See figure next page. \begin{figure*}[h!] \centering \subfigure[][50 cascades]{ \includegraphics[scale=.4]{../simulation/plots/2015-11-05_22:52:30.pdf}}\hspace{1em}% \subfigure[][100 cascades]{ \includegraphics[scale=.4]{../simulation/plots/2015-11-05_22:52:47.pdf}}\\ \subfigure[][150 cascades]{ \includegraphics[scale=.4]{../simulation/plots/2015-11-05_22:53:24.pdf}}\hspace{1em}% \subfigure[][200 cascades]{ \includegraphics[scale=.4]{../simulation/plots/2015-11-05_22:55:39.pdf}}\\ \subfigure[][250 cascades]{ \includegraphics[scale=.4]{../simulation/plots/2015-11-05_22:57:26.pdf}}\hspace{1em}% \subfigure[][1000 cascades]{ \includegraphics[scale=.4]{../simulation/plots/2015-11-05_22:58:29.pdf}} \caption{Bayesian Inference of $\Theta$ with MCMC using a $Beta(1, 1)$ prior on each edge. For each figure, the plot $(i, j)$ on the $i^{th}$ row and $j^{th}$ column represent a histogram of samples taken from the posterior of the corresponding edge $\Theta_{i, j}$. The red line indicates the true value of the edge weight. If an edge does not exist (has weight $0$) the red line is confounded with the y axis.} \label{betapriorbayeslearning} \end{figure*}