import matplotlib.pyplot as plt import numpy as np import cascade_creation import convex_optimization import algorithms import rip_condition def compare_greedy_and_lagrange_cs284r(): """ Compares the performance of the greedy algorithm on the lagrangian sparse recovery objective on the Facebook dataset for the CS284r project """ G = cascade_creation.InfluenceGraph(max_proba = .8) G.import_from_file("../datasets/subset_facebook_SNAPnormalize.txt") A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=100) #Greedy G_hat = algorithms.greedy_prediction(G, A) algorithms.correctness_measure(G, G_hat, print_values=True) #Lagrange Objective G_hat = algorithms.recovery_l1obj_l2constraint(G, A, passed_function=convex_optimization.type_lasso, floor_cstt=.1, lbda=10) algorithms.correctness_measure(G, G_hat, print_values=True) def test(): """ unit test """ G = cascade_creation.InfluenceGraph(max_proba=.8) G.erdos_init(n=20, p=.2) print(G.mat) A = cascade_creation.generate_cascades(G, p_init=.1, n_cascades=1000) G_hat = algorithms.recovery_l1obj_l2constraint(G, A, passed_function=convex_optimization.sparse_recovery, floor_cstt=.1, lbda=20) algorithms.correctness_measure(G, G_hat, print_values=True) if __name__=="__main__": test()