import networkx as nx import numpy as np import collections import timeout #from itertools import izip from sklearn.preprocessing import normalize class InfluenceGraph(nx.DiGraph): """ networkX graph with mat and logmat attributes """ def __init__(self, max_proba=None, min_proba=None, *args, **kwargs): self.max_proba = max_proba self.min_proba = min_proba super(InfluenceGraph, self).__init__(*args, **kwargs) def erdos_init(self, n, p): G = nx.erdos_renyi_graph(n, p, directed=True) self.add_edges_from(G.edges()) def import_from_file(self, file_name): """ Takes a file from the Stanford collection of networks """ with open(file_name, 'r') as f: for edge in f: if "#" not in edge: u, v = [int(node) for node in edge.split()] self.add_edge(u, v) @property def mat(self): if not hasattr(self, '_mat'): self._mat = (self.max_proba * np.random.rand(len(self), len(self)) * np.asarray(nx.adjacency_matrix(self).todense())) return self._mat @property def logmat(self): if not hasattr(self, '_logmat'): self._logmat = np.log(1 - self.mat) return self._logmat class Cascade(list): """ Cascade object: list with attributes """ def __init__(self, *args, **kwargs): super(Cascade, self).__init__(*args, **kwargs) def infection_time(self, node): """ Returns lists of infections times for node i in cascade """ infected_times = [] for t, infected_set in enumerate(self): if infected_set[node]: infected_times.append(t) if not infected_times: infected_times.append(None) return infected_times def candidate_infectors(self, node): """ Returns Counter of nodes infected just before node i was """ candidate_infectors = collections.Counter() for t in self.infection_time(node): if t: # avoid cases where t=0 or t is None candidate_infectors.update(np.where(self[t-1])[0]) return candidate_infectors @timeout.timeout(5) def icc_cascade(G, p_init): """ Returns boolean vectors for one cascade True means node was active at that time step p_init: proba that node in seed set """ susceptible = np.ones(G.number_of_nodes(), dtype=bool) active = np.random.rand(G.number_of_nodes()) < p_init susceptible = susceptible & np.logical_not(active) cascade = Cascade() while active.any(): cascade.append(active) active = np.exp(np.dot(G.logmat, active)) \ < np.random.rand(G.number_of_nodes()) active = active & susceptible susceptible = susceptible & np.logical_not(active) if not cascade: return icc_cascade(G, p_init) return cascade def generate_cascades(G, p_init, n_cascades): """ returns list of cascades """"" return [icc_cascade(G,p_init) for i in range(n_cascades)] def icc_matrixvector_for_node(cascades, node): """ for the ICC model: Returns M, w in matrix form where rows of M are i = t + k.T Excludes all (t,k) after node infection time; w = 1_{infected} """ #TODO: you need to remove the variable corresponding to the node #you are solving for!!!! if node is None: return np.vstack(cascades), None else: w = [] M = [] for cascade in cascades: t_i = cascade.infection_time(node)[0] if t_i != 0: indicator = np.zeros(len(cascade[:t_i])) if t_i: indicator[-1] = 1 w.append(indicator) M.append(np.array(cascade[:t_i])) if not M: print("Node {} was never infected at t != 0".format(node)) M = np.vstack(M) w = np.hstack(w) return M, w def normalize_matrix(M): """ returns M with normalized (L_1 norm) columns """ return normalize(M.astype("float32"), axis=0, norm="l2") def add_edges_from_proba_vector(G, p_node, node, floor_cstt): """ Takes proba vector, node and adds edges to G by flooring very small probabilities Also updates G's mat matrix """ floor_parent = np.nonzero(p_node*(p_node > floor_cstt)) print(floor_parent) for parent in floor_parent[0]: #SOMEHOW THERE WAS A BUG HERE! G.add_edge(node, parent) #TODO: update G's mat matrix return G def test(): """ unit test """ G = InfluenceGraph(max_proba = .3) G.erdos_init(n = 10, p = 1) import time t0 = time.time() A = generate_cascades(G, .1, 2) M, w = icc_matrixvector_for_node(A, 0) t1 = time.time() print(t1 - t0) if __name__ == "__main__": test()