import networkx as nx import numpy as np def icc_cascade(G, p_init): """ input: graph with prob as edge attr returns: 2D boolean matrix with indep. casc. where True means node was active at that time step p_init: proba that node in seed set """ susceptible = np.ones(G.number_of_nodes(), dtype=bool) active = np.random.rand(G.number_of_nodes()) < p_init susceptible = susceptible - active cascade = [] while sum(active) and sum(susceptible): cascade.append(active) tmp = np.zeros(G.number_of_nodes(), dtype=bool) for node in np.where(active)[0]: #rand_p = np.random.rand(G.degree(2)) for edge in G.edges(node, data=True): tmp[edge[1]] += np.random.rand() < edge[2]["weight"] \ and susceptible[edge[1]] active = tmp susceptible = susceptible - active return cascade def test(): """ unit test """ G = nx.erdos_renyi_graph(500, .15, directed=True) for edge in G.edges(data=True): edge[2]['weight'] = .1*np.random.rand() print len(icc_cascade(G, p_init=.1)) if __name__ == "__main__": test()