aboutsummaryrefslogtreecommitdiffstats
path: root/presentation/stats
diff options
context:
space:
mode:
Diffstat (limited to 'presentation/stats')
-rw-r--r--presentation/stats/beamer_2.tex397
-rw-r--r--presentation/stats/figures/Screen Shot 2015-03-08 at 13.08.01.pngbin0 -> 126844 bytes
-rw-r--r--presentation/stats/figures/weighted_graph.pngbin0 -> 24602 bytes
-rw-r--r--presentation/stats/sparse.bib503
4 files changed, 900 insertions, 0 deletions
diff --git a/presentation/stats/beamer_2.tex b/presentation/stats/beamer_2.tex
new file mode 100644
index 0000000..ecc66ed
--- /dev/null
+++ b/presentation/stats/beamer_2.tex
@@ -0,0 +1,397 @@
+\documentclass[10pt]{beamer}
+
+\usepackage{amssymb, amsmath, graphicx, amsfonts, color, amsthm, wasysym}
+
+\newtheorem{proposition}{Proposition}
+
+\title{Learning from Diffusion processes}
+\subtitle{What cascades really teach us about networks}
+\author{Jean (John) Pouget-Abadie \\ Joint Work with Thibaut (T-bo) Horel}
+
+\begin{document}
+
+\begin{frame}
+\titlepage
+\end{frame}
+
+\begin{frame}
+\frametitle{Introduction}
+
+%notes: Learn what? the network, the parameters of the diffusion process.
+
+\begin{table}
+\centering
+\begin{tabular}{c | c}
+Network & Diffusion process \\[1ex]
+\hline
+\\
+Airports & Infectious diseases (SARS) \\
+ & Delays (Eyjafjallajökull) \\[3ex]
+Social Network & Infectious diseases (flu) \\
+ & Behaviors (Ice Bucket Challenge) \\[3ex]
+Internet/WWW & Information diffusion (Memes, Pirated content \dots)
+\end{tabular}
+\end{table}
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Introduction}
+
+What do we know? What do we want to know?
+
+\begin{itemize}
+\item We know the {\bf airport network} structure. We observe delays. Can we learn how delays propagate?
+\item We (sometimes) know the {\bf social network}. We observe behaviors. Can we learn who influences whom?
+\item Rarely know {\bf blog network}. We observe discussions. Can we learn who learns from whom?
+\end{itemize}
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Independent Cascade Model}
+
+\begin{figure}
+\includegraphics[scale=.3]{figures/weighted_graph.png}
+\caption{Weighted, directed graph}
+\end{figure}
+
+\begin{itemize}
+\item At $t=0$, nodes are in three possible states: susceptible, {\color{blue} infected}, {\color{red} dead}
+\pause
+\item At time step $t$, each {\color{blue} infected} node $i$ has a ``one-shot'' probability $p_{i,j}$ of infecting each of his susceptible neighbors $j$ at $t+1$.
+\pause
+\item A node stays {\color{blue} infected} for one round, then it {\color{red} dies}
+\pause
+\item At $t=0$, each node is {\color{blue} infected} with probability $p_{\text{init}}$
+\pause
+\item Process continues until random time $T$ when no more nodes can become infected.
+\pause
+\item $X_t$: set of {\color{blue} infected} nodes at time $t$
+\pause
+\item A {\bf cascade} is an instance of the ICC model: $(X_t)_{t=0, t=T}$
+\end{itemize}
+
+%Notes: Revisit the celebrated independent cascade model -> Influence maximisation is tractable, requires knowledge of weights
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Independent Cascade Model}
+
+\begin{figure}
+\includegraphics[scale=.5]{figures/weighted_graph.png}
+\caption{Weighted, directed graph}
+\end{figure}
+
+\begin{block}{Example}
+\begin{itemize}
+\item At $t=0$, the {\color{orange} orange} node is infected, and the two other nodes are susceptible. $X_0 = $({\color{orange} orange})
+\item At $t=1$, the {\color{orange}} node infects the {\color{blue} blue} node and fails to infect the {\color{green} green} node. The {\color{orange} orange} node dies. $X_1 = $({\color{blue} blue})
+\item At $t=2$, {\color{blue} blue} dies. $X_2 = \emptyset$
+\end{itemize}
+\end{block}
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Independent Cascade Model}
+
+\begin{figure}
+\includegraphics[scale=.5]{figures/weighted_graph.png}
+\caption{Weighted, directed graph}
+\end{figure}
+
+\begin{itemize}
+\item If the {\color{orange} orange} node and the {\color{green} green} node are infected at $t=0$, what is the probability that the {\color{blue} blue} node is infected at $t=1$?
+$$1 - \mathbb{P}(\text{not infected}) = 1 - (1 - .45)(1-.04)$$
+\end{itemize}
+
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Independent Cascade Model}
+\begin{figure}
+\includegraphics[scale=.5]{figures/weighted_graph.png}
+\caption{Weighted, directed graph}
+\end{figure}
+
+\begin{itemize}
+\item In general, for each susceptible node $j$:
+$$\mathbb{P}(j \text{ becomes infected at t+1}|X_{t}) = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j})$$
+\end{itemize}
+
+\end{frame}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Independent Cascade Model}
+For each susceptible node $j$, the event that it becomes {\color{blue} infected} conditioned on previous time step is a Bernoulli:
+$$(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$$
+\begin{itemize}
+\item $\theta_{i,j} := \log(1 - p_{i,j})$
+\item $\theta_j := (0, 0, 0, \theta_{4,j}, 0 \dots, \theta_{k,j}, \dots)$
+\item $f : x \mapsto 1 - e^x$
+\begin{align*}
+\mathbb{P}(j\in X_{t+1}|X_{t}) & = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j}) \\
+& = 1 - \exp \left[ \sum_{i \in {\cal N}(j) \cap X_{t}} \log(1 - p_{i,j}) \right] \\
+& = 1 - \exp \left[ X_{t} \cdot \theta_{j}\right]
+\end{align*}
+\end{itemize}
+\end{frame}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Independent Cascade Model}
+For each susceptible node $j$, the event that it becomes {\color{blue} infected} conditioned on previous time step is a Bernoulli:
+$$(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$$
+
+\begin{block}{Decomposability}
+\begin{itemize}
+\item Conditioned on $X_t$, the state of the nodes at the next time step are mutually independent
+\item We can learn the parents of each node independently
+\end{itemize}
+\end{block}
+
+\begin{block}{Sparsity}
+\begin{itemize}
+\item $\theta_{i,j} = 0 \Leftrightarrow \log(1 - p_{i,j}) = 0 \Leftrightarrow p_{i,j} = 0$
+\item If graph is ``sparse'', then $p_{j}$ is sparse, then $\theta_j$ is sparse.
+\end{itemize}
+\end{block}
+\end{frame}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Learning from Diffusion Processes}
+\begin{block}{Problem Statement}
+\begin{itemize}
+\item We are given a graph ${\cal G}$, and a diffusion process $f$ parameterized by $\left((\theta_j)_j, p_{\text{init}}\right)$.
+\item Suppose we {\bf only} observe $(X_t)$ from the diffusion process.
+\item Under what conditions can we learn $\theta_{i,j}$ for all $(i,j)$?
+\end{itemize}
+\end{block}
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Sparse Recovery}
+\begin{figure}
+\includegraphics[scale=.6]{../images/sparse_recovery_illustration_copy.pdf}
+\caption{$\mathbb{P}(j \in X_{t+1}| X_t) = f(X_t\cdot \theta)$}
+\end{figure}
+\end{frame}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Learning from Diffusion Processes}
+
+% \begin{figure}
+% \includegraphics[scale=.4]{../images/sparse_recovery_illustration.pdf}
+% \caption{Generalized Cascade Model for node $i$}
+% \end{figure}
+
+\begin{block}{Likelihood Function}
+\begin{align*}
+{\cal L}(\theta_1, \dots, \theta_m| X_1, \dots X_n) = \sum_{i=1}^m \sum_{t} & X_{t+1}^i \log f(\theta_i \cdot X_t) + \\
+& (1 - X_{t+1}^i) \log(1 - f(\theta_i \cdot X_t))
+\end{align*}
+\end{block}
+
+\begin{block}{MLE}
+For each node $i$, $$\theta_i \in \arg \max \frac{1}{n_i}{\cal {L}}_i(\theta_i | X_1, X_2, \dots, X_{n_i}) - \lambda \|\theta_i\|_1$$
+\end{block}
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Conditions}
+\begin{block}{On $f$}
+\begin{itemize}
+\item $\log f$ and $\log (1-f)$ have to be concave
+\item $\log f$ and $\log (1-f)$ have to have bounded gradient
+\end{itemize}
+\end{block}
+
+\begin{block}{On $(X_t)$}
+\begin{itemize}
+\item Want ${\cal H}$, the hessian of ${\cal L}$ with respect to $\theta$, to be well-conditioned.
+\item $ n < dim(\theta) \implies {\cal H}$ is degenerate.
+\item {\bf Restricted Eigenvalue condition} = ``almost invertible'' on sparse vectors.
+\end{itemize}
+\end{block}
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Restricted Eigenvalue Condition}
+
+\begin{definition}
+For a set $S$,
+$${\cal C} := \{ \Delta : \|\Delta\|_2 = 1, \|\Delta_{\bar S}\|_1 \leq 3 \| \Delta_S\|_1 \}$$
+${\cal H}$ verifies the $(S, \gamma)$-RE condition if:
+$$\forall \Delta \in {\cal C}, \Delta {\cal H} \Delta \geq \gamma$$
+\end{definition}
+\end{frame}
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Main Result}
+Adapting a result from \cite{Negahban:2009}, we have the following theorem:
+
+\begin{theorem}
+For node $i$, assume
+\begin{itemize}
+\item the Hessian verifies the $(S,\gamma)$-RE condition where $S$ is the set of parents of node $i$ (support of $\theta_i$)
+\item $f$ and $1-f$ are log-concave
+\item $|(\log f)'| < \frac{1}{\alpha}$ and $|(\log 1- f)'| < \frac{1}{\alpha}$
+\end{itemize} then with high probability:
+$$\| \theta^*_i - \hat \theta_i \|_2 \leq \frac{6}{\gamma}\sqrt{\frac{s\log m}{\alpha n}}$$
+\end{theorem}
+
+\begin{corollary}
+By thresholding $\hat \theta_i$, if $n > C' s \log m$, we recover the support of $\theta^*$ and therefore the edges of ${\cal G}$
+\end{corollary}
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Main result}
+
+\begin{block}{Correlation}
+\begin{itemize}
+\item Positive result despite correlated measurements \smiley
+\item Independent measurements $\implies$ taking one measurement per cascade.
+\end{itemize}
+\end{block}
+
+\begin{block}{Statement w.r.t observations and not the model}
+\begin{itemize}
+\item The Hessian must verify the $(S,\gamma)$-RE condition \frownie
+\item Can we make a conditional statement on $\theta$ and not $X_t$?
+\end{itemize}
+\end{block}
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Restricted Eigenvalue Condition}
+
+\begin{block}{From Hessian to Gram Matrix}
+\begin{itemize}
+\item If $\log f$ and $\log 1 -f$ are strictly log-concave with constant $c$, then if $(S, \gamma)$-RE holds for the gram matrix $\frac{1}{n}X X^T$ , then $(S, c \gamma)$-RE holds for ${\cal H}$
+\end{itemize}
+\end{block}
+
+\begin{block}{From Gram Matrix to Expected Gram Matrix}
+\begin{itemize}
+\item If $n > C' s^2 \log m$ and $(S, \gamma)$-RE holds for $\mathbb{E}(\frac{1}{n}XX^T)$, then $(S, \gamma/2)$-RE holds for $\frac{1}{n}XX^T$ w.h.p
+\item $\mathbb{E}(\frac{1}{n}XX^T)$ only depends on $p_{\text{init}}$ and $(\theta_j)_j$
+\end{itemize}
+\end{block}
+
+\begin{block}{Expected Gram Matrix}
+\begin{itemize}
+\item Diagonal : average number of times node is infected
+\item Outer-diagonal : average number of times pair of nodes is infected {\emph together}
+\end{itemize}
+\end{block}
+
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%
+\begin{frame}
+\frametitle{Approximate Sparsity}
+\begin{itemize}
+\item $\theta^*_{\lceil s \rceil}$ best s-sparse approximation to $\theta^*$
+\item $\|\theta^* - \theta^*_{\lceil s \rceil} \|_1$: `tail' of $\theta^*$
+\end{itemize}
+\begin{theorem}
+Under similar conditions on $f$ and a relaxed RE condition, there $\exists C_1, C_2>0$ such that with high probability:
+\begin{equation}
+\|\hat \theta_i - \theta^*_i\|_2 \leq C_1 \sqrt{\frac{s\log m}{n}} + C_2 \sqrt[4]{\frac{s\log m}{n}}\|\theta^* - \theta^*_{\lceil s \rceil} \|_1
+\end{equation}
+\end{theorem}
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Lower Bound}
+\begin{itemize}
+\item Under correlation decay assumption for the IC model, ${\Omega}(s \log N/s)$ cascades necessary for graph reconstruction (Netrapalli et Sanghavi SIGMETRICS'12)
+\item Adapting (Price \& Woodruff STOC'12), in the approximately sparse case, any algorithm for any generalized linear cascade model such that:
+$$\|\hat \theta - \theta^*\|_2 \leq C \|\theta^* - \theta^*_{\lfloor s \rfloor}\|_2$$
+requires ${\cal O}(s \log (n/s)/\log C)$ measurement.
+\end{itemize}
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Voter Model}
+\begin{itemize}
+\pause
+\item {\color{red} Red} and {\color{blue} Blue} nodes. At every step, each node $i$ chooses one of its neighbors $j$ with probability $p_{j,i}$ and adopts that color at $t+1$
+\pause
+\item If {\color{blue} Blue} is `contagious' state:
+\pause
+\begin{equation}
+\nonumber
+\mathbb{P}(i \in X^{t+1}|X^t) = \sum_{j \in {\cal N}(i)\cap X^t} p_{ji} = X^t \cdot \theta_i
+\end{equation}
+\end{itemize}
+\end{frame}
+
+%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{frame}
+\frametitle{Future Work}
+\begin{itemize}
+\item Lower bound restricted eigenvalues of expected gram matrix
+\item Confidence Intervals
+\item Show that $n > C' s \log m$ measurements are necessary w.r.t. expected hessian.
+\item Linear Threshold model $\rightarrow$ 1-bit compressed sensing formulation
+\item Better lower bounds
+\item Active Learning
+\end{itemize}
+\end{frame}
+
+
+%%%%%%%%%%%%%%%%%
+
+\bibliography{../../paper/sparse}
+\bibliographystyle{apalike}
+
+\end{document} \ No newline at end of file
diff --git a/presentation/stats/figures/Screen Shot 2015-03-08 at 13.08.01.png b/presentation/stats/figures/Screen Shot 2015-03-08 at 13.08.01.png
new file mode 100644
index 0000000..b053f0c
--- /dev/null
+++ b/presentation/stats/figures/Screen Shot 2015-03-08 at 13.08.01.png
Binary files differ
diff --git a/presentation/stats/figures/weighted_graph.png b/presentation/stats/figures/weighted_graph.png
new file mode 100644
index 0000000..7deccc3
--- /dev/null
+++ b/presentation/stats/figures/weighted_graph.png
Binary files differ
diff --git a/presentation/stats/sparse.bib b/presentation/stats/sparse.bib
new file mode 100644
index 0000000..5df4b59
--- /dev/null
+++ b/presentation/stats/sparse.bib
@@ -0,0 +1,503 @@
+@article {CandesRomberTao:2006,
+author = {Candès, Emmanuel J. and Romberg, Justin K. and Tao, Terence},
+title = {Stable signal recovery from incomplete and inaccurate measurements},
+journal = {Communications on Pure and Applied Mathematics},
+volume = {59},
+number = {8},
+publisher = {Wiley Subscription Services, Inc., A Wiley Company},
+issn = {1097-0312},
+pages = {1207--1223},
+year = {2006},
+}
+
+
+@inproceedings{GomezRodriguez:2010,
+ author = {Gomez Rodriguez, Manuel and Leskovec, Jure and Krause, Andreas},
+ title = {Inferring Networks of Diffusion and Influence},
+ booktitle = {Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
+ series = {KDD '10},
+ year = {2010},
+ isbn = {978-1-4503-0055-1},
+ location = {Washington, DC, USA},
+ pages = {1019--1028},
+ numpages = {10},
+ publisher = {ACM},
+ address = {New York, NY, USA},
+}
+
+
+@article{Netrapalli:2012,
+ author = {Netrapalli, Praneeth and Sanghavi, Sujay},
+ title = {Learning the Graph of Epidemic Cascades},
+ journal = {SIGMETRICS Perform. Eval. Rev.},
+ volume = {40},
+ number = {1},
+ month = {June},
+ year = {2012},
+ issn = {0163-5999},
+ pages = {211--222},
+ numpages = {12},
+ publisher = {ACM},
+ address = {New York, NY, USA},
+ keywords = {cascades, epidemics, graph structure learning},
+}
+
+@article{Negahban:2009,
+ author = {Negahban, Sahand N. and Ravikumar, Pradeep and Wrainwright, Martin J. and Yu, Bin},
+ title = {A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers},
+ Journal = {Statistical Science},
+ year = {2012},
+ month = {December},
+ volume = {27},
+ number = {4},
+ pages = {538--557},
+}
+
+@article{Zhao:2006,
+ author = {Zhao, Peng and Yu, Bin},
+ title = {On Model Selection Consistency of Lasso},
+ journal = {J. Mach. Learn. Res.},
+ issue_date = {12/1/2006},
+ volume = {7},
+ month = dec,
+ year = {2006},
+ issn = {1532-4435},
+ pages = {2541--2563},
+ numpages = {23},
+ url = {http://dl.acm.org/citation.cfm?id=1248547.1248637},
+ acmid = {1248637},
+ publisher = {JMLR.org},
+}
+
+@inproceedings{Daneshmand:2014,
+ author = {Hadi Daneshmand and
+ Manuel Gomez{-}Rodriguez and
+ Le Song and
+ Bernhard Sch{\"{o}}lkopf},
+ title = {Estimating Diffusion Network Structures: Recovery Conditions, Sample
+ Complexity {\&} Soft-thresholding Algorithm},
+ booktitle = {Proceedings of the 31th International Conference on Machine Learning,
+ {ICML} 2014, Beijing, China, 21-26 June 2014},
+ pages = {793--801},
+ year = {2014},
+ url = {http://jmlr.org/proceedings/papers/v32/daneshmand14.html},
+ timestamp = {Fri, 07 Nov 2014 20:42:30 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/icml/DaneshmandGSS14},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Kempe:03,
+ author = {David Kempe and
+ Jon M. Kleinberg and
+ {\'{E}}va Tardos},
+ title = {Maximizing the spread of influence through a social network},
+ booktitle = {Proceedings of the Ninth {ACM} {SIGKDD} International Conference on
+ Knowledge Discovery and Data Mining, Washington, DC, USA, August 24
+ - 27, 2003},
+ pages = {137--146},
+ year = {2003},
+ url = {http://doi.acm.org/10.1145/956750.956769},
+ doi = {10.1145/956750.956769},
+ timestamp = {Mon, 13 Feb 2006 15:34:20 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/kdd/KempeKT03},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Abrahao:13,
+ author = {Bruno D. Abrahao and
+ Flavio Chierichetti and
+ Robert Kleinberg and
+ Alessandro Panconesi},
+ title = {Trace complexity of network inference},
+ booktitle = {The 19th {ACM} {SIGKDD} International Conference on Knowledge Discovery
+ and Data Mining, {KDD} 2013, Chicago, IL, USA, August 11-14, 2013},
+ pages = {491--499},
+ year = {2013},
+ url = {http://doi.acm.org/10.1145/2487575.2487664},
+ doi = {10.1145/2487575.2487664},
+ timestamp = {Tue, 10 Sep 2013 10:11:57 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/kdd/AbrahaoCKP13},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+
+@article{vandegeer:2009,
+author = "van de Geer, Sara A. and B{\"u}hlmann, Peter",
+doi = "10.1214/09-EJS506",
+fjournal = "Electronic Journal of Statistics",
+journal = "Electron. J. Statist.",
+pages = "1360--1392",
+publisher = "The Institute of Mathematical Statistics and the Bernoulli Society",
+title = "On the conditions used to prove oracle results for the Lasso",
+url = "http://dx.doi.org/10.1214/09-EJS506",
+volume = "3",
+year = "2009"
+}
+
+@article{vandegeer:2011,
+author = "van de Geer, Sara and Bühlmann, Peter and Zhou, Shuheng",
+doi = "10.1214/11-EJS624",
+fjournal = "Electronic Journal of Statistics",
+journal = "Electron. J. Statist.",
+pages = "688--749",
+publisher = "The Institute of Mathematical Statistics and the Bernoulli Society",
+title = "The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso)",
+url = "http://dx.doi.org/10.1214/11-EJS624",
+volume = "5",
+year = "2011"
+}
+
+@article{Zou:2006,
+author = {Zou, Hui},
+title = {The Adaptive Lasso and Its Oracle Properties},
+journal = {Journal of the American Statistical Association},
+volume = {101},
+number = {476},
+pages = {1418-1429},
+year = {2006},
+doi = {10.1198/016214506000000735},
+URL = {http://dx.doi.org/10.1198/016214506000000735},
+}
+
+@article{Jacques:2013,
+ author = {Laurent Jacques and
+ Jason N. Laska and
+ Petros T. Boufounos and
+ Richard G. Baraniuk},
+ title = {Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse
+ Vectors},
+ journal = {{IEEE} Transactions on Information Theory},
+ volume = {59},
+ number = {4},
+ pages = {2082--2102},
+ year = {2013},
+ url = {http://dx.doi.org/10.1109/TIT.2012.2234823},
+ doi = {10.1109/TIT.2012.2234823},
+ timestamp = {Tue, 09 Apr 2013 19:57:48 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/tit/JacquesLBB13},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Boufounos:2008,
+ author = {Petros Boufounos and
+ Richard G. Baraniuk},
+ title = {1-Bit compressive sensing},
+ booktitle = {42nd Annual Conference on Information Sciences and Systems, {CISS}
+ 2008, Princeton, NJ, USA, 19-21 March 2008},
+ pages = {16--21},
+ year = {2008},
+ url = {http://dx.doi.org/10.1109/CISS.2008.4558487},
+ doi = {10.1109/CISS.2008.4558487},
+ timestamp = {Wed, 15 Oct 2014 17:04:27 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/ciss/BoufounosB08},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Gupta:2010,
+ author = {Ankit Gupta and
+ Robert Nowak and
+ Benjamin Recht},
+ title = {Sample complexity for 1-bit compressed sensing and sparse classification},
+ booktitle = {{IEEE} International Symposium on Information Theory, {ISIT} 2010,
+ June 13-18, 2010, Austin, Texas, USA, Proceedings},
+ pages = {1553--1557},
+ year = {2010},
+ url = {http://dx.doi.org/10.1109/ISIT.2010.5513510},
+ doi = {10.1109/ISIT.2010.5513510},
+ timestamp = {Thu, 15 Jan 2015 17:11:50 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/isit/GuptaNR10},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{Plan:2014,
+ author = {Yaniv Plan and
+ Roman Vershynin},
+ title = {Dimension Reduction by Random Hyperplane Tessellations},
+ journal = {Discrete {\&} Computational Geometry},
+ volume = {51},
+ number = {2},
+ pages = {438--461},
+ year = {2014},
+ url = {http://dx.doi.org/10.1007/s00454-013-9561-6},
+ doi = {10.1007/s00454-013-9561-6},
+ timestamp = {Tue, 11 Feb 2014 13:48:56 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/dcg/PlanV14},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{bickel:2009,
+author = "Bickel, Peter J. and Ritov, Ya’acov and Tsybakov, Alexandre B.",
+doi = "10.1214/08-AOS620",
+fjournal = "The Annals of Statistics",
+journal = "Ann. Statist.",
+month = "08",
+number = "4",
+pages = "1705--1732",
+publisher = "The Institute of Mathematical Statistics",
+title = "Simultaneous analysis of Lasso and Dantzig selector",
+url = "http://dx.doi.org/10.1214/08-AOS620",
+volume = "37",
+year = "2009"
+}
+
+@article{raskutti:10,
+ author = {Garvesh Raskutti and
+ Martin J. Wainwright and
+ Bin Yu},
+ title = {Restricted Eigenvalue Properties for Correlated Gaussian Designs},
+ journal = {Journal of Machine Learning Research},
+ volume = {11},
+ pages = {2241--2259},
+ year = {2010},
+ url = {http://portal.acm.org/citation.cfm?id=1859929},
+ timestamp = {Wed, 15 Oct 2014 17:04:32 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/jmlr/RaskuttiWY10},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{rudelson:13,
+ author = {Mark Rudelson and
+ Shuheng Zhou},
+ title = {Reconstruction From Anisotropic Random Measurements},
+ journal = {{IEEE} Transactions on Information Theory},
+ volume = {59},
+ number = {6},
+ pages = {3434--3447},
+ year = {2013},
+ url = {http://dx.doi.org/10.1109/TIT.2013.2243201},
+ doi = {10.1109/TIT.2013.2243201},
+ timestamp = {Tue, 21 May 2013 14:15:50 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/tit/RudelsonZ13},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{bipw11,
+ author = {Khanh Do Ba and
+ Piotr Indyk and
+ Eric Price and
+ David P. Woodruff},
+ title = {Lower Bounds for Sparse Recovery},
+ journal = {CoRR},
+ volume = {abs/1106.0365},
+ year = {2011},
+ url = {http://arxiv.org/abs/1106.0365},
+ timestamp = {Mon, 05 Dec 2011 18:04:39 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/abs-1106-0365},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{pw11,
+ author = {Eric Price and
+ David P. Woodruff},
+ title = {{(1} + eps)-Approximate Sparse Recovery},
+ booktitle = {{IEEE} 52nd Annual Symposium on Foundations of Computer Science, {FOCS}
+ 2011, Palm Springs, CA, USA, October 22-25, 2011},
+ pages = {295--304},
+ year = {2011},
+ crossref = {DBLP:conf/focs/2011},
+ url = {http://dx.doi.org/10.1109/FOCS.2011.92},
+ doi = {10.1109/FOCS.2011.92},
+ timestamp = {Tue, 16 Dec 2014 09:57:24 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/focs/PriceW11},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@proceedings{DBLP:conf/focs/2011,
+ editor = {Rafail Ostrovsky},
+ title = {{IEEE} 52nd Annual Symposium on Foundations of Computer Science, {FOCS}
+ 2011, Palm Springs, CA, USA, October 22-25, 2011},
+ publisher = {{IEEE} Computer Society},
+ year = {2011},
+ url = {http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6108120},
+ isbn = {978-1-4577-1843-4},
+ timestamp = {Mon, 15 Dec 2014 18:48:45 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/focs/2011},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{pw12,
+ author = {Eric Price and
+ David P. Woodruff},
+ title = {Applications of the Shannon-Hartley theorem to data streams and sparse
+ recovery},
+ booktitle = {Proceedings of the 2012 {IEEE} International Symposium on Information
+ Theory, {ISIT} 2012, Cambridge, MA, USA, July 1-6, 2012},
+ pages = {2446--2450},
+ year = {2012},
+ crossref = {DBLP:conf/isit/2012},
+ url = {http://dx.doi.org/10.1109/ISIT.2012.6283954},
+ doi = {10.1109/ISIT.2012.6283954},
+ timestamp = {Mon, 01 Oct 2012 17:34:07 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/isit/PriceW12},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@proceedings{DBLP:conf/isit/2012,
+ title = {Proceedings of the 2012 {IEEE} International Symposium on Information
+ Theory, {ISIT} 2012, Cambridge, MA, USA, July 1-6, 2012},
+ publisher = {{IEEE}},
+ year = {2012},
+ url = {http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6268627},
+ isbn = {978-1-4673-2580-6},
+ timestamp = {Mon, 01 Oct 2012 17:33:45 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/isit/2012},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{Leskovec:2010,
+ author = {Jure Leskovec and
+ Deepayan Chakrabarti and
+ Jon M. Kleinberg and
+ Christos Faloutsos and
+ Zoubin Ghahramani},
+ title = {Kronecker Graphs: An Approach to Modeling Networks},
+ journal = {Journal of Machine Learning Research},
+ volume = {11},
+ pages = {985--1042},
+ year = {2010},
+ url = {http://doi.acm.org/10.1145/1756006.1756039},
+ doi = {10.1145/1756006.1756039},
+ timestamp = {Thu, 22 Apr 2010 13:26:26 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/jmlr/LeskovecCKFG10},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{Holme:2002,
+ author= {Petter Holme and Beom Jun Kim},
+ title = {Growing scale-free networks with tunable clustering},
+ journal = {Physical review E},
+ volume = {65},
+ issue = {2},
+ pages = {026--107},
+ year = {2002}
+}
+
+
+@article{watts:1998,
+ Annote = {10.1038/30918},
+ Author = {Watts, Duncan J. and Strogatz, Steven H.},
+ Date = {1998/06/04/print},
+ Isbn = {0028-0836},
+ Journal = {Nature},
+ Number = {6684},
+ Pages = {440--442},
+ Read = {0},
+ Title = {Collective dynamics of `small-world' networks},
+ Url = {http://dx.doi.org/10.1038/30918},
+ Volume = {393},
+ Year = {1998},
+}
+
+@article{barabasi:2001,
+ author = {R{\'{e}}ka Albert and
+ Albert{-}L{\'{a}}szl{\'{o}} Barab{\'{a}}si},
+ title = {Statistical mechanics of complex networks},
+ journal = {CoRR},
+ volume = {cond-mat/0106096},
+ year = {2001},
+ url = {http://arxiv.org/abs/cond-mat/0106096},
+ timestamp = {Mon, 05 Dec 2011 18:05:15 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/cond-mat-0106096},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+
+@article{gomezbalduzzi:2011,
+ author = {Manuel Gomez{-}Rodriguez and
+ David Balduzzi and
+ Bernhard Sch{\"{o}}lkopf},
+ title = {Uncovering the Temporal Dynamics of Diffusion Networks},
+ journal = {CoRR},
+ volume = {abs/1105.0697},
+ year = {2011},
+ url = {http://arxiv.org/abs/1105.0697},
+ timestamp = {Mon, 05 Dec 2011 18:05:23 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/abs-1105-0697},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{Nowell08,
+ author = {Liben-Nowell, David and Kleinberg, Jon},
+ biburl = {http://www.bibsonomy.org/bibtex/250b9b1ca1849fa9cb8bb92d6d9031436/mkroell},
+ doi = {10.1073/pnas.0708471105},
+ eprint = {http://www.pnas.org/content/105/12/4633.full.pdf+html},
+ journal = {Proceedings of the National Academy of Sciences},
+ keywords = {SNA graph networks},
+ number = 12,
+ pages = {4633-4638},
+ timestamp = {2008-10-09T10:32:56.000+0200},
+ title = {{Tracing information flow on a global scale using Internet chain-letter data}},
+ url = {http://www.pnas.org/content/105/12/4633.abstract},
+ volume = 105,
+ year = 2008
+}
+
+@inproceedings{Leskovec07,
+ author = {Jure Leskovec and
+ Mary McGlohon and
+ Christos Faloutsos and
+ Natalie S. Glance and
+ Matthew Hurst},
+ title = {Patterns of Cascading Behavior in Large Blog Graphs},
+ booktitle = {Proceedings of the Seventh {SIAM} International Conference on Data
+ Mining, April 26-28, 2007, Minneapolis, Minnesota, {USA}},
+ pages = {551--556},
+ year = {2007},
+ url = {http://dx.doi.org/10.1137/1.9781611972771.60},
+ doi = {10.1137/1.9781611972771.60},
+ timestamp = {Wed, 12 Feb 2014 17:08:15 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/sdm/LeskovecMFGH07},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+
+@inproceedings{AdarA05,
+ author = {Eytan Adar and
+ Lada A. Adamic},
+ title = {Tracking Information Epidemics in Blogspace},
+ booktitle = {2005 {IEEE} / {WIC} / {ACM} International Conference on Web Intelligence
+ {(WI} 2005), 19-22 September 2005, Compiegne, France},
+ pages = {207--214},
+ year = {2005},
+ url = {http://dx.doi.org/10.1109/WI.2005.151},
+ doi = {10.1109/WI.2005.151},
+ timestamp = {Tue, 12 Aug 2014 16:59:16 +0200},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/webi/AdarA05},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@inproceedings{Kleinberg:00,
+ author = {Jon M. Kleinberg},
+ title = {The small-world phenomenon: an algorithm perspective},
+ booktitle = {Proceedings of the Thirty-Second Annual {ACM} Symposium on Theory
+ of Computing, May 21-23, 2000, Portland, OR, {USA}},
+ pages = {163--170},
+ year = {2000},
+ url = {http://doi.acm.org/10.1145/335305.335325},
+ doi = {10.1145/335305.335325},
+ timestamp = {Thu, 16 Feb 2012 12:06:08 +0100},
+ biburl = {http://dblp.uni-trier.de/rec/bib/conf/stoc/Kleinberg00},
+ bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{zhang2014,
+ title={Confidence intervals for low dimensional parameters in high dimensional linear models},
+ author={Zhang, Cun-Hui and Zhang, Stephanie S},
+ journal={Journal of the Royal Statistical Society: Series B (Statistical Methodology)},
+ volume={76},
+ number={1},
+ pages={217--242},
+ year={2014},
+ publisher={Wiley Online Library}
+}
+
+@article{javanmard2014,
+ title={Confidence intervals and hypothesis testing for high-dimensional regression},
+ author={Javanmard, Adel and Montanari, Andrea},
+ journal={The Journal of Machine Learning Research},
+ volume={15},
+ number={1},
+ pages={2869--2909},
+ year={2014},
+ publisher={JMLR. org}
+}