aboutsummaryrefslogtreecommitdiffstats
path: root/paper/sections/results.tex
diff options
context:
space:
mode:
Diffstat (limited to 'paper/sections/results.tex')
-rw-r--r--paper/sections/results.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/paper/sections/results.tex b/paper/sections/results.tex
index 6b9fd7a..af0b076 100644
--- a/paper/sections/results.tex
+++ b/paper/sections/results.tex
@@ -30,7 +30,7 @@ by~\cite{bickel2009simultaneous}.
\begin{definition}
Let $\Sigma\in\mathcal{S}_m(\reals)$ be a real symmetric matrix and $S$ be
a subset of $\{1,\ldots,m\}$. Defining $\mathcal{C}(S)\defeq
- \{X\in\reals^m\,:\,\|X\|_1\leq 1\text{ and } \|X_{S^c}\|_1\leq
+ \{X\in\reals^m\,:\,\|X_{S^c}\|_1\leq
3\|X_S\|_1\}$. We say that $\Sigma$ satisfies the
$(S,\gamma)$-\emph{restricted eigenvalue condition} iff:
\begin{equation}
@@ -268,7 +268,7 @@ cascade, which are independent, we can apply Theorem 1.8 from
s\log m)$.
If $f$ and $(1-f)$ are strictly log-convex, then the previous observations show
-that the quantity $\E[\nabla2\mathcal{L}(\theta^*)]$ in
+that the quantity $\E[\nabla^2\mathcal{L}(\theta^*)]$ in
Proposition~\ref{prop:fi} can be replaced by the expected \emph{Gram matrix}:
$A \equiv \mathbb{E}[X^T X]$. This matrix $A$ has a natural interpretation: the
entry $a_{i,j}$ is the probability that node $i$ and node $j$ are infected at