aboutsummaryrefslogtreecommitdiffstats
path: root/src/convex_optimization.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/convex_optimization.py')
-rw-r--r--src/convex_optimization.py9
1 files changed, 4 insertions, 5 deletions
diff --git a/src/convex_optimization.py b/src/convex_optimization.py
index 163b6d5..0fda456 100644
--- a/src/convex_optimization.py
+++ b/src/convex_optimization.py
@@ -101,7 +101,7 @@ def diff_and_opt(M_val, w_val, f_x, f_xz):
#cvxopt.solvers.options['feastol'] = 2e-5
#cvxopt.solvers.options['abstol'] = 2e-5
#cvxopt.solvers.options['maxiters'] = 100
- cvxopt.solvers.options['show_progress'] = True
+ cvxopt.solvers.options['show_progress'] = False
try:
theta = cvxopt.solvers.cp(F, G, h)['x']
except ArithmeticError:
@@ -120,16 +120,15 @@ def test():
"""
lbda = .001
G = cascade_creation.InfluenceGraph(max_proba=.9)
- G.erdos_init(n=100, p = .3)
+ G.erdos_init(n=20, p = .3)
A = cascade_creation.generate_cascades(G, .1, 1000)
- M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 0)
+ M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 2)
#Type lasso
if 1:
f_x, f_xz = type_lasso(lbda)
p_vec, _ = diff_and_opt(M_val, w_val, f_x, f_xz)
- print(p_vec)
- print(G.mat)
+ print(G.mat[2])
#Sparse recovery
if 0: