From 0a78933792790017aa0fe87a18b60bed071cafe1 Mon Sep 17 00:00:00 2001 From: jeanpouget-abadie Date: Thu, 22 Jan 2015 09:51:02 -0500 Subject: created ICML folder --- notes/maximum_likelihood_approach.tex | 32 +++++++++++++++++++------------- 1 file changed, 19 insertions(+), 13 deletions(-) (limited to 'notes/maximum_likelihood_approach.tex') diff --git a/notes/maximum_likelihood_approach.tex b/notes/maximum_likelihood_approach.tex index c145b0c..4a22158 100644 --- a/notes/maximum_likelihood_approach.tex +++ b/notes/maximum_likelihood_approach.tex @@ -110,15 +110,13 @@ We are going to explicitate a constant $\gamma$ such that: $\forall \Delta \in { Suppose that $\forall k$, $\mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] \geq 1 + \alpha$, then with probability greater than $1 - 2 p e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^2 N}$, $$\forall k, \ Z_k > c \alpha p_{\text{init}} N$$ \end{lemma} -{\color{red} The following is not exactly correct!} Since the expectation must be taken conditioned on the probability that at least one parent is active such that $p_i$ is not 0! This does change things. - \begin{proof} -Let $S(k)$ denote the active set conditioned on the fact that node $k$ is active. +Let $S(k)$ denote the active set conditioned on the fact that node $k$ is active AND that one parent is active. We denote $p_{S(k)}$ the probability that the active set verifies the previous two conditions. \begin{align} \nonumber -\mathbb{E}[Z^i_k] & = \mathbb{P}(x^i_k = 1) \mathbb{E}_{S(k)} \left[ \mathbb{E}[b^i | S(k)] \frac{1 - p_i}{p_i^2} \right] \\ \nonumber -& = p_{\text{init}} \left( \mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] - 1 \right) \\ \nonumber -& \geq \alpha p_{\text{init}} \quad \text{by assumption} +\mathbb{E}[Z^i_k] & = p_{S(k)} \mathbb{E}_{S(k)} \left[ \mathbb{E}[b^i | S(k)] \frac{1 - p_i}{p_i^2} \right] \\ \nonumber +& = p_{S(k)} \left( \mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] - 1 \right) \\ \nonumber +& \geq \alpha p_{S(k)} \quad \text{by assumption} \end{align} Note that $|Z^i_k| < \frac{1}{p_{\text{min}}^2}$ {\it a.s.}. By Hoeffding's first inequality, for $0 c \beta p_{\text{init}}^2 N \right) & \leq e^{- \frac{2(1-c)^2}{Nb^2} \left( \mathbb{E}_{S(k,j)} \left[ \frac{1}{p_i} \right] - 1 \right)^2} \\ \nonumber -& \leq e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^4 N} +\mathbb{P}\left(Z_{k,j} > c \beta p_{S(k,j)} N \right) & \leq e^{- \frac{2(1-c)^2}{Nb^2} \left( \mathbb{E}_{S(k,j)} \left[ \frac{1}{p_i} \right] - 1 \right)^2} \\ \nonumber +& \leq e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{S(k,j)}^2 N} \end{align} We conclude by union bound. \end{proof} \begin{proposition} -Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - XXX$, condition~\ref{eq:RSC_condition} is met with $\gamma_n = \gamma n$ where $\gamma := p_{\text{init}}(\alpha - 16 \sqrt{s} \beta p_{\text{init}})$ +Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - XXX$, condition~\ref{eq:RSC_condition} is met with $\gamma_n = \gamma n$ where $\gamma := \alpha p_{S(k)} - 16 \sqrt{s} \beta p_{S(k,j)}$ \end{proposition} +\begin{proof} +(Sketch) By the triangle inequality followed by MacLaurin's inequality, +\begin{align} +\mid \frac{2}{\binom{n}{2}} \sum_{i