\documentclass[final]{beamer} \usepackage[utf8]{inputenc} \usepackage[scale=1.7]{beamerposter} % Use the beamerposter package for laying \usetheme{confposter} % Use the confposter theme supplied with this template \usepackage{framed, amsmath, amsthm, amssymb} \usepackage{graphicx} \usepackage{booktabs} \usepackage{color, bbm} \setbeamercolor{block title}{fg=dblue,bg=white} % Colors of the block titles \setbeamercolor{block body}{fg=black,bg=white} % Colors of the body of blocks \setbeamercolor{block alerted title}{fg=white,bg=dblue!70} % Colors of the \setbeamercolor{block alerted body}{fg=black,bg=dblue!10} % Colors of the body \newlength{\sepwid} \newlength{\onecolwid} \newlength{\twocolwid} \newlength{\threecolwid} \setlength{\paperwidth}{48in} % A0 width: 46.8in \setlength{\paperheight}{36in} % A0 height: 33.1in \setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between \setlength{\onecolwid}{0.29\paperwidth} % Width of one column \setlength{\twocolwid}{0.464\paperwidth} % Width of two columns \setlength{\threecolwid}{0.708\paperwidth} % Width of three columns \setlength{\topmargin}{-1in} % Reduce the top margin size \title{Bayesian and Active Learning for Graph Inference} % Poster title \author{Thibaut Horel\\[0.5em] Jean Pouget-Abadie} % Author(s) \begin{document} \setlength{\belowcaptionskip}{2ex} % White space under figures \setlength\belowdisplayshortskip{2ex} % White space under equations \begin{frame}[t] \begin{columns}[t] \begin{column}{\sepwid}\end{column} \begin{column}{\onecolwid} % The first column \begin{block}{Problem} \emph{How to recover an unknown network from the observation of contagion cascades?} \vspace{1em} \begin{itemize} \item \textbf{Observe:} state (infected or not) of nodes over time. \item \textbf{Objective:} learn $\Theta$, matrix of edge weights. \end{itemize} \end{block} \vspace{2cm} \begin{block}{\bf Contagion Model~\cite{Pouget:2015}} \begin{itemize} \item $X^t\in\{0,1\}^N$: state of the network at time $t$ \item At $t=0$, $X^0$ drawn from \emph{source distribution} \item For $t=1,2,\dots$: \begin{itemize} \item $X^t$ only depends on $X^{t-1}$ \item for each node $j$, new state drawn independently with: \begin{displaymath} \mathbb{P}(X^{t+1}_j = 1 | X^t) = f(\Theta_j \cdot X^t) \end{displaymath} ($f$: link function of the cascade model) \end{itemize} \end{itemize} \vspace{1em} \begin{figure} \begin{center} \includegraphics[scale=2.5]{drawing.pdf} \end{center} \end{figure} \end{block} \vspace{2cm} \begin{block}{MLE} \begin{itemize} \item Define for node $j$, $y^t = x^{t+1}_j$ \item Observations $\{(x^t, y^t)\}$ are drawn from a GLM.~MLE problem: \begin{equation*} \begin{split} \hat{\theta}\in \arg\max_\theta \sum_{t}~& y^t\log f(\Theta_j\cdot x^t) \\ & + (1-y^t) \log \big(1 - f(\Theta_j\cdot x^t)\big) \end{split} \end{equation*} Can be solved efficiently by SGD on $\Theta$. \vspace{1cm} \item log-likelihood is concave for common contagion models (\emph{e.g} IC model) $\Rightarrow$ provable convergence guarantees \cite{Netrapalli:2012}. \end{itemize} \end{block} \end{column} % End of the first column %----------------------------------------------------------------------------- \begin{column}{\sepwid}\end{column} % Empty spacer column %----------------------------------------------------------------------------- \begin{column}{\onecolwid} % The first column \begin{block}{Bayesian Framework} \begin{figure} \centering \vspace{-1em} \includegraphics[scale=3]{graphical.pdf} \end{figure} {\bf Advantages:} \begin{itemize} \item prior encodes domain-specific knowledge of graph structure (e.g. ERGMs) \item posterior expresses uncertainty over edge weights \end{itemize} {\bf Disadvantages:} \begin{itemize} \item hard to scale when large number of observations. \end{itemize} \end{block} \begin{block}{Active Learning} \emph{Can we learn faster by choosing the source node? If so, how to best choose it?} \begin{center}--~OR~--\end{center} \emph{Can we cherry-pick the most relevant part of the dataset?} \vspace{0.5em} {\bf Idea:} Focus on parts of the graph which are unexplored (high uncertainty). i.e.~maximize information gain per observation. \vspace{0.5em} \textbf{Baseline heuristic:} \begin{itemize} \item Choose source w.p.~proportional to estimated out-degree $\implies$ wider cascades $\implies$ more data \end{itemize} \vspace{0.5em} \textbf{Principled heuristic:} \begin{itemize} \item Choose source w.p.~proportional to mutual information \begin{multline*} p(i) \propto I\big(\{X_t\}_{t\geq 1} ,\Theta | X^0 = \{i\}\big)\\ = H(\Theta) - H\big(\Theta | \{X_t\}_{t\geq 1}, X_0 = \{i\}\big) \end{multline*} \item Requires knowing true distribution of $\{X_t\}$ $\Rightarrow$ use current estimate of $\Theta$ instead. \end{itemize} \end{block} \end{column} %----------------------------------------------------------------------------- \begin{column}{\sepwid}\end{column} %----------------------------------------------------------------------------- \begin{column}{\onecolwid} % The third column \begin{block}{Implementation} {\bf Scalable Bayesian Inference} \begin{itemize} \item MCMC: implements the graphical model directly with PyMC \cite{pymc}; does not scale beyond 10 nodes. \item VI: implements variational inference with Blocks~\cite{blocks}. (wip: use Bohning bounds to avoid sampling). \end{itemize} \vspace{1em} {\bf Scalable Active Learning} Mutual information is expensive to compute. Instead: \begin{itemize} \item use mutual information between $\Theta$ and $X^1$. \textbf{Justification} for any $f$: \begin{displaymath} I(X, Y) \geq I\big(f(X), Y\big) \end{displaymath} in our case: $f$ truncates the cascade at $t=1$. (wip: obtain closed-form formula in this case). \item variance is a lower-bound on mutual information $\implies$ pick node $i$ w.p.~proportional to $\sum_j \text{Var}(\Theta_{i,j})$. \end{itemize} \end{block} \begin{block}{Results} \begin{center} \includegraphics[scale=1.5]{../../simulation/plots/finale.png} \end{center} \end{block} \begin{block}{References} {\scriptsize \bibliography{sparse} \bibliographystyle{abbrv}} \end{block} %----------------------------------------------------------------------------- \end{column} % End of the third column \end{columns} % End of all the columns in the poster \end{frame} % End of the enclosing frame \end{document}