diff options
Diffstat (limited to 'simulation/active_blocks.py')
| -rw-r--r-- | simulation/active_blocks.py | 176 |
1 files changed, 0 insertions, 176 deletions
diff --git a/simulation/active_blocks.py b/simulation/active_blocks.py deleted file mode 100644 index 1495eb8..0000000 --- a/simulation/active_blocks.py +++ /dev/null @@ -1,176 +0,0 @@ -import utils -import theano -from theano import tensor as tsr -import blocks -from blocks import algorithms, main_loop -import blocks.extensions as be -import blocks.extensions.monitoring as bm -import picklable_itertools -import numpy as np -import fuel -import fuel.datasets -from json import dumps -import collections - - -class LearnedDataset(fuel.datasets.Dataset): - """ - Dynamically-created dataset (for active learning) - -compatible with ConstantScheme with request corresponding to a - batch_size - """ - provides_sources = ('x', 's') - - def __init__(self, node_p, graph, **kwargs): - super(LearnedDataset, self).__init__(**kwargs) - self.node_p = node_p - self.graph = graph - self.source = lambda graph: utils.random_source(graph, self.node_p) - - def get_data(self, state=None, request=None): - return utils.simulate_cascades(request, self.graph, self.source) - - -class ActiveLearning(blocks.extensions.SimpleExtension): - """ - Extension which updates the node_p array passed to the get_data method of - LearnedDataset - """ - def __init__(self, dataset, **kwargs): - super(ActiveLearning, self).__init__(**kwargs) - self.dataset = dataset - - def do(self, which_callback, *args): - out_degree = np.sum(self.dataset.graph, axis=1) - self.dataset.node_p = out_degree / np.sum(out_degree) - print(self.dataset.node_p) - - -class JSONDump(blocks.extensions.SimpleExtension): - """Dump a JSON-serialized version of the log to a file.""" - - def __init__(self, filename, **kwargs): - super(JSONDump, self).__init__(**kwargs) - self.fh = open(filename, "w") - - def do(self, which_callback, *args): - log = self.main_loop.log - d = {k: v for (k, v) in log.current_row.items() - if not k.startswith("_")} - d["time"] = log.status["iterations_done"] - self.fh.write(dumps(d, default=lambda o: str(o)) + "\n") - - def __del__(self): - self.fh.close() - - -class ShuffledBatchesScheme(fuel.schemes.ShuffledScheme): - """Iteration scheme over finite dataset: - -shuffles batches but not within batch - -arguments: dataset_size (int) ; batch_size (int)""" - def get_request_iterator(self): - indices = list(self.indices) # self.indices = xrange(dataset_size) - start = np.random.randint(self.batch_size) - batches = list(map( - list, - picklable_itertools.extras.partition_all(self.batch_size, - indices[start:]) - )) - if indices[:start]: - batches.append(indices[:start]) - batches = np.asarray(batches) - return iter(batches[np.random.permutation(len(batches))]) - - -def create_mle_model(graph): - """return cascade likelihood theano computation graph""" - n_nodes = len(graph) - x = tsr.matrix(name='x', dtype='int8') - s = tsr.matrix(name='s', dtype='int8') - params = theano.shared( - .5 + .01 * - np.random.normal(size=(n_nodes, n_nodes)).astype(theano.config.floatX), - name='params' - ) - y = tsr.maximum(tsr.dot(x, params), 1e-5) - infect = tsr.log(1. - tsr.exp(-y[0:-1])) - lkl_pos = tsr.sum(infect * (x[1:] & s[1:])) - lkl_neg = tsr.sum(-y[0:-1] * (~x[1:] & s[1:])) - lkl_mle = lkl_pos + lkl_neg - lkl_mle.name = 'cost' - - return x, s, params, lkl_mle - - -def rmse_error(graph, params): - n_nodes = graph.shape[0] - diff = (graph - params) ** 2 - subarray = tsr.arange(n_nodes) - tsr.set_subtensor(diff[subarray, subarray], 0) - rmse = tsr.sum(diff) / (n_nodes ** 2) - rmse.name = 'rmse' - return rmse - - -def relative_error(graph, params): - n_nodes = graph.shape[0] - diff = abs(g_shared - params) - subarray = tsr.arange(n_nodes) - tsr.set_subtensor(diff[subarray, subarray], 0) - error = tsr.sum(tsr.switch(tsr.eq(graph, 0.), 0., diff / graph)) / n_nodes - error.name = 'rel_error' - return error - - -def create_fixed_data_stream(n_obs, graph, batch_size, shuffle=True): - """ - creates a datastream for a fixed (not learned) dataset: - -shuffle (bool): shuffle minibatches but not within minibatch, else - sequential (non-shuffled) batches are used - """ - x_obs, s_obs = utils.simulate_cascades(n_obs, graph) - data_set = fuel.datasets.base.IndexableDataset(collections.OrderedDict( - [('x', x_obs), ('s', s_obs)] - )) - if shuffle: - scheme = ShuffledBatchesScheme(n_obs, batch_size=batch_size) - else: - scheme = fuel.schemes.SequentialScheme(n_obs, batch_size=batch_size) - return fuel.streams.DataStream(dataset=data_set, iteration_scheme=scheme) - - -def create_learned_data_stream(graph, batch_size): - node_p = np.ones(len(graph)) / len(graph) - data_set = LearnedDataset(node_p, graph) - scheme = fuel.schemes.ConstantScheme(batch_size) - return fuel.streams.DataStream(dataset=data_set, iteration_scheme=scheme) - - -if __name__ == "__main__": - batch_size = 100 - n_obs = 1000 - graph = utils.create_wheel(10) - print('GRAPH:\n', graph, '\n-------------\n') - - g_shared = theano.shared(value=graph, name='graph') - x, s, params, cost = create_mle_model(graph) - rmse = rmse_error(g_shared, params) - error = relative_error(g_shared, params) - - alg = algorithms.GradientDescent( - cost=-cost, parameters=[params], step_rule=blocks.algorithms.AdaDelta() - ) - # data_stream = create_learned_data_stream(graph, batch_size) - data_stream = create_fixed_data_stream(n_obs, graph, batch_size) - loop = main_loop.MainLoop( - alg, data_stream, - extensions=[ - be.FinishAfter(after_n_batches=10**3), - bm.TrainingDataMonitoring([cost, params, - rmse, error], every_n_batches=10), - be.Printing(every_n_batches=10), - JSONDump("log.json", every_n_batches=10) - # ActiveLearning(data_stream.dataset), - ], - ) - loop.run() |
