diff options
Diffstat (limited to 'paper/sections/appendix.tex')
| -rw-r--r-- | paper/sections/appendix.tex | 36 |
1 files changed, 36 insertions, 0 deletions
diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex new file mode 100644 index 0000000..80692d0 --- /dev/null +++ b/paper/sections/appendix.tex @@ -0,0 +1,36 @@ +\subsection*{Proof of support recovery lemma} + + +\subsection*{Upper-bound for $\|\nabla f(\theta^*)\|_\infty$} + +We show an upper-bound for $ 2 \|\nabla f(\theta^*) \|_\infty$. If we only consider the first measurement of every cascade, this can be done easily. Let $N$ be the number of cascades (to distinguish from $n$ number of total measurements). Begin by noting that: + +\begin{align} +\nabla_k f(\theta) & = \sum^n_{i=1} \frac{b^i x^i_k}{1 - e^{\langle x^i, \theta \rangle}} - \sum^n_{i=1} x^i_k \nonumber \\ +& = \sum_{i=1}^n x^k_i \left( \frac{b^i}{\mathbb{P}(\text{node } \alpha \text { infected})} - 1\right) \nonumber +\end{align} + +\begin{lemma} +\label{lem:subgaussian_variable} +$\nabla f(\theta^*)$ is a $N/p_{\min}$-subgaussian variable, where $p_{\min}$ is the smallest non-zero link to node $\alpha$. +\end{lemma} + +\begin{proof} +We show that its expectation is $0$ by conditioning on the seed set $S$: + +\begin{align} +\mathbb{E} \left( \nabla_k f(\theta) \right) & = \sum_{i=1}^N \mathbb{E} \left[ x^i_k \left( \frac{b^i}{\mathbb{P}(\text{node } \alpha \text { infected})} - 1\right) \right] \nonumber \\ +& = \sum_{i=1}^N \mathbb{E}_S \left[ \mathbb{E}\left[x^i_k \left( \frac{b^i}{\mathbb{P}(\alpha \text { infected})} - 1\right) \middle| S \right] \right] \nonumber \\ +& = \sum_{i=1}^N \mathbb{E}\left[x^i_k \left( \frac{ \mathbb{E}_S \left[ b^i \middle| S \right]}{\mathbb{P}(\alpha \text { infected})} - 1\right) \right] \nonumber \\ +& = 0 \nonumber +\end{align} +Therefore, $\nabla f(\theta^*)$ is the sum of zero-mean variables, upper-bounded by $1/p_{\min}$. It follows that $\nabla f(\theta^*)$ is $N/p_{\min}$-subgaussian. +\end{proof} + +By union bound and characterization of sub-gaussian variables: + +\begin{equation} +\mathbb{P}(\| \nabla f(\theta) \|_{\infty} > \lambda) \leq 2 \exp \left( -\frac{\lambda^2 p_{\min}}{2n} + \log p \right) +\end{equation} + +In conclusion, for $\delta>0$, $\lambda := 2 \sqrt{\frac{n^{\delta + 1} \log p}{p_{\min}}}$ is a valid regularizer with probability $1 - \exp(-n^\delta \log p )$ |
