aboutsummaryrefslogtreecommitdiffstats
path: root/paper/sections/model.tex
diff options
context:
space:
mode:
Diffstat (limited to 'paper/sections/model.tex')
-rw-r--r--paper/sections/model.tex8
1 files changed, 3 insertions, 5 deletions
diff --git a/paper/sections/model.tex b/paper/sections/model.tex
index 3bc8b20..e35aa4a 100644
--- a/paper/sections/model.tex
+++ b/paper/sections/model.tex
@@ -45,9 +45,7 @@ cascade model.
\subsection{Examples}
\label{subsec:examples}
-In this section, we show that both the Independent Cascade Model and the Voter
-model are Generalized Linear Cascades. The Linear Threshold model will be
-discussed in Section~\ref{sec:linear_threshold}.
+In this section, we show that the well-known Independent Cascade Model and the Voter model are Generalized Linear Cascades. The Linear Threshold model will be discussed in Section~\ref{sec:linear_threshold}.
\subsubsection{Independent Cascade Model}
@@ -75,7 +73,7 @@ Defining $\Theta_{i,j} \defeq \log(1-p_{i,j})$, this can be rewritten as:
= 1 - e^{\inprod{\theta_j}{X^t}}
\end{equation}
which is a Generalized Linear Cascade model with inverse link function $f(z)
-= z$.
+= 1 - e^z$.
\subsubsection{The Voter Model}
@@ -90,7 +88,7 @@ step $t$, then we have:
\mathbb{P}\left[X^{t+1}_j = 1 | X^t \right] = \sum_{i=1}^m \Theta_{i,j} X_i^t = \inprod{\theta_j}{X^t}
\tag{V}
\end{equation}
-which is again a Generalized Linear Cascade model with inverse link function
+which is a Generalized Linear Cascade model with inverse link function
$f(z) = z$.
\subsection{Maximum Likelihood Estimation}