From b2e37a91f5ae65a003bb528812a79d6800908de6 Mon Sep 17 00:00:00 2001 From: Thibaut Horel Date: Thu, 3 Dec 2015 18:44:11 -0500 Subject: Polishing the first 1.5 column --- poster/Finale_poster/poster.tex | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) diff --git a/poster/Finale_poster/poster.tex b/poster/Finale_poster/poster.tex index 8f1bd1d..1365801 100644 --- a/poster/Finale_poster/poster.tex +++ b/poster/Finale_poster/poster.tex @@ -70,18 +70,18 @@ \begin{block}{MLE} \begin{itemize} - \item For node $i$, $y^t = x^{t+1}_i$ - \item For node $i$, $\{(x^t, y^t)\}$ are drawn from a GLM - \item SGD on $\{\theta_{ij}\}$ - \vspace{1cm} + \item Define for node $j$, $y^t = x^{t+1}_j$ + \item Observations $\{(x^t, y^t)\}$ are drawn from a GLM. MLE problem: \begin{equation*} \begin{split} - \hat{\theta}\in \arg\max_\theta \sum_{t}~& y^t\log f(\theta\cdot x^t) - \\ & + (1-y^t) \log \big(1 - f(\theta\cdot x^t)\big) + \hat{\theta}\in \arg\max_\theta \sum_{t}~& y^t\log f(\Theta_j\cdot x^t) + \\ & + (1-y^t) \log \big(1 - f(\Theta_j\cdot x^t)\big) \end{split} \end{equation*} -\item Log-likelihood is concave for common contagion models (IC model) -\item Prior work~\cite{} finds convergence guarantees for $L1$-regularization + Can be solved efficiently by SGD on $\Theta$. + \vspace{1cm} +\item log-likelihood is concave for common contagion models (\emph{e.g} IC + model) $\Rightarrow$ provable convergence guarantees (\cite{}). \end{itemize} \end{block} \end{column} % End of the first column @@ -98,21 +98,20 @@ \end{figure} {\bf Advantages:} \begin{itemize} - \item encode expressive graph priors (e.g. ERGMs) - \item quantify uncertainty over each edge + \item prior encodes domain-specific knowledge of graph structure (e.g. ERGMs) + \item posterior expresses uncertainty over edge weights \end{itemize} {\bf Disadvantages:} \begin{itemize} - \item Hard to scale in large data volume regime + \item hard to scale when large number of observations. \end{itemize} \end{block} \begin{block}{Active Learning} - \emph{Can we gain by choosing the source node? If so, how to best choose the - source node?} - \begin{center}--OR--\end{center} - \emph{Can we choose the parts of the dataset we compute next?} -\end{block} + \emph{Can we learn faster by choosing the source node? If so, how to best + choose it?} + \begin{center}--~OR~--\end{center} + \emph{Can we cherry-pick the most relevant part of the dataset?} {\bf Idea:} Focus on parts of the graph which are unexplored (high uncertainty). i.e.~maximize information gain per cascade @@ -132,6 +131,7 @@ Principled heuristic: \item Exact strategy requires knowing true distribution of $(X_t)$ \item Use estimated $\Theta$ to compute $H(\Theta | (X_t), X_0 = i)$ \end{itemize} +\end{block} \end{column} %----------------------------------------------------------------------------- \begin{column}{\sepwid}\end{column} -- cgit v1.2.3-70-g09d2