From 732233a5592edf4b5b6f2577e2b93c26804f8ec8 Mon Sep 17 00:00:00 2001 From: jeanpouget-abadie Date: Sun, 25 Jan 2015 13:48:43 -0500 Subject: results updated --- paper/sections/results.tex | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) (limited to 'paper/sections') diff --git a/paper/sections/results.tex b/paper/sections/results.tex index 6871fbe..ede143f 100644 --- a/paper/sections/results.tex +++ b/paper/sections/results.tex @@ -4,7 +4,7 @@ Our approach is different. Rather than trying to perform variable selection by f \begin{equation} \nonumber -\forall X \in {\cal C}, \| \Sigma X \|^2 \geq \gamma_n \|X\|_2^2 \qquad \ \quad \text{\bf (RE)} +\forall X \in {\cal C}, \| \Sigma X \|_2^2 \geq \gamma_n \|X\|_2^2 \qquad \ \quad \text{\bf (RE)} \end{equation} We cite the following Theorem from \cite{Negahban:2009}: @@ -17,7 +17,14 @@ Suppose that the true vector $\theta^*$ has support S and that the {\bf(RE)} ass \end{equation} \end{theorem} +\subsection{Independent Cascade Model} + +We analyse the previous conditions in the case of the Independent Cascade model. Lemma 1. provides a ${\cal O}(n)$-upper-bound on $\|\nabla f\|$ +\begin{lemma} +blabla +\end{lemma} + +\subsection{Linear Threshold Model} + -\subsection{Virtues of Oracle Inequalities} -\subsection{The Irrepresentability Condition} \ No newline at end of file -- cgit v1.2.3-70-g09d2