import matplotlib.pyplot as plt import numpy as np import cascade_creation import convex_optimization import algorithms import rip_condition def compare_greedy_and_lagrange_cs284r(): """ Compares the performance of the greedy algorithm on the lagrangian sparse recovery objective on the Facebook dataset for the CS284r project """ G = cascade_creation.InfluenceGraph(max_proba = .8) G.import_from_file("../datasets/subset_facebook_SNAPnormalize.txt") A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=100) #Greedy G_hat = algorithms.greedy_prediction(G, A) algorithms.correctness_measure(G, G_hat, print_values=True) #Lagrange Objective G_hat = algorithms.recovery_l1obj_l2constraint(G, A, passed_function=convex_optimization.type_lasso, floor_cstt=.05, lbda=10) algorithms.correctness_measure(G, G_hat, print_values=True) def watts_strogatz(n_cascades, lbda, passed_function): """ Test running time on different algorithms """ G = cascade_creation.InfluenceGraph(max_proba=.7, min_proba=.2) G.import_from_file("../datasets/watts_strogatz_300_30_point3.txt") A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=n_cascades) if passed_function==algorithms.greedy_prediction: G_hat = algorithms.greedy_prediction(G, A) else: G_hat = algorithms.recovery_passed_function(G, A, passed_function=passed_function, floor_cstt=.1, lbda=lbda, n_cascades=n_cascades) algorithms.correctness_measure(G, G_hat, print_values=True) # def test(): # """ # unit test # """ # G = cascade_creation.InfluenceGraph(max_proba=1, min_proba=.2) # G.erdos_init(n=50, p=.2) # A = cascade_creation.generate_cascades(G, p_init=.1, n_cascades=1000) # G_hat = algorithms.recovery_passed_function(G, A, # passed_function=convex_optimization.sparse_recovery, # floor_cstt=.1, lbda=.001, n_cascades=1000) # algorithms.correctness_measure(G, G_hat, print_values=True) if __name__=="__main__": watts_strogatz(n_cascades=3000, lbda=.002, passed_function= convex_optimization.sparse_recovery) #algorithms.greedy_prediction)