From 9de35421f25bf45158187daea4ddfedd1c93f3d8 Mon Sep 17 00:00:00 2001 From: jeanpouget-abadie Date: Sun, 7 Dec 2014 12:08:31 -0500 Subject: renaming directory + creating dataset directory --- src/convex_optimization.py | 135 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 135 insertions(+) create mode 100644 src/convex_optimization.py (limited to 'src/convex_optimization.py') diff --git a/src/convex_optimization.py b/src/convex_optimization.py new file mode 100644 index 0000000..530e3f5 --- /dev/null +++ b/src/convex_optimization.py @@ -0,0 +1,135 @@ +import theano +import cascade_creation +from theano import tensor, function +import numpy as np +import timeout +import cvxopt + + +@timeout.timeout(10) +def l1obj_l2constraint(M_val, w_val): + """ + Solves: + min - sum_j theta_j + s.t theta_j <= 0 + |e^{M*theta} - (1 - w)|_2 <= 1 + """ + assert len(M_val) == len(w_val) + + if M_val.dtype == bool: + M_val = M_val.astype('float32') + + m, n = M_val.shape + c = cvxopt.matrix(-1.0, (n,1)) + + theta = tensor.row().T + z = tensor.row().T + theta_ = theta.flatten() + z_ = z.flatten() + M = theano.shared(M_val.astype(theano.config.floatX)) + w = theano.shared(w_val.astype(theano.config.floatX)) + y = (tensor.exp(M.dot(theta_)) - (1 - w)).norm(2) - 1 + y_diff = tensor.grad(y, theta_) + y_hess = z[0] * theano.gradient.hessian(y, theta_) + f_x = theano.function([theta], [y, y_diff], allow_input_downcast=True) + f_xz = theano.function([theta, z], [y, y_diff, y_hess], + allow_input_downcast=True) + + def F(x=None, z=None): + if x is None: + return 1, cvxopt.matrix(.0001, (n,1)) + elif z is None: + y, y_diff = f_x(x) + return cvxopt.matrix(float(y), (1, 1)),\ + cvxopt.matrix(y_diff.astype("float64")).T + else: + y, y_diff, y_hess = f_xz(x, z) + return cvxopt.matrix(float(y), (1, 1)), \ + cvxopt.matrix(y_diff.astype("float64")).T, \ + cvxopt.matrix(y_hess.astype("float64")) + + G = cvxopt.spdiag([1 for i in xrange(n)]) + h = cvxopt.matrix(0.0, (n,1)) + + cvxopt.solvers.options['show_progress'] = False + try: + theta = cvxopt.solvers.cpl(c,F, G, h)['x'] + except ArithmeticError: + print "ArithmeticError thrown, change initial point"+\ + " given to the solver" + + return 1 - np.exp(theta), theta + + +@timeout.timeout(10) +def l1obj_l2penalization(M_val, w_val, lbda): + """ + Solves: + min - sum_j theta_j + lbda*|e^{M*theta} - (1 - w)|_2 + s.t theta_j <= 0 + """ + assert len(M_val) == len(w_val) + + if M_val.dtype == bool: + M_val = M_val.astype('float32') + + if type(lbda) == int: + lbda = np.array(lbda) + + m, n = M_val.shape + + theta = tensor.row().T + z = tensor.row().T + theta_ = theta.flatten() + z_ = z.flatten() + M = theano.shared(M_val.astype(theano.config.floatX)) + w = theano.shared(w_val.astype(theano.config.floatX)) + lbda = theano.shared(lbda.astype(theano.config.floatX)) + y = (theta_).norm(1) + lbda * ( + tensor.exp(M.dot(theta_)) - (1 - w)).norm(2) + y_diff = tensor.grad(y, theta_) + y_hess = z[0] * theano.gradient.hessian(y, theta_) + f_x = theano.function([theta], [y, y_diff], allow_input_downcast=True) + f_xz = theano.function([theta, z], [y, y_diff, y_hess], + allow_input_downcast=True) + + def F(x=None, z=None): + if x is None: + return 0, cvxopt.matrix(.0001, (n,1)) + elif z is None: + y, y_diff = f_x(x) + return cvxopt.matrix(float(y), (1, 1)),\ + cvxopt.matrix(y_diff.astype("float64")).T + else: + y, y_diff, y_hess = f_xz(x, z) + return cvxopt.matrix(float(y), (1, 1)), \ + cvxopt.matrix(y_diff.astype("float64")).T, \ + cvxopt.matrix(y_hess.astype("float64")) + + G = cvxopt.spdiag([1 for i in xrange(n)]) + h = cvxopt.matrix(0.0, (n,1)) + + cvxopt.solvers.options['show_progress'] = False + try: + theta = cvxopt.solvers.cp(F, G, h)['x'] + except ArithmeticError: + print "ArithmeticError thrown, change initial point"+\ + " given to the solver" + + return 1 - np.exp(theta), theta + + +def test(): + """ + unit test + """ + lbda = 10 + G = cascade_creation.InfluenceGraph(max_proba=.8) + G.erdos_init(n=100, p = .1) + A = cascade_creation.generate_cascades(G, .1, 2000) + M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 0) + p_vec, theta = l1obj_l2penalization(M_val, w_val, lbda) + print p_vec + +if __name__=="__main__": + test() -- cgit v1.2.3-70-g09d2