From e7d08bbde4ea32a1f2185342ad528516bdb21b29 Mon Sep 17 00:00:00 2001 From: Thibaut Horel Date: Sun, 15 Mar 2015 14:31:45 -0400 Subject: Polishing 1 to 4 --- poster_abstract/main.tex | 19 +++++++++++++------ 1 file changed, 13 insertions(+), 6 deletions(-) (limited to 'poster_abstract/main.tex') diff --git a/poster_abstract/main.tex b/poster_abstract/main.tex index 19c9de8..d3ce670 100644 --- a/poster_abstract/main.tex +++ b/poster_abstract/main.tex @@ -68,9 +68,9 @@ graph's edges with high probability and ${\cal O}(s\log m)$ measurements where $s$ is the maximum degree of the graph and $m$ is the number of nodes. Furthermore, we show that our algorithm also recovers the edge weights (the parameters of the diffusion process) and is robust in the context of -approximate sparsity. Finally we prove an almost matching lower bound of -$\Omega(s\log\frac{m}{s})$ and validate our approach empirically on synthetic -graphs. +approximate sparsity. Finally +%we prove an almost matching lower bound of $\Omega(s\log\frac{m}{s})$ and +we validate our approach empirically on synthetic graphs. \end{abstract} \category{I.2.6}{Artificial Intelligence}{Learning}[Parameter Learning] @@ -109,8 +109,13 @@ comparing its performance to prior algorithms on synthetic data. \section{Model} \begin{figure} + \begin{center} \includegraphics[scale=.4]{../presentation/images/drawing.pdf} -\caption{Illustration of the sparse recovery framework. $\theta_j$ is the unknown weight vector. $b_j$ is the result of the sparse product $\theta_j \cdot X^t$. We observe bernoulli variables {\cal B}($f(b)$). } +\caption{Illustration of the sparse recovery framework. $\theta_j$ is the +unknown weight vector, $b_j$ is the result of the sparse product $\theta_j +\cdot X^t$. We observe bernoulli variables {\cal B}($f(b)$). } +\end{center} +\vspace{-2em} \end{figure} @@ -196,7 +201,7 @@ We will need the following assumptions: \forall X \in {\cal C(S)}, X^T \nabla^2\mathcal{L}_i(\theta_i^*)X \geq \gamma \|X\|_2^2 \end{equation*} -for some $\gamma>0$. +for some $\gamma>0$. $\gamma$ is called the \emph{restricted eigenvalue}. \end{enumerate} Adapting a result from \cite{Negahban:2009}, we obtain the following finite-sample guarantee: @@ -223,7 +228,9 @@ assumption: a smallest ``restricted'' eigenvalue bounded from below by $\gamma>0$, where $X$ is the $n\times m$ design matrix whose $k$-th row is $X^k$. \end{enumerate} -supposing that either $\Omega(s^2 \log m)$ cumulative time steps are observed or $\Omega(s \log m \log^3 (s \log m))$ distinct instances of the diffusion process. +provided that either $\Omega(s^2 \log m)$ cumulative time steps are observed or +$\Omega(s \log m \log^3 (s \log m))$ distinct instances of the diffusion +process (cascades) are observed. \section{Experiments} -- cgit v1.2.3-70-g09d2