diff options
Diffstat (limited to 'paper/sections')
| -rw-r--r-- | paper/sections/results.tex | 32 |
1 files changed, 24 insertions, 8 deletions
diff --git a/paper/sections/results.tex b/paper/sections/results.tex index bb31f79..128a79f 100644 --- a/paper/sections/results.tex +++ b/paper/sections/results.tex @@ -166,22 +166,38 @@ Choosing $\lambda\defeq 2\sqrt{\frac{\log m}{\alpha n^{1-\delta}}}$ concludes th proof. \end{proof} +We now show how to use Theorem~\ref{thm:main} to recover the support of +$\theta^*$, that is, to solve the Graph Inference problem. + \begin{corollary} \label{cor:variable_selection} -Assume that ${\bf (RE)}$ holds with $\gamma > 0$ and that $\theta$ is s-sparse. Consider the set $\hat {\cal S}_\eta \defeq \{ i \in [1..p] : \hat \theta_i > \eta\}$ for $\eta > 0$. For $\epsilon>0$ and $\epsilon < \eta$, let ${\cal S}^*_{\eta + \epsilon} \defeq \{ i \in [1..p] :\theta_i > \eta +\epsilon \}$ be the set of all true `strong' parents. Suppose the number of measurements verifies: -\begin{equation} -n > \frac{36}{p_{\min}\gamma^2 \epsilon^2} s \log m -\end{equation} -Then with probability $1-\frac{1}{m}$, ${\cal S}^*_{\eta + \epsilon} \subset -\hat {\cal S}_\eta \subset {\cal S}^*$. In other words we recover all `strong' +Under the same assumptions of Theorem~\ref{thm:main}, let $\hat {\cal S}_\eta +\defeq \{ j \in \{1,\ldots, m\} : \hat{\theta}_j > \eta\}$ for $\eta > 0$. For +$\epsilon>0$ and $\epsilon < \eta$, let ${\cal S}^*_{\eta + \epsilon} \defeq \{ +i \in \{1,\ldots,m\} :\theta_i > \eta +\epsilon \}$ be the set of all true `strong' +parents. Suppose the number of measurements verifies: +$ n > \frac{9}{\alpha}\frac{\gamma^2}{\epsilon^2} s \log m $. +Then with probability $1-\frac{1}{m}$, ${\cal S}^*_{\eta + \epsilon} \subseteq +\hat {\cal S}_\eta \subseteq {\cal S}^*$. In other words we recover all `strong' parents and no `false' parents. \end{corollary} \begin{proof} -Suppose $\theta$ is exactly s-sparse. By choosing $\delta = 0$, if $n>\frac{36}{p_{\min}\gamma^2 \epsilon^2} s \log m$, then $\|\hat \theta-\theta\|_2 < \epsilon < \eta$ with probability $1-\frac{1}{m}$. If $\theta_i = 0$ and $\hat \theta > \eta$, then $\|\hat \theta - \theta\|_2 \geq |\hat \theta_i-\theta_j| > \eta$, which is a contradiction. Therefore we get no false positives. If $\theta_i = \eta + \epsilon$, then $|\hat \theta_i - (\eta+\epsilon)| < \epsilon/2 \implies \theta_j > \eta + \epsilon/2$. Therefore, we get all strong parents. +By choosing $\delta = 0$, if $n>\frac{9}{\alpha}\frac{\gamma^2}{\epsilon^2} s \log m$, +then $\|\hat \theta-\theta\|_2 < \epsilon < \eta$ with probability +$1-\frac{1}{m}$. If $\theta_i = 0$ and $\hat \theta > \eta$, then $\|\hat +\theta - \theta\|_2 \geq |\hat \theta_i-\theta_j| > \eta$, which is +a contradiction. Therefore we get no false positives. If $\theta_i \leq \eta ++ \epsilon$, then $|\hat{\theta}_i- \theta_i| < \epsilon \implies +\theta_j > \eta$. Therefore, we get all strong parents. \end{proof} -Note that if we want \emph{perfect recovery} of all edges, we must estimate $p_{\min}$ within $\epsilon'$ and set $\eta \defeq p_{\min} - \epsilon'$ +Assuming we know a lower bound $\alpha$ on $\Theta_{i,j}$, +Corollary~\ref{cor:variable_selection} can be applied to the Graph Inference +problem in the following manner: pick $\epsilon = \frac{\eta}{2}$ and $\eta += \frac{\alpha}{3}$, then $S_{\eta+\epsilon}^* = S$ provided that +$n=\Omega\left(\frac{\gamma^2}{\alpha^3}s\log m\right)$. That is, the support +of $\theta^*$ can be found by thresholding $\hat{\theta}$ to the level $\eta$. \subsection{Relaxing the Sparsity Constraint} \label{sec:relaxing_sparsity} |
