aboutsummaryrefslogtreecommitdiffstats
path: root/poster/Finale_poster
diff options
context:
space:
mode:
Diffstat (limited to 'poster/Finale_poster')
-rw-r--r--poster/Finale_poster/beamerthemeconfposter.sty6
-rw-r--r--poster/Finale_poster/fig.pngbin0 -> 43576 bytes
-rw-r--r--poster/Finale_poster/poster.tex78
-rw-r--r--poster/Finale_poster/sparse.bib541
4 files changed, 591 insertions, 34 deletions
diff --git a/poster/Finale_poster/beamerthemeconfposter.sty b/poster/Finale_poster/beamerthemeconfposter.sty
index fc07a08..44acd17 100644
--- a/poster/Finale_poster/beamerthemeconfposter.sty
+++ b/poster/Finale_poster/beamerthemeconfposter.sty
@@ -99,12 +99,14 @@
\begin{column}{.6\linewidth}
\vskip1cm
\centering
- \usebeamercolor{title in headline}{\color{jblue}\Huge{\textbf{\inserttitle}}\\[0.5ex]}
- \usebeamercolor{author in headline}{\color{fg}\Large{\insertauthor}\\[1ex]}
+ \usebeamercolor{title in headline}{\color{jblue}\huge{\textbf{\inserttitle}}\\[0.5ex]}
%\usebeamercolor{institute in headline}{\color{fg}\large{\insertinstitute}\\[1ex]}
\end{column}
\vspace{1cm}
\begin{column}{.2\linewidth}
+ \begin{center}
+ \usebeamercolor{author in headline}{\color{fg}\Large{\insertauthor}\\[1ex]}
+\end{center}
\end{column}
\vspace{1cm}
\end{columns}
diff --git a/poster/Finale_poster/fig.png b/poster/Finale_poster/fig.png
new file mode 100644
index 0000000..4d594d4
--- /dev/null
+++ b/poster/Finale_poster/fig.png
Binary files differ
diff --git a/poster/Finale_poster/poster.tex b/poster/Finale_poster/poster.tex
index 1365801..7865e18 100644
--- a/poster/Finale_poster/poster.tex
+++ b/poster/Finale_poster/poster.tex
@@ -1,6 +1,6 @@
\documentclass[final]{beamer}
\usepackage[utf8]{inputenc}
-\usepackage[scale=1.8]{beamerposter} % Use the beamerposter package for laying
+\usepackage[scale=1.7]{beamerposter} % Use the beamerposter package for laying
\usetheme{confposter} % Use the confposter theme supplied with this template
\usepackage{framed, amsmath, amsthm, amssymb}
\usepackage{graphicx}
@@ -16,7 +16,7 @@
\newlength{\twocolwid}
\newlength{\threecolwid}
\setlength{\paperwidth}{48in} % A0 width: 46.8in
-\setlength{\paperheight}{40in} % A0 height: 33.1in
+\setlength{\paperheight}{36in} % A0 height: 33.1in
\setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between
\setlength{\onecolwid}{0.29\paperwidth} % Width of one column
\setlength{\twocolwid}{0.464\paperwidth} % Width of two columns
@@ -24,7 +24,7 @@
\setlength{\topmargin}{-1in} % Reduce the top margin size
\title{Bayesian and Active Learning for Graph Inference} % Poster title
-\author{Thibaut Horel\and Jean Pouget-Abadie} % Author(s)
+\author{Thibaut Horel\\[0.5em] Jean Pouget-Abadie} % Author(s)
\begin{document}
\setlength{\belowcaptionskip}{2ex} % White space under figures
@@ -44,9 +44,9 @@
\item \textbf{Objective:} learn $\Theta$, matrix of edge weights.
\end{itemize}
\end{block}
-\vspace{1cm}
+\vspace{2cm}
-\begin{block}{\bf Contagion Model~\cite{}}
+\begin{block}{\bf Contagion Model~\cite{Pouget:2015}}
\begin{itemize}
\item $X^t\in\{0,1\}^N$: state of the network at time $t$
\item At $t=0$, $X^0$ drawn from \emph{source distribution}
@@ -67,6 +67,7 @@
\end{center}
\end{figure}
\end{block}
+\vspace{2cm}
\begin{block}{MLE}
\begin{itemize}
@@ -81,7 +82,7 @@
Can be solved efficiently by SGD on $\Theta$.
\vspace{1cm}
\item log-likelihood is concave for common contagion models (\emph{e.g} IC
- model) $\Rightarrow$ provable convergence guarantees (\cite{}).
+ model) $\Rightarrow$ provable convergence guarantees \cite{Netrapalli:2012}.
\end{itemize}
\end{block}
\end{column} % End of the first column
@@ -94,6 +95,7 @@
\begin{block}{Bayesian Framework}
\begin{figure}
\centering
+ \vspace{-1em}
\includegraphics[scale=3]{graphical.pdf}
\end{figure}
{\bf Advantages:}
@@ -113,23 +115,27 @@
\begin{center}--~OR~--\end{center}
\emph{Can we cherry-pick the most relevant part of the dataset?}
+\vspace{0.5em}
{\bf Idea:} Focus on parts of the graph which are unexplored (high uncertainty).
-i.e.~maximize information gain per cascade
+i.e.~maximize information gain per observation.
-Baseline heuristic:
+\vspace{0.5em}
+\textbf{Baseline heuristic:}
\begin{itemize}
- \item Choose source proportional to estimated out-degree $\implies$ wider
+ \item Choose source w.p. proportional to estimated out-degree $\implies$ wider
cascades $\implies$ more data
\end{itemize}
-Principled heuristic:
+\vspace{0.5em}
+\textbf{Principled heuristic:}
\begin{itemize}
- \item Choose source proportional to mutual information
- \begin{equation*}
- I((X_t) ,\Theta | x^0 = i) = - H(\Theta | (X_t), X_0 = i) + H(\Theta)
- \end{equation*}
- \item Exact strategy requires knowing true distribution of $(X_t)$
- \item Use estimated $\Theta$ to compute $H(\Theta | (X_t), X_0 = i)$
+ \item Choose source w.p. proportional to mutual information
+ \begin{multline*}
+ p(i) \propto I\big(\{X_t\}_{t\geq 1} ,\Theta | X^0 = \{i\}\big)\\
+ = H(\Theta) - H\big(\Theta | \{X_t\}_{t\geq 1}, X_0 = \{i\}\big)
+ \end{multline*}
+\item Requires knowing true distribution of $\{X_t\}$ $\Rightarrow$ use current
+ estimate of $\Theta$ instead.
\end{itemize}
\end{block}
\end{column}
@@ -142,34 +148,42 @@ Principled heuristic:
\begin{block}{Implementation}
{\bf Scalable Bayesian Inference}
\begin{itemize}
- \item MCMC (PyMC~\cite{})
- \item VI (BLOCKS~\cite{})
+ \item MCMC: implements the graphical model directly with PyMC
+ \cite{pymc}; does not scale beyond 10 nodes.
+ \item VI: implements variational inference with Blocks~\cite{blocks}.
+ (wip: use Bohning bounds to avoid sampling).
\end{itemize}
- {\bf Scalable Active Learning Criterion}
-Approx.~heuristic:
+ \vspace{1em}
+ {\bf Scalable Active Learning}
+
+ Mutual information is expensive to compute. Instead:
\begin{itemize}
- \item Choose source proportional to mutual information of first step of
- cascade and $\Theta$: Hope for closed-form formula
- \item Intuition:
- \begin{itemize}
- \item Choose lower bound of mutual information $I(X, Y) \geq I(f(X),
- g(Y))$ where $f$ is the trunctation function
- \item First step is most informative~\cite{}
- \end{itemize}
- \item Sum over outgoing-edges' variance as proxy
+ \item use mutual information between $\Theta$ and $X^1$.
+
+ \textbf{Justification} for any $f$:
+ \begin{displaymath}
+ I(X, Y) \geq I\big(f(X)\big)
+ \end{displaymath}
+ in our case: $f$ truncates the cascade at $t=1$.
+
+ (wip: obtain closed-form formula in this case).
+ \item variance is a lower-bound on mutual information $\implies$ pick
+ node $i$ w.p. proportional to $\sum_j \text{Var}(\Theta_{i,j})$.
\end{itemize}
\end{block}
\begin{block}{Results}
-
+ \begin{center}
+ \includegraphics[scale=1.5]{fig.png}
+ \end{center}
\end{block}
\begin{block}{References}
- {\scriptsize \bibliography{../../paper/sparse}
-\bibliographystyle{plain}}
+ {\scriptsize \bibliography{sparse}
+\bibliographystyle{abbrv}}
\end{block}
%-----------------------------------------------------------------------------
diff --git a/poster/Finale_poster/sparse.bib b/poster/Finale_poster/sparse.bib
new file mode 100644
index 0000000..61d57fa
--- /dev/null
+++ b/poster/Finale_poster/sparse.bib
@@ -0,0 +1,541 @@
+@article{pymc,
+ title={PyMC: Bayesian stochastic modelling in Python},
+ author={Patil, Anand and Huard, David and Fonnesbeck, Christopher J},
+ journal={Journal of statistical software},
+ volume={35},
+ number={4},
+ pages={1},
+ year={2010},
+ publisher={Europe PMC Funders}
+}
+
+@article{blocks,
+ author = {Bart van Merri{\"{e}}nboer and
+ Dzmitry Bahdanau and
+ Vincent Dumoulin and
+ Dmitriy Serdyuk and
+ David Warde{-}Farley and
+ Jan Chorowski and
+ Yoshua Bengio},
+ title = {Blocks and Fuel: Frameworks for deep learning},
+ journal = {CoRR},
+ volume = {abs/1506.00619},
+ year = {2015},
+ url = {http://arxiv.org/abs/1506.00619},
+ timestamp = {Wed, 01 Jul 2015 15:10:24 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/MerrienboerBDSW15},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article {CandesRomberTao:2006,
+author = {Candès, Emmanuel J. and Romberg, Justin K. and Tao, Terence},
+title = {Stable signal recovery from incomplete and inaccurate measurements},
+journal = {Communications on Pure and Applied Mathematics},
+volume = {59},
+number = {8},
+publisher = {Wiley Subscription Services, Inc., A Wiley Company},
+issn = {1097-0312},
+pages = {1207--1223},
+year = {2006},
+}
+
+
+@inproceedings{GomezRodriguez:2010,
+ author = {Gomez Rodriguez, Manuel and Leskovec, Jure and Krause, Andreas},
+ title = {Inferring Networks of Diffusion and Influence},
+ booktitle = {Proceedings of the 16th ACM SIGKDD International Conference on
+ Knowledge Discovery and Data Mining},
+ series = {KDD '10},
+ year = {2010},
+ isbn = {978-1-4503-0055-1},
+ location = {Washington, DC, USA},
+ pages = {1019--1028},
+ numpages = {10},
+ publisher = {ACM},
+ address = {New York, NY, USA},
+}
+
+@inproceedings{Pouget:2015,
+ title={Inferring graphs from cascades: A Sparse Recovery Framework},
+ author={Pouget-Abadie, Jean and Horel, Thibaut},
+ series={ICML'15},
+ year={2015}
+}
+
+@inproceedings{du2013uncover,
+ title={Uncover topic-sensitive information diffusion networks},
+ author={Du, Nan and Song, Le and Woo, Hyenkyun and Zha, Hongyuan},
+ booktitle={Proceedings of the Sixteenth International Conference on
+ Artificial Intelligence and Statistics},
+ pages={229--237},
+ year={2013}
+}
+
+@inproceedings{du2014influence,
+ title={Influence function learning in information diffusion networks},
+ author={Du, Nan and Liang, Yingyu and Balcan, Maria and Song, Le},
+ booktitle={Proceedings of the 31st International Conference on Machine
+ Learning (ICML-14)},
+ pages={2016--2024},
+ year={2014}
+}
+
+
+@article{Netrapalli:2012,
+ author = {Netrapalli, Praneeth and Sanghavi, Sujay},
+ title = {Learning the Graph of Epidemic Cascades},
+ journal = {SIGMETRICS Perform. Eval. Rev.},
+ volume = {40},
+ number = {1},
+ month = {June},
+ year = {2012},
+ issn = {0163-5999},
+ numpages = {12},
+ publisher = {ACM},
+ address = {New York, NY, USA},
+ keywords = {cascades, epidemics, graph structure learning},
+}
+
+@article{Negahban:2009,
+ author = {Negahban, Sahand N. and Ravikumar, Pradeep and Wrainwright, Martin J. and Yu, Bin},
+ title = {A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers},
+ Journal = {Statistical Science},
+ year = {2012},
+ month = {December},
+ volume = {27},
+ number = {4},
+ pages = {538--557},
+}
+
+@article{Zhao:2006,
+ author = {Zhao, Peng and Yu, Bin},
+ title = {On Model Selection Consistency of Lasso},
+ journal = {J. Mach. Learn. Res.},
+ issue_date = {12/1/2006},
+ volume = {7},
+ month = dec,
+ year = {2006},
+ issn = {1532-4435},
+ pages = {2541--2563},
+ numpages = {23},
+ acmid = {1248637},
+ publisher = {JMLR.org},
+}
+
+@inproceedings{Daneshmand:2014,
+ author = {Hadi Daneshmand and
+ Manuel Gomez{-}Rodriguez and
+ Le Song and
+ Bernhard Sch{\"{o}}lkopf},
+ title = {Estimating Diffusion Network Structures: Recovery Conditions, Sample
+ Complexity {\&} Soft-thresholding Algorithm},
+ booktitle = {Proceedings of the 31th International Conference on Machine Learning,
+ {ICML} 2014, Beijing, China, 21-26 June 2014},
+ pages = {793--801},
+ year = {2014},
+ timestamp = {Fri, 07 Nov 2014 20:42:30 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Kempe:03,
+ author = {David Kempe and
+ Jon M. Kleinberg and
+ {\'{E}}va Tardos},
+ title = {Maximizing the spread of influence through a social network},
+ booktitle = {Proceedings of the Ninth {ACM} {SIGKDD} International Conference on
+ Knowledge Discovery and Data Mining, Washington, DC, USA, August 24
+ - 27, 2003},
+ pages = {137--146},
+ year = {2003},
+ timestamp = {Mon, 13 Feb 2006 15:34:20 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Abrahao:13,
+ author = {Bruno D. Abrahao and
+ Flavio Chierichetti and
+ Robert Kleinberg and
+ Alessandro Panconesi},
+ title = {Trace complexity of network inference},
+ booktitle = {The 19th {ACM} {SIGKDD} International Conference on Knowledge Discovery
+ and Data Mining, {KDD} 2013, Chicago, IL, USA, August 11-14, 2013},
+ pages = {491--499},
+ year = {2013},
+ timestamp = {Tue, 10 Sep 2013 10:11:57 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+
+@article{vandegeer:2009,
+author = "van de Geer, Sara A. and B{\"u}hlmann, Peter",
+fjournal = "Electronic Journal of Statistics",
+journal = "Electron. J. Statist.",
+pages = "1360--1392",
+publisher = "The Institute of Mathematical Statistics and the Bernoulli Society",
+title = "On the conditions used to prove oracle results for the Lasso",
+volume = "3",
+year = "2009"
+}
+
+@article{vandegeer:2011,
+author = "van de Geer, Sara and Bühlmann, Peter and Zhou, Shuheng",
+fjournal = "Electronic Journal of Statistics",
+journal = "Electron. J. Statist.",
+pages = "688--749",
+publisher = "The Institute of Mathematical Statistics and the Bernoulli Society",
+title = "The adaptive and the thresholded Lasso for potentially misspecified
+ models (and a lower bound for the Lasso)",
+volume = "5",
+year = "2011"
+}
+
+@article{Zou:2006,
+author = {Zou, Hui},
+title = {The Adaptive Lasso and Its Oracle Properties},
+journal = {Journal of the American Statistical Association},
+volume = {101},
+number = {476},
+pages = {1418-1429},
+year = {2006},
+}
+
+@article{Jacques:2013,
+ author = {Laurent Jacques and
+ Jason N. Laska and
+ Petros T. Boufounos and
+ Richard G. Baraniuk},
+ title = {Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of
+ Sparse Vectors},
+ journal = {{IEEE} Transactions on Information Theory},
+ volume = {59},
+ number = {4},
+ pages = {2082--2102},
+ year = {2013},
+ timestamp = {Tue, 09 Apr 2013 19:57:48 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Boufounos:2008,
+ author = {Petros Boufounos and
+ Richard G. Baraniuk},
+ title = {1-Bit compressive sensing},
+ booktitle = {42nd Annual Conference on Information Sciences and Systems, {CISS}
+ 2008, Princeton, NJ, USA, 19-21 March 2008},
+ pages = {16--21},
+ year = {2008},
+ timestamp = {Wed, 15 Oct 2014 17:04:27 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Gupta:2010,
+ author = {Ankit Gupta and
+ Robert Nowak and
+ Benjamin Recht},
+ title = {Sample complexity for 1-bit compressed sensing and sparse
+ classification},
+ booktitle = {{IEEE} International Symposium on Information Theory, {ISIT} 2010,
+ June 13-18, 2010, Austin, Texas, USA, Proceedings},
+ pages = {1553--1557},
+ year = {2010},
+ timestamp = {Thu, 15 Jan 2015 17:11:50 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{Plan:2014,
+ author = {Yaniv Plan and
+ Roman Vershynin},
+ title = {Dimension Reduction by Random Hyperplane Tessellations},
+ journal = {Discrete {\&} Computational Geometry},
+ volume = {51},
+ number = {2},
+ pages = {438--461},
+ year = {2014},
+ timestamp = {Tue, 11 Feb 2014 13:48:56 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{bickel:2009,
+author = "Bickel, Peter J. and Ritov, Ya’acov and Tsybakov, Alexandre B.",
+fjournal = "The Annals of Statistics",
+journal = "Ann. Statist.",
+month = "08",
+number = "4",
+pages = "1705--1732",
+publisher = "The Institute of Mathematical Statistics",
+title = "Simultaneous analysis of Lasso and Dantzig selector",
+volume = "37",
+year = "2009"
+}
+
+@article{raskutti:10,
+ author = {Garvesh Raskutti and
+ Martin J. Wainwright and
+ Bin Yu},
+ title = {Restricted Eigenvalue Properties for Correlated Gaussian Designs},
+ journal = {Journal of Machine Learning Research},
+ volume = {11},
+ pages = {2241--2259},
+ year = {2010},
+ timestamp = {Wed, 15 Oct 2014 17:04:32 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{rudelson:13,
+ author = {Mark Rudelson and
+ Shuheng Zhou},
+ title = {Reconstruction From Anisotropic Random Measurements},
+ journal = {{IEEE} Transactions on Information Theory},
+ volume = {59},
+ number = {6},
+ pages = {3434--3447},
+ year = {2013},
+ timestamp = {Tue, 21 May 2013 14:15:50 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{bipw11,
+ author = {Khanh Do Ba and
+ Piotr Indyk and
+ Eric Price and
+ David P. Woodruff},
+ title = {Lower Bounds for Sparse Recovery},
+ journal = {CoRR},
+ volume = {abs/1106.0365},
+ year = {2011},
+ timestamp = {Mon, 05 Dec 2011 18:04:39 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{pw11,
+ author = {Eric Price and
+ David P. Woodruff},
+ title = {{(1} + eps)-Approximate Sparse Recovery},
+ booktitle = {{IEEE} 52nd Annual Symposium on Foundations of Computer Science,
+ {FOCS} 2011, Palm Springs, CA, USA, October 22-25, 2011},
+ pages = {295--304},
+ year = {2011},
+ crossref = {DBLP:conf/focs/2011},
+ timestamp = {Tue, 16 Dec 2014 09:57:24 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@proceedings{DBLP:conf/focs/2011,
+ editor = {Rafail Ostrovsky},
+ title = {{IEEE} 52nd Annual Symposium on Foundations of Computer Science, {FOCS}
+ 2011, Palm Springs, CA, USA, October 22-25, 2011},
+ publisher = {{IEEE} Computer Society},
+ year = {2011},
+ isbn = {978-1-4577-1843-4},
+ timestamp = {Mon, 15 Dec 2014 18:48:45 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{pw12,
+ author = {Eric Price and
+ David P. Woodruff},
+ title = {Applications of the Shannon-Hartley theorem to data streams and
+ sparse recovery},
+ booktitle = {Proceedings of the 2012 {IEEE} International Symposium on Information
+ Theory, {ISIT} 2012, Cambridge, MA, USA, July 1-6, 2012},
+ pages = {2446--2450},
+ year = {2012},
+ crossref = {DBLP:conf/isit/2012},
+ timestamp = {Mon, 01 Oct 2012 17:34:07 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@proceedings{DBLP:conf/isit/2012,
+ title = {Proceedings of the 2012 {IEEE} International Symposium on Information
+ Theory, {ISIT} 2012, Cambridge, MA, USA, July 1-6, 2012},
+ publisher = {{IEEE}},
+ year = {2012},
+ isbn = {978-1-4673-2580-6},
+ timestamp = {Mon, 01 Oct 2012 17:33:45 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{Leskovec:2010,
+ author = {Jure Leskovec and
+ Deepayan Chakrabarti and
+ Jon M. Kleinberg and
+ Christos Faloutsos and
+ Zoubin Ghahramani},
+ title = {Kronecker Graphs: An Approach to Modeling Networks},
+ journal = {Journal of Machine Learning Research},
+ volume = {11},
+ pages = {985--1042},
+ year = {2010},
+ timestamp = {Thu, 22 Apr 2010 13:26:26 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{Holme:2002,
+ author= {Petter Holme and Beom Jun Kim},
+ title = {Growing scale-free networks with tunable clustering},
+ journal = {Physical review E},
+ volume = {65},
+ issue = {2},
+ pages = {026--107},
+ year = {2002}
+}
+
+
+@article{watts:1998,
+ Annote = {10.1038/30918},
+ Author = {Watts, Duncan J. and Strogatz, Steven H.},
+ Date = {1998/06/04/print},
+ Isbn = {0028-0836},
+ Journal = {Nature},
+ Number = {6684},
+ Pages = {440--442},
+ Read = {0},
+ Title = {Collective dynamics of `small-world' networks},
+ Volume = {393},
+ Year = {1998},
+}
+
+@article{barabasi:2001,
+ author = {R{\'{e}}ka Albert and
+ Albert{-}L{\'{a}}szl{\'{o}} Barab{\'{a}}si},
+ title = {Statistical mechanics of complex networks},
+ journal = {CoRR},
+ volume = {cond-mat/0106096},
+ year = {2001},
+ timestamp = {Mon, 05 Dec 2011 18:05:15 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+
+@article{gomezbalduzzi:2011,
+ author = {Manuel Gomez{-}Rodriguez and
+ David Balduzzi and
+ Bernhard Sch{\"{o}}lkopf},
+ title = {Uncovering the Temporal Dynamics of Diffusion Networks},
+ journal = {CoRR},
+ volume = {abs/1105.0697},
+ year = {2011},
+ timestamp = {Mon, 05 Dec 2011 18:05:23 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{Nowell08,
+ author = {Liben-Nowell, David and Kleinberg, Jon},
+ eprint = {http://www.pnas.org/content/105/12/4633.full.pdf+html},
+ journal = {Proceedings of the National Academy of Sciences},
+ keywords = {SNA graph networks},
+ number = 12,
+ pages = {4633-4638},
+ timestamp = {2008-10-09T10:32:56.000+0200},
+ title = {{Tracing information flow on a global scale using Internet chain-letter data}},
+ volume = 105,
+ year = 2008
+}
+
+@inproceedings{Leskovec07,
+ author = {Jure Leskovec and
+ Mary McGlohon and
+ Christos Faloutsos and
+ Natalie S. Glance and
+ Matthew Hurst},
+ title = {Patterns of Cascading Behavior in Large Blog Graphs},
+ booktitle = {Proceedings of the Seventh {SIAM} International Conference on Data
+ Mining, April 26-28, 2007, Minneapolis, Minnesota, {USA}},
+ pages = {551--556},
+ year = {2007},
+ timestamp = {Wed, 12 Feb 2014 17:08:15 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+
+@inproceedings{AdarA05,
+ author = {Eytan Adar and
+ Lada A. Adamic},
+ title = {Tracking Information Epidemics in Blogspace},
+ booktitle = {2005 {IEEE} / {WIC} / {ACM} International Conference on Web Intelligence
+ {(WI} 2005), 19-22 September 2005, Compiegne, France},
+ pages = {207--214},
+ year = {2005},
+ timestamp = {Tue, 12 Aug 2014 16:59:16 +0200},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Kleinberg:00,
+ author = {Jon M. Kleinberg},
+ title = {The small-world phenomenon: an algorithm perspective},
+ booktitle = {Proceedings of the Thirty-Second Annual {ACM} Symposium on Theory
+ of Computing, May 21-23, 2000, Portland, OR, {USA}},
+ pages = {163--170},
+ year = {2000},
+ timestamp = {Thu, 16 Feb 2012 12:06:08 +0100},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{zhang2014,
+ title={Confidence intervals for low dimensional parameters in high dimensional
+ linear models},
+ author={Zhang, Cun-Hui and Zhang, Stephanie S},
+ journal={Journal of the Royal Statistical Society: Series B (Statistical
+ Methodology)},
+ volume={76},
+ number={1},
+ pages={217--242},
+ year={2014},
+ publisher={Wiley Online Library}
+}
+
+@article{javanmard2014,
+ title={Confidence intervals and hypothesis testing for high-dimensional
+ regression},
+ author={Javanmard, Adel and Montanari, Andrea},
+ journal={The Journal of Machine Learning Research},
+ volume={15},
+ number={1},
+ pages={2869--2909},
+ year={2014},
+ publisher={JMLR. org}
+}
+
+@article{donoho2006compressed,
+ title={Compressed sensing},
+ author={Donoho, David L},
+ journal={Information Theory, IEEE Transactions on},
+ volume={52},
+ number={4},
+ pages={1289--1306},
+ year={2006},
+ publisher={IEEE}
+}
+
+@article{candes2006near,
+ title={Near-optimal signal recovery from random projections: Universal
+ encoding strategies?},
+ author={Candes, Emmanuel J and Tao, Terence},
+ journal={Information Theory, IEEE Transactions on},
+ volume={52},
+ number={12},
+ pages={5406--5425},
+ year={2006},
+ publisher={IEEE}
+}
+
+@article{bickel2009simultaneous,
+ title={Simultaneous analysis of Lasso and Dantzig selector},
+ author={Bickel, Peter J and Ritov, Ya'acov and Tsybakov, Alexandre B},
+ journal={The Annals of Statistics},
+ pages={1705--1732},
+ year={2009},
+ publisher={JSTOR}
+}
+
+@article{bagnoli2005log,
+ title={Log-concave probability and its applications},
+ author={Bagnoli, Mark and Bergstrom, Ted},
+ journal={Economic theory},
+ volume={26},
+ number={2},
+ pages={445--469},
+ year={2005},
+ publisher={Springer}
+}
+
+