infty}$ norm of the gradient of the likelihood function is -given below. +\begin{proof}[Proof of Lemma~\ref{lem:transform}] +Using the inequality $\forall x>0, \; \log x \geq 1 - \frac{1}{x}$, we have +$|\log (\frac{1}{1 - p}) - \log (\frac{1}{1-p'})| \geq \max(1 - \frac{1-p}{1-p'}, +1 - \frac{1-p'}{1-p}) \geq \max( p-p', p'-p)$. +\end{proof} -\begin{proof} +\begin{proof}[Proof of Lemma~\ref{lem:ub}] The gradient of $\mathcal{L}$ is given by: \begin{multline*} \nabla \mathcal{L}(\theta^*) = @@ -42,6 +44,16 @@ Choosing $\lambda\defeq 2\sqrt{\frac{\log m}{\alpha n^{1-\delta}}}$ concludes the proof. \end{proof} +\begin{proof}[Proof of Corollary~\ref{cor:variable_selection}] +By choosing $\delta = 0$, if $ n > \frac{9s\log m}{\alpha\gamma^2\epsilon^2}$, +then $\|\hat \theta-\theta^*\|_2 < \epsilon < \eta$ with probability +$1-\frac{1}{m}$. If $\theta_i^* = 0$ and $\hat \theta > \eta$, then $\|\hat +\theta - \theta^*\|_2 \geq |\hat \theta_i-\theta_i^*| > \eta$, which is a +contradiction. Therefore we get no false positives. If $\theta_i^* > \eta + +\epsilon$, then $|\hat{\theta}_i- \theta_i^*| < \epsilon \implies \theta_j > +\eta$ and we get all strong parents. +\end{proof} + %\subsubsection{Approximate sparsity proof} \paragraph{(RE) with high probability} We now prove Proposition~\ref{prop:fi}. The proof mostly relies on showing that the Hessian of likelihood function @@ -113,6 +125,7 @@ C)$. These two bounds together imply the theorem. \begin{figure} \centering \includegraphics[scale=.4]{figures/n_nodes_running_time.pdf} + \vspace{-1em} \caption{Running time analysis for estimating the parents of a \emph{single node} on a Barabasi-Albert graph as a function of the number of nodes in the graph. The parameter $k$ (number of nodes each new node is attached to) @@ -120,6 +133,7 @@ C)$. These two bounds together imply the theorem. the edge weights are chosen uniformly at random in $[.2,.7]$. The penalization parameter $\lambda$ is chosen equal to $.1$.} \label{fig:running_time_n_nodes} + \vspace{-1em} \end{figure} \begin{figure} @@ -130,6 +144,7 @@ C)$. These two bounds together imply the theorem. observed cascades. The parameters defining the graph were set as in Figure~\ref{fig:running_time_n_nodes}.} \label{fig:running_time_n_cascades} + \vspace{-1em} \end{figure} We include here a running time analysis of our algorithm. In |
