diff options
Diffstat (limited to 'poster/Finale_poster/poster.tex')
| -rw-r--r-- | poster/Finale_poster/poster.tex | 41 |
1 files changed, 22 insertions, 19 deletions
diff --git a/poster/Finale_poster/poster.tex b/poster/Finale_poster/poster.tex index 618d501..aef5490 100644 --- a/poster/Finale_poster/poster.tex +++ b/poster/Finale_poster/poster.tex @@ -1,6 +1,6 @@ \documentclass[final]{beamer} \usepackage[utf8]{inputenc} -\usepackage[scale=1.6]{beamerposter} % Use the beamerposter package for laying +\usepackage[scale=1.8]{beamerposter} % Use the beamerposter package for laying \usetheme{confposter} % Use the confposter theme supplied with this template \usepackage{framed, amsmath, amsthm, amssymb} @@ -30,11 +30,11 @@ % TITLE SECTION %---------------------------------------------------------------------------------------- -\title{Inferring Graphs from Cascades} % Poster title +\title{Bayesian and Active Learning for Graph Inference} % Poster title \author{Thibaut Horel, Jean Pouget-Abadie} % Author(s) -\institute{Harvard University} % Institution(s) +%\institute{Harvard University} % Institution(s) %---------------------------------------------------------------------------------------- \begin{document} \addtobeamertemplate{block end}{}{\vspace*{2ex}} % White space under blocks @@ -53,33 +53,36 @@ %---------------------------------------------------------------------------------------- -\vspace{- 12.2 cm} -\begin{center} -{\includegraphics[scale=2.5]{../images/SEASLogo_RGB.png}} -\end{center} - -\vspace{5 cm} - \begin{block}{Problem} \emph{How to recover an unknown network from the observation of contagion cascades?} - \vspace{.5cm} + \vspace{1em} \begin{itemize} - \item {\bf Observe} $X^t_c$ (infections at time $t$ in cascade $c$) - \item {\bf Objective}: find $\{\theta_{ij}\}$ (graph weight matrix) + \item \textbf{Observe:} state (infected or not) of nodes over time. + \item \textbf{Objective:} learn $\Theta$, matrix of edge weights. \end{itemize} \end{block} \vspace{1cm} \begin{block}{\bf Contagion Model~\cite{}} \begin{itemize} - \item Discrete time - \item Infections drawn indep.~for each node conditioned on previous step - \item Generalized Linear Model parametrization: - \begin{framed} - $$\mathbb{P}(X^{t+1}_j = 1 | X^t) = f(\Theta_j \cdot X^t)$$ - \end{framed} + \item $X^t\in\{0,1\}^N$: state of the network at time $t$ + \item At $t=0$, $X^0$ drawn from \emph{source distribution} + \item For $t=1,2,\dots$: + \begin{itemize} + \item $X^t$ only depends on $X^{t-1}$ + \item for each node $j$, new state drawn independently with: + \begin{displaymath} + \mathbb{P}(X^{t+1}_j = 1 | X^t) = f(\Theta_j \cdot X^t) + \end{displaymath} + ($f$: link function of the cascade model) +\end{itemize} \end{itemize} + \vspace{1em} +\begin{figure} + \centering + \includegraphics[scale=2]{drawing.pdf} +\end{figure} \end{block} \begin{block}{MLE} |
