import networkx as nx import numpy as np import collections from itertools import izip class InfluenceGraph(nx.Graph): """ networkX graph with mat and logmat attributes """ def __init__(self, max_proba, *args, **kwargs): self.max_proba = max_proba super(InfluenceGraph, self).__init__(*args, **kwargs) def erdos_init(self, n, p): G = nx.erdos_renyi_graph(n, p, directed=True) self.add_edges_from(G.edges()) def import_from_file(self, file_name): """ Takes a file from the Stanford collection of networks """ with open(file_name, 'r') as f: for edge in f: if "#" not in edge: u, v = [int(node) for node in edge.split()] self.add_edge(u, v) @property def mat(self): if not hasattr(self, '_mat'): self._mat = (self.max_proba * np.random.rand(len(self), len(self)) * np.asarray(nx.adjacency_matrix(self))) return self._mat @property def logmat(self): if not hasattr(self, '_logmat'): self._logmat = np.log(1 - self.mat) return self._logmat class Cascade(list): """ Cascade object: list with attributes """ def __init__(self, *args, **kwargs): super(Cascade, self).__init__(*args, **kwargs) def infection_time(self, node): """ Returns lists of infections times for node i in cascade """ infected_times = [] for t, infected_set in izip(xrange(len(self)), self): if infected_set[node]: infected_times.append(t) return infected_times def candidate_infectors(self, node): """ Returns Counter of nodes infected just before node i was """ candidate_infectors = collections.Counter() for t in self.infection_time(node): if t > 0: candidate_infectors.update(np.where(self[t-1])[0]) return candidate_infectors def icc_cascade(G, p_init): """ Returns boolean vectors for one cascade True means node was active at that time step p_init: proba that node in seed set """ susceptible = np.ones(G.number_of_nodes(), dtype=bool) active = np.random.rand(G.number_of_nodes()) < p_init susceptible = susceptible - active cascade = Cascade() while active.any() and susceptible.any(): cascade.append(active) active = np.exp(np.dot(G.logmat, active)) \ < np.random.rand(G.number_of_nodes()) active = active & susceptible susceptible = susceptible - active return cascade def generate_cascades(G, p_init, n_cascades): """ returns list of cascades """"" return [icc_cascade(G,p_init) for i in xrange(n_cascades)] def test(): """ unit test """ G = InfluenceGraph(max_proba = .3) G.erdos_init(n = 100, p = 1) import time t0 = time.time() print len(icc_cascade(G, p_init=.1)) t1 = time.time() print t1 - t0 if __name__ == "__main__": test()