aboutsummaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/convex_optimization.py17
-rw-r--r--src/make_plots.py3
2 files changed, 11 insertions, 9 deletions
diff --git a/src/convex_optimization.py b/src/convex_optimization.py
index 39f7ee7..5942c70 100644
--- a/src/convex_optimization.py
+++ b/src/convex_optimization.py
@@ -90,7 +90,7 @@ def diff_and_opt(M_val, w_val, f_x, f_xz):
def F(x=None, z=None):
if x is None:
- return 0, cvxopt.matrix(-.0000001, (n,1))
+ return 0, cvxopt.matrix(-.001, (n,1))
elif z is None:
y, y_diff = f_x(x, M_val, w_val)
return cvxopt.matrix(float(y), (1, 1)),\
@@ -107,8 +107,8 @@ def diff_and_opt(M_val, w_val, f_x, f_xz):
#Relaxing precision constraints
cvxopt.solvers.options['feastol'] = 2e-5
cvxopt.solvers.options['abstol'] = 2e-5
- cvxopt.solvers.options['maxiters'] = 50
- cvxopt.solvers.options['show_progress'] = False
+ # cvxopt.solvers.options['maxiters'] = 50
+ cvxopt.solvers.options['show_progress'] = True
try:
theta = cvxopt.solvers.cp(F, G, h)['x']
except ArithmeticError:
@@ -128,11 +128,12 @@ def test():
"""
unit test
"""
- lbda = .001
+ lbda = .0001
G = cascade_creation.InfluenceGraph(max_proba=.9)
G.erdos_init(n=20, p = .3)
- A = cascade_creation.generate_cascades(G, .1, 1000)
+ A = cascade_creation.generate_cascades(G, .1, 500)
M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 2)
+ print(len(M_val))
#Type lasso
if 0:
@@ -142,9 +143,9 @@ def test():
#Sparse recovery
if 1:
- p_vec, theta = sparse_recovery(lbda, 1000)
- print(p_vec)
- print(G.mat)
+ f_x, f_xz = sparse_recovery(lbda, 500)
+ p_vec, _ = diff_and_opt(M_val, w_val, f_x, f_xz)
+ print(G.mat[2])
if __name__=="__main__":
test()
diff --git a/src/make_plots.py b/src/make_plots.py
index d92b008..201e375 100644
--- a/src/make_plots.py
+++ b/src/make_plots.py
@@ -58,5 +58,6 @@ def watts_strogatz(n_cascades, lbda, passed_function):
if __name__=="__main__":
- watts_strogatz(n_cascades=500, lbda=.001, passed_function=
+ watts_strogatz(n_cascades=3000, lbda=.002, passed_function=
convex_optimization.sparse_recovery)
+ #algorithms.greedy_prediction) \ No newline at end of file