\documentclass[final]{beamer} \usepackage[utf8]{inputenc} \usepackage[scale=1.8]{beamerposter} % Use the beamerposter package for laying \usetheme{confposter} % Use the confposter theme supplied with this template \usepackage{framed, amsmath, amsthm, amssymb} \usepackage{graphicx} \usepackage{booktabs} \usepackage{color, bbm} \setbeamercolor{block title}{fg=dblue,bg=white} % Colors of the block titles \setbeamercolor{block body}{fg=black,bg=white} % Colors of the body of blocks \setbeamercolor{block alerted title}{fg=white,bg=dblue!70} % Colors of the \setbeamercolor{block alerted body}{fg=black,bg=dblue!10} % Colors of the body \newlength{\sepwid} \newlength{\onecolwid} \newlength{\twocolwid} \newlength{\threecolwid} \setlength{\paperwidth}{48in} % A0 width: 46.8in \setlength{\paperheight}{40in} % A0 height: 33.1in \setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between \setlength{\onecolwid}{0.29\paperwidth} % Width of one column \setlength{\twocolwid}{0.464\paperwidth} % Width of two columns \setlength{\threecolwid}{0.708\paperwidth} % Width of three columns \setlength{\topmargin}{-1in} % Reduce the top margin size \title{Bayesian and Active Learning for Graph Inference} % Poster title \author{Thibaut Horel\and Jean Pouget-Abadie} % Author(s) \begin{document} \setlength{\belowcaptionskip}{2ex} % White space under figures \setlength\belowdisplayshortskip{2ex} % White space under equations \begin{frame}[t] \begin{columns}[t] \begin{column}{\sepwid}\end{column} \begin{column}{\onecolwid} % The first column \begin{block}{Problem} \emph{How to recover an unknown network from the observation of contagion cascades?} \vspace{1em} \begin{itemize} \item \textbf{Observe:} state (infected or not) of nodes over time. \item \textbf{Objective:} learn $\Theta$, matrix of edge weights. \end{itemize} \end{block} \vspace{1cm} \begin{block}{\bf Contagion Model~\cite{}} \begin{itemize} \item $X^t\in\{0,1\}^N$: state of the network at time $t$ \item At $t=0$, $X^0$ drawn from \emph{source distribution} \item For $t=1,2,\dots$: \begin{itemize} \item $X^t$ only depends on $X^{t-1}$ \item for each node $j$, new state drawn independently with: \begin{displaymath} \mathbb{P}(X^{t+1}_j = 1 | X^t) = f(\Theta_j \cdot X^t) \end{displaymath} ($f$: link function of the cascade model) \end{itemize} \end{itemize} \vspace{1em} \begin{figure} \begin{center} \includegraphics[scale=2.5]{drawing.pdf} \end{center} \end{figure} \end{block} \begin{block}{MLE} \begin{itemize} \item For node $i$, $y^t = x^{t+1}_i$ \item For node $i$, $\{(x^t, y^t)\}$ are drawn from a GLM \item SGD on $\{\theta_{ij}\}$ \vspace{1cm} \begin{equation*} \begin{split} \hat{\theta}\in \arg\max_\theta \sum_{t}~& y^t\log f(\theta\cdot x^t) \\ & + (1-y^t) \log \big(1 - f(\theta\cdot x^t)\big) \end{split} \end{equation*} \item Log-likelihood is concave for common contagion models (IC model) \item Prior work~\cite{} finds convergence guarantees for $L1$-regularization \end{itemize} \end{block} \end{column} % End of the first column %----------------------------------------------------------------------------- \begin{column}{\sepwid}\end{column} % Empty spacer column %----------------------------------------------------------------------------- \begin{column}{\onecolwid} % The first column \begin{block}{Bayesian Framework} \begin{figure} \centering \includegraphics[scale=3]{graphical.pdf} \end{figure} {\bf Advantages:} \begin{itemize} \item encode expressive graph priors (e.g. ERGMs) \item quantify uncertainty over each edge \end{itemize} {\bf Disadvantages:} \begin{itemize} \item Hard to scale in large data volume regime \end{itemize} \end{block} \begin{block}{Active Learning} \emph{Can we gain by choosing the source node? If so, how to best choose the source node?} \begin{center}--OR--\end{center} \emph{Can we choose the parts of the dataset we compute next?} \end{block} {\bf Idea:} Focus on parts of the graph which are unexplored (high uncertainty). i.e.~maximize information gain per cascade Baseline heuristic: \begin{itemize} \item Choose source proportional to estimated out-degree $\implies$ wider cascades $\implies$ more data \end{itemize} Principled heuristic: \begin{itemize} \item Choose source proportional to mutual information \begin{equation*} I((X_t) ,\Theta | x^0 = i) = - H(\Theta | (X_t), X_0 = i) + H(\Theta) \end{equation*} \item Exact strategy requires knowing true distribution of $(X_t)$ \item Use estimated $\Theta$ to compute $H(\Theta | (X_t), X_0 = i)$ \end{itemize} \end{column} %----------------------------------------------------------------------------- \begin{column}{\sepwid}\end{column} %----------------------------------------------------------------------------- \begin{column}{\onecolwid} % The third column \begin{block}{Implementation} {\bf Scalable Bayesian Inference} \begin{itemize} \item MCMC (PyMC~\cite{}) \item VI (BLOCKS~\cite{}) \end{itemize} {\bf Scalable Active Learning Criterion} Approx.~heuristic: \begin{itemize} \item Choose source proportional to mutual information of first step of cascade and $\Theta$: Hope for closed-form formula \item Intuition: \begin{itemize} \item Choose lower bound of mutual information $I(X, Y) \geq I(f(X), g(Y))$ where $f$ is the trunctation function \item First step is most informative~\cite{} \end{itemize} \item Sum over outgoing-edges' variance as proxy \end{itemize} \end{block} \begin{block}{Results} \end{block} \begin{block}{References} {\scriptsize \bibliography{../../paper/sparse} \bibliographystyle{plain}} \end{block} %----------------------------------------------------------------------------- \end{column} % End of the third column \end{columns} % End of all the columns in the poster \end{frame} % End of the enclosing frame \end{document}