\subsection{Proof for different lemmas} \subsubsection{Bounded gradient} \subsubsection{Approximate sparsity proof} \subsubsection{RE with high probability} \subsection{Other continuous time processes binned to ours: prop. hazards model} \subsection{Irrepresentability vs. Restricted Eigenvalue Condition} In the words and notation of Theorem 9.1 in \cite{vandegeer:2009}: \begin{lemma} \label{lemm:irrepresentability_proof} Let $\phi^2_{\text{compatible}}(L,S) \defeq \min \{ \frac{s \|f_\beta\|^2_2}{\|\beta_S\|^2_1} \ : \ \beta \in {\cal R}(L, S) \}$, where $\|f_\beta\|^2_2 \defeq \{ \beta^T \Sigma \beta \}$ and ${\cal R}(L,S) \defeq \{\beta : \|\beta_{S^c}\|_1 \leq L \|\beta_S\|_1 \neq 0\}$. If $\nu_{\text{irrepresentable}(S,s)} < 1/L$, then $\phi^2_{\text{compatible}}(L,S) \geq (1 - L \nu_{\text{irrepresentable}(S,s)})^2 \lambda_{\min}^2$. \end{lemma} Since ${\cal R}(3, S) = {\cal C}$, $\|\beta_S\|_1 \geq \|\beta_S\|_2$, and $\|\beta_S\|_1 \geq \frac{1}{3} \|\beta_{S^c}\|_1$ it is easy to see that $\|\beta_S\|_1 \geq \frac{1}{4} \|\beta\|_2$ and therefore that: $\gamma_n \geq \frac{n}{4s}\phi^2_{\text{compatible}}(3,S)$ Consequently, if $\epsilon > \frac{2}{3}$, then $\nu_{\text{irrepresentable}(S,s)} < 1/3$ and the conditions of Lemma~\ref{lemm:irrepresentability_proof} hold. \subsection{Lower bound for restricted eigenvalues (expected hessian) for different graphs} \subsection{Better asymptotic w.r.t expected hessian} \subsection{Confidence intervals?} \subsection{Active learning}