import networkx as nx import numpy as np class InfluenceGraph(nx.Graph): """ Inherits from the graph class with new init function and other attributes """ def __init__(self, max_proba, *args, **kwargs): self.max_proba = max_proba super(InfluenceGraph, self).__init__(*args, **kwargs) def erdos_init(self, n, p): G = nx.erdos_renyi_graph(n, p, directed=True) self.add_nodes_from(G.nodes()) self.add_edges_from(G.edges()) @property def mat(self): if not hasattr(self, '_mat'): self._mat = (self.max_proba * np.random.rand(len(self), len(self)) * nx.adjacency_matrix(self)) return self._mat @property def logmat(self): if not hasattr(self, '_logmat'): self._logmat = np.log(1 - self.mat) return self._logmat def icc_cascade(G, p_init): """ input: graph with prob as edge attr returns: 2D boolean matrix with indep. casc. where True means node was active at that time step p_init: proba that node in seed set """ susceptible = np.ones(G.number_of_nodes(), dtype=bool) active = np.random.rand(G.number_of_nodes()) < p_init susceptible = susceptible - active cascade = [] while active.any() and susceptible.any(): cascade.append(active) active = np.exp(np.dot(G.logmat, active)) \ < np.random.rand(G.number_of_nodes()) active = active & susceptible susceptible = susceptible - active return cascade def concat_cascades(cascades): """ Concatenate list of cascades into matrix """ def test(): """ unit test """ G = nx.erdos_renyi_graph(1000, 1, directed=True) G.logmat = np.zeros((G.number_of_nodes(), G.number_of_nodes())) G.mat = G.logmat for edge in G.edges(data=True): edge[2]['weight'] = .3*np.random.rand() G.logmat[edge[0],edge[1]] = np.log(1 - edge[2]["weight"]) G.mat[edge[0], edge[1]] = edge[2]["weight"] import time t0 = time.time() print len(icc_cascade(G, p_init=.1)) t1 = time.time() print t1 - t0 if __name__ == "__main__": test()