\documentclass[final]{beamer} \usepackage[utf8]{inputenc} \usepackage[scale=1.6]{beamerposter} % Use the beamerposter package for laying \usetheme{confposter} % Use the confposter theme supplied with this template \usepackage{framed, amsmath, amsthm, amssymb} \usepackage{color, bbm} \setbeamercolor{block title}{fg=dblue,bg=white} % Colors of the block titles \setbeamercolor{block body}{fg=black,bg=white} % Colors of the body of blocks \setbeamercolor{block alerted title}{fg=white,bg=dblue!70} % Colors of the \setbeamercolor{block alerted body}{fg=black,bg=dblue!10} % Colors of the body \newlength{\sepwid} \newlength{\onecolwid} \newlength{\twocolwid} \newlength{\threecolwid} \setlength{\paperwidth}{48in} % A0 width: 46.8in \setlength{\paperheight}{40in} % A0 height: 33.1in \setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between \setlength{\onecolwid}{0.22\paperwidth} % Width of one column \setlength{\twocolwid}{0.464\paperwidth} % Width of two columns \setlength{\threecolwid}{0.708\paperwidth} % Width of three columns \setlength{\topmargin}{-1in} % Reduce the top margin size %----------------------------------------------------------- \usepackage{graphicx} \usepackage{booktabs} %---------------------------------------------------------------------------------------- % TITLE SECTION %---------------------------------------------------------------------------------------- \title{Inferring Graphs from Cascades} % Poster title \author{Thibaut Horel, Jean Pouget-Abadie} % Author(s) \institute{Harvard University} % Institution(s) %---------------------------------------------------------------------------------------- \begin{document} \addtobeamertemplate{block end}{}{\vspace*{2ex}} % White space under blocks \addtobeamertemplate{block alerted end}{}{\vspace*{2ex}} % White space under \setlength{\belowcaptionskip}{2ex} % White space under figures \setlength\belowdisplayshortskip{2ex} % White space under equations \begin{frame}[t] \begin{columns}[t] \begin{column}{\sepwid}\end{column} \begin{column}{\onecolwid} % The first column %---------------------------------------------------------------------------------------- % INTODUCTION %---------------------------------------------------------------------------------------- \vspace{- 12.2 cm} \begin{center} {\includegraphics[scale=2.5]{../images/SEASLogo_RGB.png}} \end{center} \vspace{5 cm} \begin{block}{Problem} \emph{How to recover an unknown network from the observation of contagion cascades?} \end{block} \vspace{1cm} \begin{block}{\bf Contagion Model~\cite{}} \begin{itemize} \item {\bf Observe} $X^t_c$ (infections at time $t$ in cascade $c$) \item {\bf Objective}: find $\{\theta_{ij}\}$ (graph weight matrix) \item Infections drawn indep.~for each node: GLM over infected parents \begin{framed} $$\mathbb{P}(X^{t+1}_j = 1 | X^t) = f(\Theta_j \cdot X^t)$$ \end{framed} \end{itemize} \begin{figure} \centering \includegraphics[scale=1.5]{../images/drawing.pdf} \end{figure} \end{block} \begin{block}{Bayesian Framework} \begin{figure} \centering \includegraphics[scale=1.5]{graphical.pdf} \end{figure} \end{block} \end{column} % End of the first column %----------------------------------------------------------------------------- \begin{column}{\sepwid}\end{column} % Empty spacer column %----------------------------------------------------------------------------- \begin{column}{\onecolwid} % The first column \end{column} %----------------------------------------------------------------------------- \begin{column}{\sepwid}\end{column} %----------------------------------------------------------------------------- \begin{column}{\onecolwid} \begin{block}{Sparse Recovery} \begin{itemize} \item Solving for $A x = b$ when $A$ is non-degenerate is possible if \begin{itemize} \item $A$ is {\bf almost invertible} \item $x$ is {\bf sparse} \end{itemize} \item If $x$ is solution to $\min L(x)$ where $L$ is convex, then~\cite{Negahban:2009}~solve for: \begin{equation*} \min_x L(x) + \lambda \| x\| \end{equation*} \end{itemize} \end{block} \begin{theorem} {\bf Assumptions}: \begin{itemize} \item $f$ and $1-f$ are log-concave with log-gradient bounded by $\frac{1}{\alpha}$ \item $\nabla^2 {\cal L}$ verifies the $(S,\gamma)$-{\bf RE} condition \vspace{1cm} \end{itemize} {\bf Algorithm}: \begin{itemize} \item Solve MLE program with $\lambda = 2\sqrt{\frac{\log m}{\alpha n}}$ \begin{framed} \begin{equation*} \hat \theta_i \in \arg \max_{\theta} {\cal L}_i(\theta_i | x^1, \dots x^n) - \lambda \|\theta_i\|_1 \end{equation*} \end{framed} \end{itemize} \vspace{1cm} {\bf Guarantee} With high probability: \begin{framed} \begin{equation*} \|\hat \theta - \theta^*\|_2 \leq \frac{6}{\gamma} \sqrt{\frac{s \log m}{\alpha n}} \end{equation*} \end{framed} where $s$ is degree of node, $m$ is number of nodes, $n$ is the number of observations \end{theorem} \begin{block}{Restricted Eigenvalue Condition} {\bf Definition} \begin{itemize} \item $C(S) \equiv \{ X :\|X_{\bar S}\|_1 \leq 3 \|X\|_1\}$ \item Matrix $A$ verifies the $(\gamma, S)$-{(\bf RE)} condition if: $$\forall X \in C({\cal S}), X^T A X \geq \gamma \|X\|_2^2$$ \end{itemize} \vspace{1cm} {\bf Hessian $\mapsto$ Gram Matrix} \begin{itemize} \item If $f$ and $1-f$ are $c$-strictly log-convex, we can replace the condition on the $\nabla^2 {\cal L}$ by the same condition on the Gram matrix $X^T X$. \end{itemize} \vspace{1cm} {\bf Hessian $\mapsto$ Expected Hessian} \begin{itemize} \item If $\mathbb{E}[A]$ verifies the $(S, \gamma)$-{(\bf RE)} condition, then $A$ verifies the $(S, \gamma/2)$-{(\bf RE)} condition~\cite{vandegeer:2009} \end{itemize} \end{block} \end{column} % End of the second column %----------------------------------------------------------------------------- \begin{column}{\sepwid}\end{column} % Empty spacer column %----------------------------------------------------------------------------- \begin{column}{\onecolwid} % The third column \begin{block}{Experimental validation} \begin{figure} \centering \includegraphics[scale=1.2]{../images/watts_strogatz.pdf} \caption{Watts-Strogatz, $300$ nodes, $4500$ edges, uniform edge weights, constant $p_{init}$} \end{figure} \end{block} \begin{block}{Conclusion} \begin{itemize} \item Introduce Generalized Linear Casacade model \item Better finite sample guarantees~\cite{Netrapalli:2012, Abrahao:13, Daneshmand:2014} \item Interpretable conditions on Hessian \item Lower bound+approximately sparse case developed in full paper~\cite{Pouget:2015} \end{itemize} \end{block} %----------------------------------------------------------------------------- % REFERENCES %----------------------------------------------------------------------------- \begin{block}{References} {\scriptsize \bibliography{../../paper/sparse} \bibliographystyle{plain}} \end{block} %----------------------------------------------------------------------------- \end{column} % End of the third column \end{columns} % End of all the columns in the poster \end{frame} % End of the enclosing frame \end{document}