import numpy as np import networkx as nx import cascade_creation def greedy_prediction(G, cascades): """ returns estimated graph """ G_hat = cascade_creation.InfluenceGraph(max_proba=None) G_hat.add_nodes_from(G.nodes()) for node in G.nodes(): unaccounted = cascades for cascade in cascades: def test(): """ unit test """ G = cascade_creation.InfluenceGraph(max_proba = .3) G.erdos_init(n = 100, p = 1) import time t0 = time.time() print len(cascade_creation.icc_cascade(G, p_init=.1)) t1 = time.time() print t1 - t0 if __name__=="__main__": test()