summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--experiments/README.txt9
-rw-r--r--experiments/build/temp.macosx-10.6-x86_64-2.7/ml.obin304288 -> 308728 bytes
-rw-r--r--experiments/ml.c772
-rw-r--r--experiments/ml.pyx26
-rwxr-xr-xexperiments/ml.sobin109300 -> 109612 bytes
-rw-r--r--experiments/out.log3873
-rw-r--r--experiments/plot3d.py2
-rw-r--r--experiments/process.py13
8 files changed, 468 insertions, 4227 deletions
diff --git a/experiments/README.txt b/experiments/README.txt
index a3f2e22..80f6aa0 100644
--- a/experiments/README.txt
+++ b/experiments/README.txt
@@ -16,7 +16,7 @@ Description of the files
(time component) and delta (structural component). The likelihood (and a few
other things) for each of the values is printed in the file "out.log".
Takes as argument the name of .pickle file computed by build_network.py
- Prints columns as alpha, delta, beta, #roots, likelihood
+ Prints columns as alpha, delta, beta, number of roots, likelihood
* plot3d.py: code to obtain a 3d plot of the log likelihood as a function of
alpha and delta. Can also be easily modified to obtain 2d plots along
@@ -38,3 +38,10 @@ complicated, it is also possible to compile .pyx files using python distutils
(which I would assume is more standard on MacOS). This only requires distutils
and a simple setup.py file. More details here:
http://docs.cython.org/src/reference/compilation.html#configuring-the-c-build
+
+Running Code
+============
+python build_network.py ../../Results/dag_dat_all.csv
+python setup.py build_ext --inplace
+python process.py ../../Results/dag_dat_all.pickle
+python plot3d.py
diff --git a/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o b/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o
index 0f6640f..5fbcfe9 100644
--- a/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o
+++ b/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o
Binary files differ
diff --git a/experiments/ml.c b/experiments/ml.c
index 67e5cd1..1ae9098 100644
--- a/experiments/ml.c
+++ b/experiments/ml.c
@@ -773,12 +773,12 @@ struct __pyx_obj_2ml___pyx_scope_struct__ml {
};
-/* "ml.pyx":71
- * successes = [weight_success(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents]
+/* "ml.pyx":74
+ * for (dist, dt, w1, w2, w3) in parents]
+ * # find parent that maximizes p/\tilde{p}
* probs[i] = max(s - failures[l] for l, s in enumerate(successes)) # <<<<<<<<<<<<<<
- * probs_fail[i] = all_failures
*
+ * # loop through non-victims
*/
struct __pyx_obj_2ml___pyx_scope_struct_1_genexpr {
PyObject_HEAD
@@ -1284,6 +1284,9 @@ static char __pyx_k_dt[] = "dt";
static char __pyx_k_ll[] = "ll";
static char __pyx_k_ml[] = "ml";
static char __pyx_k_np[] = "np";
+static char __pyx_k_w1[] = "w1";
+static char __pyx_k_w2[] = "w2";
+static char __pyx_k_w3[] = "w3";
static char __pyx_k_age[] = "age";
static char __pyx_k_end[] = "end";
static char __pyx_k_max[] = "max";
@@ -1331,7 +1334,6 @@ static char __pyx_k_itervalues[] = "itervalues";
static char __pyx_k_probs_fail[] = "probs_fail";
static char __pyx_k_non_victims[] = "non_victims";
static char __pyx_k_RuntimeError[] = "RuntimeError";
-static char __pyx_k_all_failures[] = "all_failures";
static char __pyx_k_root_victims[] = "root_victims";
static char __pyx_k_ml_locals_genexpr[] = "ml.<locals>.genexpr";
static char __pyx_k_ndarray_is_not_C_contiguous[] = "ndarray is not C contiguous";
@@ -1350,7 +1352,6 @@ static PyObject *__pyx_n_s_RuntimeError;
static PyObject *__pyx_kp_s_Users_ben_Documents_Cascade_Pro;
static PyObject *__pyx_n_s_ValueError;
static PyObject *__pyx_n_s_age;
-static PyObject *__pyx_n_s_all_failures;
static PyObject *__pyx_n_s_alpha;
static PyObject *__pyx_kp_s_alpha_0_delta_1_Everyone_is_a_ro;
static PyObject *__pyx_n_s_args;
@@ -1405,6 +1406,9 @@ static PyObject *__pyx_n_s_test;
static PyObject *__pyx_n_s_throw;
static PyObject *__pyx_kp_u_unknown_dtype_code_in_numpy_pxd;
static PyObject *__pyx_n_s_victims;
+static PyObject *__pyx_n_s_w1;
+static PyObject *__pyx_n_s_w2;
+static PyObject *__pyx_n_s_w3;
static PyObject *__pyx_n_s_xrange;
static PyObject *__pyx_n_s_zeros;
static PyObject *__pyx_int_neg_1;
@@ -1815,12 +1819,12 @@ static PyObject *__pyx_pw_2ml_1ml(PyObject *__pyx_self, PyObject *__pyx_args, Py
}
static PyObject *__pyx_gb_2ml_2ml_2generator(__pyx_GeneratorObject *__pyx_generator, PyObject *__pyx_sent_value); /* proto */
-/* "ml.pyx":71
- * successes = [weight_success(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents]
+/* "ml.pyx":74
+ * for (dist, dt, w1, w2, w3) in parents]
+ * # find parent that maximizes p/\tilde{p}
* probs[i] = max(s - failures[l] for l, s in enumerate(successes)) # <<<<<<<<<<<<<<
- * probs_fail[i] = all_failures
*
+ * # loop through non-victims
*/
static PyObject *__pyx_pf_2ml_2ml_genexpr(PyObject *__pyx_self) {
@@ -1841,7 +1845,7 @@ static PyObject *__pyx_pf_2ml_2ml_genexpr(PyObject *__pyx_self) {
__Pyx_INCREF(((PyObject *)__pyx_cur_scope->__pyx_outer_scope));
__Pyx_GIVEREF(__pyx_cur_scope->__pyx_outer_scope);
{
- __pyx_GeneratorObject *gen = __Pyx_Generator_New((__pyx_generator_body_t) __pyx_gb_2ml_2ml_2generator, (PyObject *) __pyx_cur_scope, __pyx_n_s_genexpr, __pyx_n_s_ml_locals_genexpr); if (unlikely(!gen)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_GeneratorObject *gen = __Pyx_Generator_New((__pyx_generator_body_t) __pyx_gb_2ml_2ml_2generator, (PyObject *) __pyx_cur_scope, __pyx_n_s_genexpr, __pyx_n_s_ml_locals_genexpr); if (unlikely(!gen)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_cur_scope);
__Pyx_RefNannyFinishContext();
return (PyObject *) gen;
@@ -1879,16 +1883,16 @@ static PyObject *__pyx_gb_2ml_2ml_2generator(__pyx_GeneratorObject *__pyx_genera
return NULL;
}
__pyx_L3_first_run:;
- if (unlikely(!__pyx_sent_value)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (unlikely(!__pyx_sent_value)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__pyx_t_1 = 0;
- if (unlikely(!__pyx_cur_scope->__pyx_outer_scope->__pyx_v_successes)) { __Pyx_RaiseClosureNameError("successes"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} }
+ if (unlikely(!__pyx_cur_scope->__pyx_outer_scope->__pyx_v_successes)) { __Pyx_RaiseClosureNameError("successes"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} }
__pyx_t_2 = __pyx_cur_scope->__pyx_outer_scope->__pyx_v_successes; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0;
for (;;) {
if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break;
#if CYTHON_COMPILING_IN_CPYTHON
- __pyx_t_4 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_4); __pyx_t_3++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_4); __pyx_t_3++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#else
- __pyx_t_4 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#endif
__Pyx_XGOTREF(__pyx_cur_scope->__pyx_v_s);
__Pyx_XDECREF_SET(__pyx_cur_scope->__pyx_v_s, __pyx_t_4);
@@ -1896,14 +1900,14 @@ static PyObject *__pyx_gb_2ml_2ml_2generator(__pyx_GeneratorObject *__pyx_genera
__pyx_t_4 = 0;
__pyx_cur_scope->__pyx_v_l = __pyx_t_1;
__pyx_t_1 = (__pyx_t_1 + 1);
- if (unlikely(!__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures)) { __Pyx_RaiseClosureNameError("failures"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} }
+ if (unlikely(!__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures)) { __Pyx_RaiseClosureNameError("failures"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} }
if (unlikely(__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures == Py_None)) {
PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable");
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
- __pyx_t_4 = __Pyx_GetItemInt_List(__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures, __pyx_cur_scope->__pyx_v_l, Py_ssize_t, 1, PyInt_FromSsize_t, 1, 1, 0); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __pyx_t_4 = __Pyx_GetItemInt_List(__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures, __pyx_cur_scope->__pyx_v_l, Py_ssize_t, 1, PyInt_FromSsize_t, 1, 1, 0); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
__Pyx_GOTREF(__pyx_t_4);
- __pyx_t_5 = PyNumber_Subtract(__pyx_cur_scope->__pyx_v_s, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyNumber_Subtract(__pyx_cur_scope->__pyx_v_s, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
__pyx_r = __pyx_t_5;
@@ -1923,7 +1927,7 @@ static PyObject *__pyx_gb_2ml_2ml_2generator(__pyx_GeneratorObject *__pyx_genera
__pyx_cur_scope->__pyx_t_1 = 0;
__Pyx_XGOTREF(__pyx_t_2);
__pyx_t_3 = __pyx_cur_scope->__pyx_t_2;
- if (unlikely(!__pyx_sent_value)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (unlikely(!__pyx_sent_value)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
@@ -1961,13 +1965,15 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
int __pyx_v_dist;
int __pyx_v_dt;
__pyx_t_2ml_DTYPE_t __pyx_v_beta;
- __pyx_t_2ml_DTYPE_t __pyx_v_all_failures;
__pyx_t_2ml_DTYPE_t __pyx_v_ll;
PyObject *__pyx_v_parents = 0;
PyArrayObject *__pyx_v_probs = 0;
PyArrayObject *__pyx_v_probs_fail = 0;
PyArrayObject *__pyx_v_probs_nv = 0;
PyArrayObject *__pyx_v_cums = 0;
+ CYTHON_UNUSED PyObject *__pyx_v_w1 = NULL;
+ CYTHON_UNUSED PyObject *__pyx_v_w2 = NULL;
+ CYTHON_UNUSED PyObject *__pyx_v_w3 = NULL;
__Pyx_LocalBuf_ND __pyx_pybuffernd_cums;
__Pyx_Buffer __pyx_pybuffer_cums;
__Pyx_LocalBuf_ND __pyx_pybuffernd_probs;
@@ -1994,16 +2000,19 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
PyObject *__pyx_t_14 = NULL;
PyObject *__pyx_t_15 = NULL;
PyObject *__pyx_t_16 = NULL;
- PyObject *(*__pyx_t_17)(PyObject *);
- int __pyx_t_18;
- __pyx_t_2ml_DTYPE_t __pyx_t_19;
- int __pyx_t_20;
+ PyObject *__pyx_t_17 = NULL;
+ PyObject *__pyx_t_18 = NULL;
+ PyObject *__pyx_t_19 = NULL;
+ PyObject *(*__pyx_t_20)(PyObject *);
int __pyx_t_21;
- PyObject *__pyx_t_22 = NULL;
- PyObject *__pyx_t_23 = NULL;
- PyObject *__pyx_t_24 = NULL;
- PyArrayObject *__pyx_t_25 = NULL;
- int __pyx_t_26;
+ __pyx_t_2ml_DTYPE_t __pyx_t_22;
+ int __pyx_t_23;
+ int __pyx_t_24;
+ PyObject *__pyx_t_25 = NULL;
+ PyObject *__pyx_t_26 = NULL;
+ PyObject *__pyx_t_27 = NULL;
+ PyArrayObject *__pyx_t_28 = NULL;
+ int __pyx_t_29;
int __pyx_lineno = 0;
const char *__pyx_filename = NULL;
int __pyx_clineno = 0;
@@ -2032,10 +2041,10 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__pyx_pybuffernd_cums.rcbuffer = &__pyx_pybuffer_cums;
/* "ml.pyx":56
- * DTYPE_t beta, all_failures, ll, beta2
+ * DTYPE_t beta, ll, beta2
* list parents, failures, successes
* n_roots, n_victims = len(root_victims), len(victims) # <<<<<<<<<<<<<<
- * n_nodes = n_victims + len(non_victims) + n_roots
+ * n_nodes = n_roots + n_victims + len(non_victims)
* cdef:
*/
if (unlikely(__pyx_v_root_victims == Py_None)) {
@@ -2054,7 +2063,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
/* "ml.pyx":57
* list parents, failures, successes
* n_roots, n_victims = len(root_victims), len(victims)
- * n_nodes = n_victims + len(non_victims) + n_roots # <<<<<<<<<<<<<<
+ * n_nodes = n_roots + n_victims + len(non_victims) # <<<<<<<<<<<<<<
* cdef:
* np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
*/
@@ -2063,10 +2072,10 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
{__pyx_filename = __pyx_f[0]; __pyx_lineno = 57; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__pyx_t_2 = PyDict_Size(__pyx_v_non_victims); if (unlikely(__pyx_t_2 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 57; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_v_n_nodes = ((__pyx_v_n_victims + __pyx_t_2) + __pyx_v_n_roots);
+ __pyx_v_n_nodes = ((__pyx_v_n_roots + __pyx_v_n_victims) + __pyx_t_2);
/* "ml.pyx":59
- * n_nodes = n_victims + len(non_victims) + n_roots
+ * n_nodes = n_roots + n_victims + len(non_victims)
* cdef:
* np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) # <<<<<<<<<<<<<<
* np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
@@ -2114,7 +2123,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
* np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
* np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) # <<<<<<<<<<<<<<
* np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
- * for i, parents in enumerate(victims.itervalues()):
+ *
*/
__pyx_t_6 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
@@ -2157,8 +2166,8 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
* np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
* np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
* np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) # <<<<<<<<<<<<<<
- * for i, parents in enumerate(victims.itervalues()):
- * # for each victim node i, compute the probability that all its parents
+ *
+ * # loop through victims
*/
__pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 61; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
@@ -2202,9 +2211,9 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__pyx_v_probs_nv = ((PyArrayObject *)__pyx_t_3);
__pyx_t_3 = 0;
- /* "ml.pyx":62
- * np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
- * np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
+ /* "ml.pyx":64
+ *
+ * # loop through victims
* for i, parents in enumerate(victims.itervalues()): # <<<<<<<<<<<<<<
* # for each victim node i, compute the probability that all its parents
* # fail to infect it, also computes the probability that its most
@@ -2213,9 +2222,9 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__pyx_t_2 = 0;
if (unlikely(__pyx_v_victims == Py_None)) {
PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", "itervalues");
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
- __pyx_t_4 = __Pyx_dict_iterator(__pyx_v_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_1), (&__pyx_t_11)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_dict_iterator(__pyx_v_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_1), (&__pyx_t_11)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
__Pyx_XDECREF(__pyx_t_3);
__pyx_t_3 = __pyx_t_4;
@@ -2223,42 +2232,42 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
while (1) {
__pyx_t_12 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_1, &__pyx_t_2, NULL, &__pyx_t_4, NULL, __pyx_t_11);
if (unlikely(__pyx_t_12 == 0)) break;
- if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
- if (!(likely(PyList_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_4)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (!(likely(PyList_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_4)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_XDECREF_SET(__pyx_v_parents, ((PyObject*)__pyx_t_4));
__pyx_t_4 = 0;
__pyx_v_i = __pyx_t_10;
__pyx_t_10 = (__pyx_t_10 + 1);
- /* "ml.pyx":66
+ /* "ml.pyx":68
* # fail to infect it, also computes the probability that its most
* # likely parent infects it
* failures = [weight_failure(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<<
- * for (dist, dt) in parents]
- * all_failures = sum(failures)
+ * for (dist, dt, w1, w2, w3) in parents]
+ * probs_fail[i] = sum(failures)
*/
- __pyx_t_4 = PyList_New(0); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = PyList_New(0); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
- /* "ml.pyx":67
+ /* "ml.pyx":69
* # likely parent infects it
* failures = [weight_failure(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents] # <<<<<<<<<<<<<<
- * all_failures = sum(failures)
+ * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<<
+ * probs_fail[i] = sum(failures)
* successes = [weight_success(dist, dt, alpha, delta, gamma)
*/
if (unlikely(__pyx_v_parents == Py_None)) {
PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable");
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__pyx_t_5 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_5); __pyx_t_13 = 0;
for (;;) {
if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_5)) break;
#if CYTHON_COMPILING_IN_CPYTHON
- __pyx_t_6 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#else
- __pyx_t_6 = PySequence_ITEM(__pyx_t_5, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PySequence_ITEM(__pyx_t_5, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#endif
if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) {
PyObject* sequence = __pyx_t_6;
@@ -2267,73 +2276,95 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
#else
Py_ssize_t size = PySequence_Size(sequence);
#endif
- if (unlikely(size != 2)) {
- if (size > 2) __Pyx_RaiseTooManyValuesError(2);
+ if (unlikely(size != 5)) {
+ if (size > 5) __Pyx_RaiseTooManyValuesError(5);
else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size);
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
#if CYTHON_COMPILING_IN_CPYTHON
if (likely(PyTuple_CheckExact(sequence))) {
__pyx_t_14 = PyTuple_GET_ITEM(sequence, 0);
__pyx_t_15 = PyTuple_GET_ITEM(sequence, 1);
+ __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2);
+ __pyx_t_17 = PyTuple_GET_ITEM(sequence, 3);
+ __pyx_t_18 = PyTuple_GET_ITEM(sequence, 4);
} else {
__pyx_t_14 = PyList_GET_ITEM(sequence, 0);
__pyx_t_15 = PyList_GET_ITEM(sequence, 1);
+ __pyx_t_16 = PyList_GET_ITEM(sequence, 2);
+ __pyx_t_17 = PyList_GET_ITEM(sequence, 3);
+ __pyx_t_18 = PyList_GET_ITEM(sequence, 4);
}
__Pyx_INCREF(__pyx_t_14);
__Pyx_INCREF(__pyx_t_15);
+ __Pyx_INCREF(__pyx_t_16);
+ __Pyx_INCREF(__pyx_t_17);
+ __Pyx_INCREF(__pyx_t_18);
#else
- __pyx_t_14 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_14);
- __pyx_t_15 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_15);
+ {
+ Py_ssize_t i;
+ PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18};
+ for (i=0; i < 5; i++) {
+ PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(item);
+ *(temps[i]) = item;
+ }
+ }
#endif
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
} else {
Py_ssize_t index = -1;
- __pyx_t_16 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_16);
+ PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18};
+ __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_19);
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
- __pyx_t_17 = Py_TYPE(__pyx_t_16)->tp_iternext;
- index = 0; __pyx_t_14 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_14)) goto __pyx_L7_unpacking_failed;
- __Pyx_GOTREF(__pyx_t_14);
- index = 1; __pyx_t_15 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_15)) goto __pyx_L7_unpacking_failed;
- __Pyx_GOTREF(__pyx_t_15);
- if (__Pyx_IternextUnpackEndCheck(__pyx_t_17(__pyx_t_16), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_t_17 = NULL;
- __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;
+ __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext;
+ for (index=0; index < 5; index++) {
+ PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L7_unpacking_failed;
+ __Pyx_GOTREF(item);
+ *(temps[index]) = item;
+ }
+ if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_20 = NULL;
+ __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0;
goto __pyx_L8_unpacking_done;
__pyx_L7_unpacking_failed:;
- __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;
- __pyx_t_17 = NULL;
+ __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0;
+ __pyx_t_20 = NULL;
if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index);
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__pyx_L8_unpacking_done:;
}
- __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0;
- __pyx_t_18 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_18 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_21 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_21 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
__pyx_v_dist = __pyx_t_12;
- __pyx_v_dt = __pyx_t_18;
+ __pyx_v_dt = __pyx_t_21;
+ __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16);
+ __pyx_t_16 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_17);
+ __pyx_t_17 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_18);
+ __pyx_t_18 = 0;
- /* "ml.pyx":66
+ /* "ml.pyx":68
* # fail to infect it, also computes the probability that its most
* # likely parent infects it
* failures = [weight_failure(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<<
- * for (dist, dt) in parents]
- * all_failures = sum(failures)
+ * for (dist, dt, w1, w2, w3) in parents]
+ * probs_fail[i] = sum(failures)
*/
- __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
- if (unlikely(__Pyx_ListComp_Append(__pyx_t_4, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (unlikely(__Pyx_ListComp_Append(__pyx_t_4, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
- /* "ml.pyx":67
+ /* "ml.pyx":69
* # likely parent infects it
* failures = [weight_failure(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents] # <<<<<<<<<<<<<<
- * all_failures = sum(failures)
+ * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<<
+ * probs_fail[i] = sum(failures)
* successes = [weight_success(dist, dt, alpha, delta, gamma)
*/
}
@@ -2343,53 +2374,55 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__Pyx_GIVEREF(__pyx_t_4);
__pyx_t_4 = 0;
- /* "ml.pyx":68
+ /* "ml.pyx":70
* failures = [weight_failure(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents]
- * all_failures = sum(failures) # <<<<<<<<<<<<<<
+ * for (dist, dt, w1, w2, w3) in parents]
+ * probs_fail[i] = sum(failures) # <<<<<<<<<<<<<<
* successes = [weight_success(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents]
+ * for (dist, dt, w1, w2, w3) in parents]
*/
- __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
__Pyx_INCREF(__pyx_cur_scope->__pyx_v_failures);
PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_cur_scope->__pyx_v_failures);
__Pyx_GIVEREF(__pyx_cur_scope->__pyx_v_failures);
- __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- __pyx_v_all_failures = __pyx_t_19;
+ __pyx_t_21 = __pyx_v_i;
+ if (__pyx_t_21 < 0) __pyx_t_21 += __pyx_pybuffernd_probs_fail.diminfo[0].shape;
+ *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_fail.rcbuffer->pybuffer.buf, __pyx_t_21, __pyx_pybuffernd_probs_fail.diminfo[0].strides) = __pyx_t_22;
- /* "ml.pyx":69
- * for (dist, dt) in parents]
- * all_failures = sum(failures)
+ /* "ml.pyx":71
+ * for (dist, dt, w1, w2, w3) in parents]
+ * probs_fail[i] = sum(failures)
* successes = [weight_success(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<<
- * for (dist, dt) in parents]
- * probs[i] = max(s - failures[l] for l, s in enumerate(successes))
+ * for (dist, dt, w1, w2, w3) in parents]
+ * # find parent that maximizes p/\tilde{p}
*/
- __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
- /* "ml.pyx":70
- * all_failures = sum(failures)
+ /* "ml.pyx":72
+ * probs_fail[i] = sum(failures)
* successes = [weight_success(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents] # <<<<<<<<<<<<<<
+ * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<<
+ * # find parent that maximizes p/\tilde{p}
* probs[i] = max(s - failures[l] for l, s in enumerate(successes))
- * probs_fail[i] = all_failures
*/
if (unlikely(__pyx_v_parents == Py_None)) {
PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable");
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__pyx_t_4 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_4); __pyx_t_13 = 0;
for (;;) {
if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_4)) break;
#if CYTHON_COMPILING_IN_CPYTHON
- __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#else
- __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#endif
if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) {
PyObject* sequence = __pyx_t_6;
@@ -2398,74 +2431,96 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
#else
Py_ssize_t size = PySequence_Size(sequence);
#endif
- if (unlikely(size != 2)) {
- if (size > 2) __Pyx_RaiseTooManyValuesError(2);
+ if (unlikely(size != 5)) {
+ if (size > 5) __Pyx_RaiseTooManyValuesError(5);
else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size);
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
#if CYTHON_COMPILING_IN_CPYTHON
if (likely(PyTuple_CheckExact(sequence))) {
- __pyx_t_15 = PyTuple_GET_ITEM(sequence, 0);
- __pyx_t_14 = PyTuple_GET_ITEM(sequence, 1);
+ __pyx_t_18 = PyTuple_GET_ITEM(sequence, 0);
+ __pyx_t_17 = PyTuple_GET_ITEM(sequence, 1);
+ __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2);
+ __pyx_t_15 = PyTuple_GET_ITEM(sequence, 3);
+ __pyx_t_14 = PyTuple_GET_ITEM(sequence, 4);
} else {
- __pyx_t_15 = PyList_GET_ITEM(sequence, 0);
- __pyx_t_14 = PyList_GET_ITEM(sequence, 1);
+ __pyx_t_18 = PyList_GET_ITEM(sequence, 0);
+ __pyx_t_17 = PyList_GET_ITEM(sequence, 1);
+ __pyx_t_16 = PyList_GET_ITEM(sequence, 2);
+ __pyx_t_15 = PyList_GET_ITEM(sequence, 3);
+ __pyx_t_14 = PyList_GET_ITEM(sequence, 4);
}
+ __Pyx_INCREF(__pyx_t_18);
+ __Pyx_INCREF(__pyx_t_17);
+ __Pyx_INCREF(__pyx_t_16);
__Pyx_INCREF(__pyx_t_15);
__Pyx_INCREF(__pyx_t_14);
#else
- __pyx_t_15 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_15);
- __pyx_t_14 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_14);
+ {
+ Py_ssize_t i;
+ PyObject** temps[5] = {&__pyx_t_18,&__pyx_t_17,&__pyx_t_16,&__pyx_t_15,&__pyx_t_14};
+ for (i=0; i < 5; i++) {
+ PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(item);
+ *(temps[i]) = item;
+ }
+ }
#endif
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
} else {
Py_ssize_t index = -1;
- __pyx_t_16 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_16);
+ PyObject** temps[5] = {&__pyx_t_18,&__pyx_t_17,&__pyx_t_16,&__pyx_t_15,&__pyx_t_14};
+ __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_19);
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
- __pyx_t_17 = Py_TYPE(__pyx_t_16)->tp_iternext;
- index = 0; __pyx_t_15 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_15)) goto __pyx_L11_unpacking_failed;
- __Pyx_GOTREF(__pyx_t_15);
- index = 1; __pyx_t_14 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_14)) goto __pyx_L11_unpacking_failed;
- __Pyx_GOTREF(__pyx_t_14);
- if (__Pyx_IternextUnpackEndCheck(__pyx_t_17(__pyx_t_16), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_t_17 = NULL;
- __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;
+ __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext;
+ for (index=0; index < 5; index++) {
+ PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L11_unpacking_failed;
+ __Pyx_GOTREF(item);
+ *(temps[index]) = item;
+ }
+ if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_20 = NULL;
+ __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0;
goto __pyx_L12_unpacking_done;
__pyx_L11_unpacking_failed:;
- __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;
- __pyx_t_17 = NULL;
+ __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0;
+ __pyx_t_20 = NULL;
if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index);
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__pyx_L12_unpacking_done:;
}
- __pyx_t_18 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_18 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
- __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0;
- __pyx_v_dist = __pyx_t_18;
- __pyx_v_dt = __pyx_t_12;
+ __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_18); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_18); __pyx_t_18 = 0;
+ __pyx_t_23 = __Pyx_PyInt_As_int(__pyx_t_17); if (unlikely((__pyx_t_23 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_17); __pyx_t_17 = 0;
+ __pyx_v_dist = __pyx_t_12;
+ __pyx_v_dt = __pyx_t_23;
+ __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16);
+ __pyx_t_16 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_15);
+ __pyx_t_15 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_14);
+ __pyx_t_14 = 0;
- /* "ml.pyx":69
- * for (dist, dt) in parents]
- * all_failures = sum(failures)
+ /* "ml.pyx":71
+ * for (dist, dt, w1, w2, w3) in parents]
+ * probs_fail[i] = sum(failures)
* successes = [weight_success(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<<
- * for (dist, dt) in parents]
- * probs[i] = max(s - failures[l] for l, s in enumerate(successes))
+ * for (dist, dt, w1, w2, w3) in parents]
+ * # find parent that maximizes p/\tilde{p}
*/
- __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_success(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_success(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
- if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
- /* "ml.pyx":70
- * all_failures = sum(failures)
+ /* "ml.pyx":72
+ * probs_fail[i] = sum(failures)
* successes = [weight_success(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents] # <<<<<<<<<<<<<<
+ * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<<
+ * # find parent that maximizes p/\tilde{p}
* probs[i] = max(s - failures[l] for l, s in enumerate(successes))
- * probs_fail[i] = all_failures
*/
}
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
@@ -2474,45 +2529,34 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__Pyx_GIVEREF(__pyx_t_5);
__pyx_t_5 = 0;
- /* "ml.pyx":71
- * successes = [weight_success(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents]
+ /* "ml.pyx":74
+ * for (dist, dt, w1, w2, w3) in parents]
+ * # find parent that maximizes p/\tilde{p}
* probs[i] = max(s - failures[l] for l, s in enumerate(successes)) # <<<<<<<<<<<<<<
- * probs_fail[i] = all_failures
*
+ * # loop through non-victims
*/
- __pyx_t_5 = __pyx_pf_2ml_2ml_genexpr(((PyObject*)__pyx_cur_scope)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = __pyx_pf_2ml_2ml_genexpr(((PyObject*)__pyx_cur_scope)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
- __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5);
__Pyx_GIVEREF(__pyx_t_5);
__pyx_t_5 = 0;
- __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_max, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_max, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- __pyx_t_12 = __pyx_v_i;
- if (__pyx_t_12 < 0) __pyx_t_12 += __pyx_pybuffernd_probs.diminfo[0].shape;
- *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_12, __pyx_pybuffernd_probs.diminfo[0].strides) = __pyx_t_19;
-
- /* "ml.pyx":72
- * for (dist, dt) in parents]
- * probs[i] = max(s - failures[l] for l, s in enumerate(successes))
- * probs_fail[i] = all_failures # <<<<<<<<<<<<<<
- *
- * for i, parents in enumerate(non_victims.itervalues()):
- */
- __pyx_t_18 = __pyx_v_i;
- if (__pyx_t_18 < 0) __pyx_t_18 += __pyx_pybuffernd_probs_fail.diminfo[0].shape;
- *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_fail.rcbuffer->pybuffer.buf, __pyx_t_18, __pyx_pybuffernd_probs_fail.diminfo[0].strides) = __pyx_v_all_failures;
+ __pyx_t_23 = __pyx_v_i;
+ if (__pyx_t_23 < 0) __pyx_t_23 += __pyx_pybuffernd_probs.diminfo[0].shape;
+ *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_23, __pyx_pybuffernd_probs.diminfo[0].strides) = __pyx_t_22;
}
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
- /* "ml.pyx":74
- * probs_fail[i] = all_failures
+ /* "ml.pyx":77
*
+ * # loop through non-victims
* for i, parents in enumerate(non_victims.itervalues()): # <<<<<<<<<<<<<<
* # for each non victim node, compute the probability that all its
* # parents fail to infect it
@@ -2521,52 +2565,52 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__pyx_t_1 = 0;
if (unlikely(__pyx_v_non_victims == Py_None)) {
PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", "itervalues");
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
- __pyx_t_5 = __Pyx_dict_iterator(__pyx_v_non_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_2), (&__pyx_t_11)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = __Pyx_dict_iterator(__pyx_v_non_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_2), (&__pyx_t_11)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
__Pyx_XDECREF(__pyx_t_3);
__pyx_t_3 = __pyx_t_5;
__pyx_t_5 = 0;
while (1) {
- __pyx_t_20 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_2, &__pyx_t_1, NULL, &__pyx_t_5, NULL, __pyx_t_11);
- if (unlikely(__pyx_t_20 == 0)) break;
- if (unlikely(__pyx_t_20 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_12 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_2, &__pyx_t_1, NULL, &__pyx_t_5, NULL, __pyx_t_11);
+ if (unlikely(__pyx_t_12 == 0)) break;
+ if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
- if (!(likely(PyList_CheckExact(__pyx_t_5))||((__pyx_t_5) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_5)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (!(likely(PyList_CheckExact(__pyx_t_5))||((__pyx_t_5) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_5)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_XDECREF_SET(__pyx_v_parents, ((PyObject*)__pyx_t_5));
__pyx_t_5 = 0;
__pyx_v_i = __pyx_t_10;
__pyx_t_10 = (__pyx_t_10 + 1);
- /* "ml.pyx":77
+ /* "ml.pyx":80
* # for each non victim node, compute the probability that all its
* # parents fail to infect it
* failures = [weight_failure(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<<
- * for (dist, dt) in parents]
+ * for (dist, dt, w1, w2, w3) in parents]
* probs_nv[i] = sum(failures)
*/
- __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
- /* "ml.pyx":78
+ /* "ml.pyx":81
* # parents fail to infect it
* failures = [weight_failure(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents] # <<<<<<<<<<<<<<
+ * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<<
* probs_nv[i] = sum(failures)
- * probs.sort()
+ *
*/
if (unlikely(__pyx_v_parents == Py_None)) {
PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable");
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__pyx_t_4 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_4); __pyx_t_13 = 0;
for (;;) {
if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_4)) break;
#if CYTHON_COMPILING_IN_CPYTHON
- __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#else
- __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#endif
if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) {
PyObject* sequence = __pyx_t_6;
@@ -2575,74 +2619,96 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
#else
Py_ssize_t size = PySequence_Size(sequence);
#endif
- if (unlikely(size != 2)) {
- if (size > 2) __Pyx_RaiseTooManyValuesError(2);
+ if (unlikely(size != 5)) {
+ if (size > 5) __Pyx_RaiseTooManyValuesError(5);
else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size);
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
#if CYTHON_COMPILING_IN_CPYTHON
if (likely(PyTuple_CheckExact(sequence))) {
__pyx_t_14 = PyTuple_GET_ITEM(sequence, 0);
__pyx_t_15 = PyTuple_GET_ITEM(sequence, 1);
+ __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2);
+ __pyx_t_17 = PyTuple_GET_ITEM(sequence, 3);
+ __pyx_t_18 = PyTuple_GET_ITEM(sequence, 4);
} else {
__pyx_t_14 = PyList_GET_ITEM(sequence, 0);
__pyx_t_15 = PyList_GET_ITEM(sequence, 1);
+ __pyx_t_16 = PyList_GET_ITEM(sequence, 2);
+ __pyx_t_17 = PyList_GET_ITEM(sequence, 3);
+ __pyx_t_18 = PyList_GET_ITEM(sequence, 4);
}
__Pyx_INCREF(__pyx_t_14);
__Pyx_INCREF(__pyx_t_15);
+ __Pyx_INCREF(__pyx_t_16);
+ __Pyx_INCREF(__pyx_t_17);
+ __Pyx_INCREF(__pyx_t_18);
#else
- __pyx_t_14 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_14);
- __pyx_t_15 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_15);
+ {
+ Py_ssize_t i;
+ PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18};
+ for (i=0; i < 5; i++) {
+ PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(item);
+ *(temps[i]) = item;
+ }
+ }
#endif
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
} else {
Py_ssize_t index = -1;
- __pyx_t_16 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_16);
+ PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18};
+ __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_19);
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
- __pyx_t_17 = Py_TYPE(__pyx_t_16)->tp_iternext;
- index = 0; __pyx_t_14 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_14)) goto __pyx_L17_unpacking_failed;
- __Pyx_GOTREF(__pyx_t_14);
- index = 1; __pyx_t_15 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_15)) goto __pyx_L17_unpacking_failed;
- __Pyx_GOTREF(__pyx_t_15);
- if (__Pyx_IternextUnpackEndCheck(__pyx_t_17(__pyx_t_16), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_t_17 = NULL;
- __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;
+ __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext;
+ for (index=0; index < 5; index++) {
+ PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L17_unpacking_failed;
+ __Pyx_GOTREF(item);
+ *(temps[index]) = item;
+ }
+ if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_20 = NULL;
+ __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0;
goto __pyx_L18_unpacking_done;
__pyx_L17_unpacking_failed:;
- __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;
- __pyx_t_17 = NULL;
+ __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0;
+ __pyx_t_20 = NULL;
if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index);
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__pyx_L18_unpacking_done:;
}
- __pyx_t_20 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_20 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0;
- __pyx_t_21 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_21 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_24 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_24 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
- __pyx_v_dist = __pyx_t_20;
- __pyx_v_dt = __pyx_t_21;
+ __pyx_v_dist = __pyx_t_12;
+ __pyx_v_dt = __pyx_t_24;
+ __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16);
+ __pyx_t_16 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_17);
+ __pyx_t_17 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_18);
+ __pyx_t_18 = 0;
- /* "ml.pyx":77
+ /* "ml.pyx":80
* # for each non victim node, compute the probability that all its
* # parents fail to infect it
* failures = [weight_failure(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<<
- * for (dist, dt) in parents]
+ * for (dist, dt, w1, w2, w3) in parents]
* probs_nv[i] = sum(failures)
*/
- __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
- if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
- /* "ml.pyx":78
+ /* "ml.pyx":81
* # parents fail to infect it
* failures = [weight_failure(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents] # <<<<<<<<<<<<<<
+ * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<<
* probs_nv[i] = sum(failures)
- * probs.sort()
+ *
*/
}
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
@@ -2651,37 +2717,37 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__Pyx_GIVEREF(__pyx_t_5);
__pyx_t_5 = 0;
- /* "ml.pyx":79
+ /* "ml.pyx":82
* failures = [weight_failure(dist, dt, alpha, delta, gamma)
- * for (dist, dt) in parents]
+ * for (dist, dt, w1, w2, w3) in parents]
* probs_nv[i] = sum(failures) # <<<<<<<<<<<<<<
- * probs.sort()
- * probs = probs[::-1]
+ *
+ * # calculate log likelihood
*/
- __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 79; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
__Pyx_INCREF(__pyx_cur_scope->__pyx_v_failures);
PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_cur_scope->__pyx_v_failures);
__Pyx_GIVEREF(__pyx_cur_scope->__pyx_v_failures);
- __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 79; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 79; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_t_21 = __pyx_v_i;
- if (__pyx_t_21 < 0) __pyx_t_21 += __pyx_pybuffernd_probs_nv.diminfo[0].shape;
- *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf, __pyx_t_21, __pyx_pybuffernd_probs_nv.diminfo[0].strides) = __pyx_t_19;
+ __pyx_t_24 = __pyx_v_i;
+ if (__pyx_t_24 < 0) __pyx_t_24 += __pyx_pybuffernd_probs_nv.diminfo[0].shape;
+ *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf, __pyx_t_24, __pyx_pybuffernd_probs_nv.diminfo[0].strides) = __pyx_t_22;
}
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
- /* "ml.pyx":80
- * for (dist, dt) in parents]
- * probs_nv[i] = sum(failures)
- * probs.sort() # <<<<<<<<<<<<<<
- * probs = probs[::-1]
+ /* "ml.pyx":85
+ *
+ * # calculate log likelihood
+ * probs.sort(); probs = probs[::-1] # sort probs in descending order # <<<<<<<<<<<<<<
* cdef:
+ * np.ndarray[DTYPE_t] cums = probs.cumsum()
*/
- __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs), __pyx_n_s_sort); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs), __pyx_n_s_sort); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
__pyx_t_5 = NULL;
if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) {
@@ -2694,54 +2760,46 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
}
if (__pyx_t_5) {
- __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
} else {
- __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__Pyx_GOTREF(__pyx_t_3);
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
-
- /* "ml.pyx":81
- * probs_nv[i] = sum(failures)
- * probs.sort()
- * probs = probs[::-1] # <<<<<<<<<<<<<<
- * cdef:
- * np.ndarray[DTYPE_t] cums = probs.cumsum()
- */
- __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_slice_); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_slice_); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
__Pyx_GOTREF(__pyx_t_3);
- if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__pyx_t_7 = ((PyArrayObject *)__pyx_t_3);
{
__Pyx_BufFmt_StackElem __pyx_stack[1];
__Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_probs.rcbuffer->pybuffer);
__pyx_t_10 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs.rcbuffer->pybuffer, (PyObject*)__pyx_t_7, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack);
if (unlikely(__pyx_t_10 < 0)) {
- PyErr_Fetch(&__pyx_t_22, &__pyx_t_23, &__pyx_t_24);
+ PyErr_Fetch(&__pyx_t_25, &__pyx_t_26, &__pyx_t_27);
if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs.rcbuffer->pybuffer, (PyObject*)__pyx_v_probs, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) {
- Py_XDECREF(__pyx_t_22); Py_XDECREF(__pyx_t_23); Py_XDECREF(__pyx_t_24);
+ Py_XDECREF(__pyx_t_25); Py_XDECREF(__pyx_t_26); Py_XDECREF(__pyx_t_27);
__Pyx_RaiseBufferFallbackError();
} else {
- PyErr_Restore(__pyx_t_22, __pyx_t_23, __pyx_t_24);
+ PyErr_Restore(__pyx_t_25, __pyx_t_26, __pyx_t_27);
}
}
__pyx_pybuffernd_probs.diminfo[0].strides = __pyx_pybuffernd_probs.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_probs.diminfo[0].shape = __pyx_pybuffernd_probs.rcbuffer->pybuffer.shape[0];
- if (unlikely(__pyx_t_10 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (unlikely(__pyx_t_10 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__pyx_t_7 = 0;
__Pyx_DECREF_SET(__pyx_v_probs, ((PyArrayObject *)__pyx_t_3));
__pyx_t_3 = 0;
- /* "ml.pyx":83
- * probs = probs[::-1]
+ /* "ml.pyx":87
+ * probs.sort(); probs = probs[::-1] # sort probs in descending order
* cdef:
* np.ndarray[DTYPE_t] cums = probs.cumsum() # <<<<<<<<<<<<<<
* ll = probs_fail.sum()
* ll += probs_nv.sum()
*/
- __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs), __pyx_n_s_cumsum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs), __pyx_n_s_cumsum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
__pyx_t_5 = NULL;
if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) {
@@ -2754,35 +2812,35 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
}
if (__pyx_t_5) {
- __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
} else {
- __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__Pyx_GOTREF(__pyx_t_3);
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_t_25 = ((PyArrayObject *)__pyx_t_3);
+ if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_28 = ((PyArrayObject *)__pyx_t_3);
{
__Pyx_BufFmt_StackElem __pyx_stack[1];
- if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_cums.rcbuffer->pybuffer, (PyObject*)__pyx_t_25, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_cums.rcbuffer->pybuffer, (PyObject*)__pyx_t_28, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
__pyx_v_cums = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_cums.rcbuffer->pybuffer.buf = NULL;
- {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
} else {__pyx_pybuffernd_cums.diminfo[0].strides = __pyx_pybuffernd_cums.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_cums.diminfo[0].shape = __pyx_pybuffernd_cums.rcbuffer->pybuffer.shape[0];
}
}
- __pyx_t_25 = 0;
+ __pyx_t_28 = 0;
__pyx_v_cums = ((PyArrayObject *)__pyx_t_3);
__pyx_t_3 = 0;
- /* "ml.pyx":84
+ /* "ml.pyx":88
* cdef:
* np.ndarray[DTYPE_t] cums = probs.cumsum()
* ll = probs_fail.sum() # <<<<<<<<<<<<<<
* ll += probs_nv.sum()
*
*/
- __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
__pyx_t_5 = NULL;
if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) {
@@ -2795,27 +2853,27 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
}
if (__pyx_t_5) {
- __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
} else {
- __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__Pyx_GOTREF(__pyx_t_3);
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
- __pyx_v_ll = __pyx_t_19;
+ __pyx_v_ll = __pyx_t_22;
- /* "ml.pyx":85
+ /* "ml.pyx":89
* np.ndarray[DTYPE_t] cums = probs.cumsum()
* ll = probs_fail.sum()
* ll += probs_nv.sum() # <<<<<<<<<<<<<<
*
* for i in xrange(n_victims - 1, 0, -1):
*/
- __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_3);
- __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
__pyx_t_6 = NULL;
if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) {
@@ -2828,22 +2886,22 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
}
if (__pyx_t_6) {
- __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
} else {
- __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__Pyx_GOTREF(__pyx_t_4);
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- __pyx_v_ll = __pyx_t_19;
+ __pyx_v_ll = __pyx_t_22;
- /* "ml.pyx":87
+ /* "ml.pyx":91
* ll += probs_nv.sum()
*
* for i in xrange(n_victims - 1, 0, -1): # <<<<<<<<<<<<<<
@@ -2853,38 +2911,50 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
for (__pyx_t_10 = (__pyx_v_n_victims - 1); __pyx_t_10 > 0; __pyx_t_10-=1) {
__pyx_v_i = __pyx_t_10;
- /* "ml.pyx":89
+ /* "ml.pyx":93
* for i in xrange(n_victims - 1, 0, -1):
* # iterate over all victim nodes to find the optimal threshold
* roots = n_roots + n_victims - 1 - i # <<<<<<<<<<<<<<
- * beta = 1. / (1. + exp(-probs[i]))
- * if beta > float(roots) / age:
+ * beta = exp(probs[i])#1. / (1. + exp(-probs[i]))
+ * print beta
*/
__pyx_v_roots = (((__pyx_v_n_roots + __pyx_v_n_victims) - 1) - __pyx_v_i);
- /* "ml.pyx":90
+ /* "ml.pyx":94
* # iterate over all victim nodes to find the optimal threshold
* roots = n_roots + n_victims - 1 - i
- * beta = 1. / (1. + exp(-probs[i])) # <<<<<<<<<<<<<<
+ * beta = exp(probs[i])#1. / (1. + exp(-probs[i])) # <<<<<<<<<<<<<<
+ * print beta
* if beta > float(roots) / age:
- * break
*/
__pyx_t_11 = __pyx_v_i;
if (__pyx_t_11 < 0) __pyx_t_11 += __pyx_pybuffernd_probs.diminfo[0].shape;
- __pyx_v_beta = (1. / (1. + exp((-(*__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_11, __pyx_pybuffernd_probs.diminfo[0].strides))))));
+ __pyx_v_beta = exp((*__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_11, __pyx_pybuffernd_probs.diminfo[0].strides)));
- /* "ml.pyx":91
+ /* "ml.pyx":95
* roots = n_roots + n_victims - 1 - i
- * beta = 1. / (1. + exp(-probs[i]))
+ * beta = exp(probs[i])#1. / (1. + exp(-probs[i]))
+ * print beta # <<<<<<<<<<<<<<
+ * if beta > float(roots) / age:
+ * break
+ */
+ __pyx_t_5 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_5);
+ if (__Pyx_PrintOne(0, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+
+ /* "ml.pyx":96
+ * beta = exp(probs[i])#1. / (1. + exp(-probs[i]))
+ * print beta
* if beta > float(roots) / age: # <<<<<<<<<<<<<<
* break
* else:
*/
- __pyx_t_26 = ((__pyx_v_beta > (((double)__pyx_v_roots) / __pyx_v_age)) != 0);
- if (__pyx_t_26) {
+ __pyx_t_29 = ((__pyx_v_beta > (((double)__pyx_v_roots) / __pyx_v_age)) != 0);
+ if (__pyx_t_29) {
- /* "ml.pyx":92
- * beta = 1. / (1. + exp(-probs[i]))
+ /* "ml.pyx":97
+ * print beta
* if beta > float(roots) / age:
* break # <<<<<<<<<<<<<<
* else:
@@ -2895,50 +2965,50 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
/*else*/ {
- /* "ml.pyx":94
+ /* "ml.pyx":99
* break
* else:
* print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta) # <<<<<<<<<<<<<<
* roots = n_victims + n_roots
* i = -1
*/
- __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_kp_s_alpha_0_delta_1_Everyone_is_a_ro, __pyx_n_s_format); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_kp_s_alpha_0_delta_1_Everyone_is_a_ro, __pyx_n_s_format); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
- __pyx_t_3 = PyFloat_FromDouble(__pyx_v_alpha); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = PyFloat_FromDouble(__pyx_v_alpha); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_3);
- __pyx_t_6 = PyFloat_FromDouble(__pyx_v_delta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyFloat_FromDouble(__pyx_v_delta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
- __pyx_t_15 = NULL;
+ __pyx_t_18 = NULL;
__pyx_t_2 = 0;
if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) {
- __pyx_t_15 = PyMethod_GET_SELF(__pyx_t_4);
- if (likely(__pyx_t_15)) {
+ __pyx_t_18 = PyMethod_GET_SELF(__pyx_t_4);
+ if (likely(__pyx_t_18)) {
PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4);
- __Pyx_INCREF(__pyx_t_15);
+ __Pyx_INCREF(__pyx_t_18);
__Pyx_INCREF(function);
__Pyx_DECREF_SET(__pyx_t_4, function);
__pyx_t_2 = 1;
}
}
- __pyx_t_14 = PyTuple_New(2+__pyx_t_2); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_14);
- if (__pyx_t_15) {
- PyTuple_SET_ITEM(__pyx_t_14, 0, __pyx_t_15); __Pyx_GIVEREF(__pyx_t_15); __pyx_t_15 = NULL;
+ __pyx_t_17 = PyTuple_New(2+__pyx_t_2); if (unlikely(!__pyx_t_17)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_17);
+ if (__pyx_t_18) {
+ PyTuple_SET_ITEM(__pyx_t_17, 0, __pyx_t_18); __Pyx_GIVEREF(__pyx_t_18); __pyx_t_18 = NULL;
}
- PyTuple_SET_ITEM(__pyx_t_14, 0+__pyx_t_2, __pyx_t_3);
+ PyTuple_SET_ITEM(__pyx_t_17, 0+__pyx_t_2, __pyx_t_3);
__Pyx_GIVEREF(__pyx_t_3);
- PyTuple_SET_ITEM(__pyx_t_14, 1+__pyx_t_2, __pyx_t_6);
+ PyTuple_SET_ITEM(__pyx_t_17, 1+__pyx_t_2, __pyx_t_6);
__Pyx_GIVEREF(__pyx_t_6);
__pyx_t_3 = 0;
__pyx_t_6 = 0;
- __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_14, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_17, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
- __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0;
+ __Pyx_DECREF(__pyx_t_17); __pyx_t_17 = 0;
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- if (__Pyx_PrintOne(0, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (__Pyx_PrintOne(0, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- /* "ml.pyx":95
+ /* "ml.pyx":100
* else:
* print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta)
* roots = n_victims + n_roots # <<<<<<<<<<<<<<
@@ -2947,7 +3017,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
*/
__pyx_v_roots = (__pyx_v_n_victims + __pyx_v_n_roots);
- /* "ml.pyx":96
+ /* "ml.pyx":101
* print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta)
* roots = n_victims + n_roots
* i = -1 # <<<<<<<<<<<<<<
@@ -2958,7 +3028,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
__pyx_L20_break:;
- /* "ml.pyx":97
+ /* "ml.pyx":102
* roots = n_victims + n_roots
* i = -1
* beta = float(roots) / age # <<<<<<<<<<<<<<
@@ -2967,7 +3037,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
*/
__pyx_v_beta = (((double)__pyx_v_roots) / __pyx_v_age);
- /* "ml.pyx":98
+ /* "ml.pyx":103
* i = -1
* beta = float(roots) / age
* for i in xrange(n_victims - 1, 0, -1): # <<<<<<<<<<<<<<
@@ -2977,19 +3047,19 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
for (__pyx_t_10 = (__pyx_v_n_victims - 1); __pyx_t_10 > 0; __pyx_t_10-=1) {
__pyx_v_i = __pyx_t_10;
- /* "ml.pyx":99
+ /* "ml.pyx":104
* beta = float(roots) / age
* for i in xrange(n_victims - 1, 0, -1):
* if probs[i] >= log(beta/(1.- beta)): # <<<<<<<<<<<<<<
* break
* ll += age * log(1 - beta)
*/
- __pyx_t_20 = __pyx_v_i;
- if (__pyx_t_20 < 0) __pyx_t_20 += __pyx_pybuffernd_probs.diminfo[0].shape;
- __pyx_t_26 = (((*__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_20, __pyx_pybuffernd_probs.diminfo[0].strides)) >= log((__pyx_v_beta / (1. - __pyx_v_beta)))) != 0);
- if (__pyx_t_26) {
+ __pyx_t_12 = __pyx_v_i;
+ if (__pyx_t_12 < 0) __pyx_t_12 += __pyx_pybuffernd_probs.diminfo[0].shape;
+ __pyx_t_29 = (((*__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_12, __pyx_pybuffernd_probs.diminfo[0].strides)) >= log((__pyx_v_beta / (1. - __pyx_v_beta)))) != 0);
+ if (__pyx_t_29) {
- /* "ml.pyx":100
+ /* "ml.pyx":105
* for i in xrange(n_victims - 1, 0, -1):
* if probs[i] >= log(beta/(1.- beta)):
* break # <<<<<<<<<<<<<<
@@ -3001,7 +3071,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
__pyx_L23_break:;
- /* "ml.pyx":101
+ /* "ml.pyx":106
* if probs[i] >= log(beta/(1.- beta)):
* break
* ll += age * log(1 - beta) # <<<<<<<<<<<<<<
@@ -3010,17 +3080,17 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
*/
__pyx_v_ll = (__pyx_v_ll + (__pyx_v_age * log((1.0 - __pyx_v_beta))));
- /* "ml.pyx":102
+ /* "ml.pyx":107
* break
* ll += age * log(1 - beta)
* if i >= 0: # <<<<<<<<<<<<<<
* ll += cums[i]
* if roots > 0:
*/
- __pyx_t_26 = ((__pyx_v_i >= 0) != 0);
- if (__pyx_t_26) {
+ __pyx_t_29 = ((__pyx_v_i >= 0) != 0);
+ if (__pyx_t_29) {
- /* "ml.pyx":103
+ /* "ml.pyx":108
* ll += age * log(1 - beta)
* if i >= 0:
* ll += cums[i] # <<<<<<<<<<<<<<
@@ -3034,17 +3104,17 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
__pyx_L25:;
- /* "ml.pyx":104
+ /* "ml.pyx":109
* if i >= 0:
* ll += cums[i]
* if roots > 0: # <<<<<<<<<<<<<<
* ll += roots * log(beta) - roots * log(1 - beta)
* return (beta, roots, ll)
*/
- __pyx_t_26 = ((__pyx_v_roots > 0) != 0);
- if (__pyx_t_26) {
+ __pyx_t_29 = ((__pyx_v_roots > 0) != 0);
+ if (__pyx_t_29) {
- /* "ml.pyx":105
+ /* "ml.pyx":110
* ll += cums[i]
* if roots > 0:
* ll += roots * log(beta) - roots * log(1 - beta) # <<<<<<<<<<<<<<
@@ -3055,29 +3125,29 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
__pyx_L26:;
- /* "ml.pyx":106
+ /* "ml.pyx":111
* if roots > 0:
* ll += roots * log(beta) - roots * log(1 - beta)
* return (beta, roots, ll) # <<<<<<<<<<<<<<
*/
__Pyx_XDECREF(__pyx_r);
- __pyx_t_5 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 111; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
- __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 111; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
- __pyx_t_14 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_14);
- __pyx_t_6 = PyTuple_New(3); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_17 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_17)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 111; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_17);
+ __pyx_t_6 = PyTuple_New(3); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 111; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_5);
__Pyx_GIVEREF(__pyx_t_5);
PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_4);
__Pyx_GIVEREF(__pyx_t_4);
- PyTuple_SET_ITEM(__pyx_t_6, 2, __pyx_t_14);
- __Pyx_GIVEREF(__pyx_t_14);
+ PyTuple_SET_ITEM(__pyx_t_6, 2, __pyx_t_17);
+ __Pyx_GIVEREF(__pyx_t_17);
__pyx_t_5 = 0;
__pyx_t_4 = 0;
- __pyx_t_14 = 0;
+ __pyx_t_17 = 0;
__pyx_r = __pyx_t_6;
__pyx_t_6 = 0;
goto __pyx_L0;
@@ -3099,6 +3169,9 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__Pyx_XDECREF(__pyx_t_14);
__Pyx_XDECREF(__pyx_t_15);
__Pyx_XDECREF(__pyx_t_16);
+ __Pyx_XDECREF(__pyx_t_17);
+ __Pyx_XDECREF(__pyx_t_18);
+ __Pyx_XDECREF(__pyx_t_19);
{ PyObject *__pyx_type, *__pyx_value, *__pyx_tb;
__Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);
__Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_cums.rcbuffer->pybuffer);
@@ -3120,6 +3193,9 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__Pyx_XDECREF((PyObject *)__pyx_v_probs_fail);
__Pyx_XDECREF((PyObject *)__pyx_v_probs_nv);
__Pyx_XDECREF((PyObject *)__pyx_v_cums);
+ __Pyx_XDECREF(__pyx_v_w1);
+ __Pyx_XDECREF(__pyx_v_w2);
+ __Pyx_XDECREF(__pyx_v_w3);
__Pyx_DECREF(((PyObject *)__pyx_cur_scope));
__Pyx_XGIVEREF(__pyx_r);
__Pyx_RefNannyFinishContext();
@@ -5386,7 +5462,6 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = {
{&__pyx_kp_s_Users_ben_Documents_Cascade_Pro, __pyx_k_Users_ben_Documents_Cascade_Pro, sizeof(__pyx_k_Users_ben_Documents_Cascade_Pro), 0, 0, 1, 0},
{&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1},
{&__pyx_n_s_age, __pyx_k_age, sizeof(__pyx_k_age), 0, 0, 1, 1},
- {&__pyx_n_s_all_failures, __pyx_k_all_failures, sizeof(__pyx_k_all_failures), 0, 0, 1, 1},
{&__pyx_n_s_alpha, __pyx_k_alpha, sizeof(__pyx_k_alpha), 0, 0, 1, 1},
{&__pyx_kp_s_alpha_0_delta_1_Everyone_is_a_ro, __pyx_k_alpha_0_delta_1_Everyone_is_a_ro, sizeof(__pyx_k_alpha_0_delta_1_Everyone_is_a_ro), 0, 0, 1, 0},
{&__pyx_n_s_args, __pyx_k_args, sizeof(__pyx_k_args), 0, 0, 1, 1},
@@ -5441,18 +5516,21 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = {
{&__pyx_n_s_throw, __pyx_k_throw, sizeof(__pyx_k_throw), 0, 0, 1, 1},
{&__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_k_unknown_dtype_code_in_numpy_pxd, sizeof(__pyx_k_unknown_dtype_code_in_numpy_pxd), 0, 1, 0, 0},
{&__pyx_n_s_victims, __pyx_k_victims, sizeof(__pyx_k_victims), 0, 0, 1, 1},
+ {&__pyx_n_s_w1, __pyx_k_w1, sizeof(__pyx_k_w1), 0, 0, 1, 1},
+ {&__pyx_n_s_w2, __pyx_k_w2, sizeof(__pyx_k_w2), 0, 0, 1, 1},
+ {&__pyx_n_s_w3, __pyx_k_w3, sizeof(__pyx_k_w3), 0, 0, 1, 1},
{&__pyx_n_s_xrange, __pyx_k_xrange, sizeof(__pyx_k_xrange), 0, 0, 1, 1},
{&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1},
{0, 0, 0, 0, 0, 0, 0}
};
static int __Pyx_InitCachedBuiltins(void) {
- __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_builtin_sum = __Pyx_GetBuiltinName(__pyx_n_s_sum); if (!__pyx_builtin_sum) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_builtin_max = __Pyx_GetBuiltinName(__pyx_n_s_max); if (!__pyx_builtin_max) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_builtin_sum = __Pyx_GetBuiltinName(__pyx_n_s_sum); if (!__pyx_builtin_sum) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_builtin_max = __Pyx_GetBuiltinName(__pyx_n_s_max); if (!__pyx_builtin_max) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#if PY_MAJOR_VERSION >= 3
- __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#else
- __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_xrange); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_xrange); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
#endif
__pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 218; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 231; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
@@ -5466,14 +5544,14 @@ static int __Pyx_InitCachedConstants(void) {
__Pyx_RefNannyDeclarations
__Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0);
- /* "ml.pyx":81
- * probs_nv[i] = sum(failures)
- * probs.sort()
- * probs = probs[::-1] # <<<<<<<<<<<<<<
+ /* "ml.pyx":85
+ *
+ * # calculate log likelihood
+ * probs.sort(); probs = probs[::-1] # sort probs in descending order # <<<<<<<<<<<<<<
* cdef:
* np.ndarray[DTYPE_t] cums = probs.cumsum()
*/
- __pyx_slice_ = PySlice_New(Py_None, Py_None, __pyx_int_neg_1); if (unlikely(!__pyx_slice_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_slice_ = PySlice_New(Py_None, Py_None, __pyx_int_neg_1); if (unlikely(!__pyx_slice_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_slice_);
__Pyx_GIVEREF(__pyx_slice_);
@@ -5550,10 +5628,10 @@ static int __Pyx_InitCachedConstants(void) {
* DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma=10):
* cdef:
*/
- __pyx_tuple__8 = PyTuple_Pack(29, __pyx_n_s_root_victims, __pyx_n_s_victims, __pyx_n_s_non_victims, __pyx_n_s_age, __pyx_n_s_alpha, __pyx_n_s_delta, __pyx_n_s_gamma, __pyx_n_s_n_roots, __pyx_n_s_n_victims, __pyx_n_s_n_nodes, __pyx_n_s_roots, __pyx_n_s_i, __pyx_n_s_dist, __pyx_n_s_dt, __pyx_n_s_t, __pyx_n_s_l, __pyx_n_s_beta, __pyx_n_s_all_failures, __pyx_n_s_ll, __pyx_n_s_beta2, __pyx_n_s_parents, __pyx_n_s_failures, __pyx_n_s_successes, __pyx_n_s_probs, __pyx_n_s_probs_fail, __pyx_n_s_probs_nv, __pyx_n_s_cums, __pyx_n_s_genexpr, __pyx_n_s_genexpr); if (unlikely(!__pyx_tuple__8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_tuple__8 = PyTuple_Pack(31, __pyx_n_s_root_victims, __pyx_n_s_victims, __pyx_n_s_non_victims, __pyx_n_s_age, __pyx_n_s_alpha, __pyx_n_s_delta, __pyx_n_s_gamma, __pyx_n_s_n_roots, __pyx_n_s_n_victims, __pyx_n_s_n_nodes, __pyx_n_s_roots, __pyx_n_s_i, __pyx_n_s_dist, __pyx_n_s_dt, __pyx_n_s_t, __pyx_n_s_l, __pyx_n_s_beta, __pyx_n_s_ll, __pyx_n_s_beta2, __pyx_n_s_parents, __pyx_n_s_failures, __pyx_n_s_successes, __pyx_n_s_probs, __pyx_n_s_probs_fail, __pyx_n_s_probs_nv, __pyx_n_s_cums, __pyx_n_s_w1, __pyx_n_s_w2, __pyx_n_s_w3, __pyx_n_s_genexpr, __pyx_n_s_genexpr); if (unlikely(!__pyx_tuple__8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_tuple__8);
__Pyx_GIVEREF(__pyx_tuple__8);
- __pyx_codeobj__9 = (PyObject*)__Pyx_PyCode_New(7, 0, 29, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__8, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Users_ben_Documents_Cascade_Pro, __pyx_n_s_ml, 50, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_codeobj__9 = (PyObject*)__Pyx_PyCode_New(7, 0, 31, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__8, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Users_ben_Documents_Cascade_Pro, __pyx_n_s_ml, 50, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_RefNannyFinishContext();
return 0;
__pyx_L1_error:;
@@ -5653,7 +5731,7 @@ PyMODINIT_FUNC PyInit_ml(void)
if (PyType_Ready(&__pyx_type_2ml___pyx_scope_struct__ml) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__pyx_type_2ml___pyx_scope_struct__ml.tp_print = 0;
__pyx_ptype_2ml___pyx_scope_struct__ml = &__pyx_type_2ml___pyx_scope_struct__ml;
- if (PyType_Ready(&__pyx_type_2ml___pyx_scope_struct_1_genexpr) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (PyType_Ready(&__pyx_type_2ml___pyx_scope_struct_1_genexpr) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__pyx_type_2ml___pyx_scope_struct_1_genexpr.tp_print = 0;
__pyx_ptype_2ml___pyx_scope_struct_1_genexpr = &__pyx_type_2ml___pyx_scope_struct_1_genexpr;
/*--- Type import code ---*/
diff --git a/experiments/ml.pyx b/experiments/ml.pyx
index 74e5be3..c1a5616 100644
--- a/experiments/ml.pyx
+++ b/experiments/ml.pyx
@@ -51,34 +51,38 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma=10):
cdef:
int n_roots, n_victims, n_nodes, roots, i, dist, dt, t, l
- DTYPE_t beta, all_failures, ll, beta2
+ DTYPE_t beta, ll, beta2
list parents, failures, successes
n_roots, n_victims = len(root_victims), len(victims)
- n_nodes = n_victims + len(non_victims) + n_roots
+ n_nodes = n_roots + n_victims + len(non_victims)
cdef:
np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
+
+ # loop through victims
for i, parents in enumerate(victims.itervalues()):
# for each victim node i, compute the probability that all its parents
# fail to infect it, also computes the probability that its most
# likely parent infects it
failures = [weight_failure(dist, dt, alpha, delta, gamma)
- for (dist, dt) in parents]
- all_failures = sum(failures)
+ for (dist, dt, w1, w2, w3) in parents]
+ probs_fail[i] = sum(failures)
successes = [weight_success(dist, dt, alpha, delta, gamma)
- for (dist, dt) in parents]
- probs[i] = max(s - failures[l] for l, s in enumerate(successes))
- probs_fail[i] = all_failures
+ for (dist, dt, w1, w2, w3) in parents]
+ # find parent that maximizes p/\tilde{p}
+ probs[i] = max(s - failures[l] for l, s in enumerate(successes))
+ # loop through non-victims
for i, parents in enumerate(non_victims.itervalues()):
# for each non victim node, compute the probability that all its
# parents fail to infect it
failures = [weight_failure(dist, dt, alpha, delta, gamma)
- for (dist, dt) in parents]
+ for (dist, dt, w1, w2, w3) in parents]
probs_nv[i] = sum(failures)
- probs.sort()
- probs = probs[::-1]
+
+ # calculate log likelihood
+ probs.sort(); probs = probs[::-1] # sort probs in descending order
cdef:
np.ndarray[DTYPE_t] cums = probs.cumsum()
ll = probs_fail.sum()
@@ -87,7 +91,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
for i in xrange(n_victims - 1, 0, -1):
# iterate over all victim nodes to find the optimal threshold
roots = n_roots + n_victims - 1 - i
- beta = 1. / (1. + exp(-probs[i]))
+ beta = 1. / (1. + exp(-probs[i]))#exp(probs[i])#
if beta > float(roots) / age:
break
else:
diff --git a/experiments/ml.so b/experiments/ml.so
index 571865b..6dcab82 100755
--- a/experiments/ml.so
+++ b/experiments/ml.so
Binary files differ
diff --git a/experiments/out.log b/experiments/out.log
index 407eefe..f6caa9b 100644
--- a/experiments/out.log
+++ b/experiments/out.log
@@ -1,3858 +1,15 @@
-1.0 0.01 3.45324881289e-06 11002 -152373.756762
-1.0 0.04 3.38262701841e-06 10777 -152405.770449
-1.0 0.07 3.35406442597e-06 10686 -153164.537314
-1.0 0.1 3.33429032352e-06 10623 -154401.200111
-1.0 0.13 3.30698322965e-06 10536 -156056.750373
-1.0 0.16 3.30698322965e-06 10536 -158092.563181
-1.0 0.19 3.30698322965e-06 10536 -160524.168077
-1.0 0.22 3.28595362863e-06 10469 -163338.491856
-1.0 0.25 3.28407038077e-06 10463 -166548.430599
-1.0 0.28 3.28407038077e-06 10463 -170173.765055
-1.0 0.31 3.28407038077e-06 10463 -174231.987109
-1.0 0.34 3.26147140654e-06 10391 -178735.091444
-1.0 0.37 3.26147140654e-06 10391 -183715.722798
-1.0 0.4 3.26147140654e-06 10391 -189211.308601
-1.0 0.43 3.26147140654e-06 10391 -195260.710977
-1.0 0.46 3.25739103619e-06 10378 -201910.210955
-1.0 0.49 3.23322268875e-06 10301 -209212.13195
-1.0 0.52 3.23322268875e-06 10301 -217226.599833
-1.0 0.55 3.23322268875e-06 10301 -226044.689665
-1.0 0.58 3.23322268875e-06 10301 -235764.690988
-1.0 0.61 3.23322268875e-06 10301 -246507.568015
-1.0 0.64 3.23322268875e-06 10301 -258424.514499
-1.0 0.67 3.23322268875e-06 10301 -271706.978841
-1.0 0.7 3.21407633557e-06 10240 -286594.302167
-1.0 0.73 3.21407633557e-06 10240 -303418.139175
-1.0 0.76 3.21407633557e-06 10240 -322623.131242
-1.0 0.79 3.21407633557e-06 10240 -344830.756962
-1.0 0.82 3.21407633557e-06 10240 -370952.165726
-1.0 0.85 3.19775485418e-06 10188 -402393.216523
-1.0 0.88 3.19241898527e-06 10171 -441521.055457
-0.0909090909091 0.01 3.0750298691e-06 9797 -150463.291574
-0.0909090909091 0.04 2.64376611079e-06 8423 -146426.454929
-0.0909090909091 0.07 2.52198274964e-06 8035 -144774.783776
-0.0909090909091 0.1 2.44288633982e-06 7783 -144284.276633
-0.0909090909091 0.13 2.39643289278e-06 7635 -144559.509024
-0.0909090909091 0.16 2.36190668215e-06 7525 -145459.762822
-0.0909090909091 0.19 2.32894984472e-06 7420 -146895.533962
-0.0909090909091 0.22 2.29567913266e-06 7314 -148827.173822
-0.0909090909091 0.25 2.27496340627e-06 7248 -151237.723392
-0.0909090909091 0.28 2.25487542918e-06 7184 -154121.451004
-0.0909090909091 0.31 2.24169269421e-06 7142 -157484.470574
-0.0909090909091 0.34 2.22819608459e-06 7099 -161337.94231
-0.0909090909091 0.37 2.20653873429e-06 7030 -165698.258589
-0.0909090909091 0.4 2.1917866261e-06 6983 -170594.028285
-0.0909090909091 0.43 2.18362588541e-06 6957 -176058.93665
-0.0909090909091 0.46 2.17295414758e-06 6923 -182135.66092
-0.0909090909091 0.49 2.16824602794e-06 6908 -188874.899404
-0.0909090909091 0.52 2.15882978868e-06 6878 -196339.502374
-0.0909090909091 0.55 2.14941354942e-06 6848 -204605.31655
-0.0909090909091 0.58 2.14031118479e-06 6819 -213766.700883
-0.0909090909091 0.61 2.12775619911e-06 6779 -223938.297053
-0.0909090909091 0.64 2.12242033019e-06 6762 -235265.93441
-0.0909090909091 0.67 2.11394571485e-06 6735 -247935.42533
-0.0909090909091 0.7 2.10296010238e-06 6700 -262185.724641
-0.0909090909091 0.73 2.09322998847e-06 6669 -278332.096551
-0.0909090909091 0.76 2.08130275207e-06 6631 -296803.170057
-0.0909090909091 0.79 2.07125876352e-06 6599 -318201.827345
-0.0909090909091 0.82 2.05336790892e-06 6542 -343410.417577
-0.0909090909091 0.85 2.04395166965e-06 6512 -373799.089191
-0.0909090909091 0.88 2.03076893468e-06 6470 -411665.87129
-0.047619047619 0.01 2.99938608035e-06 9556 -149763.532956
-0.047619047619 0.04 2.33114696722e-06 7427 -144303.444655
-0.047619047619 0.07 2.15192454655e-06 6856 -141652.327419
-0.047619047619 0.1 2.0800472535e-06 6627 -140455.986397
-0.047619047619 0.13 2.01946944757e-06 6434 -140194.999096
-0.047619047619 0.16 1.98494323693e-06 6324 -140646.765177
-0.047619047619 0.19 1.95606676985e-06 6232 -141704.232879
-0.047619047619 0.22 1.93001517456e-06 6149 -143307.788155
-0.047619047619 0.25 1.90051095819e-06 6055 -145420.471085
-0.047619047619 0.28 1.88105073038e-06 5993 -148029.74579
-0.047619047619 0.31 1.86190437721e-06 5932 -151134.210114
-0.047619047619 0.34 1.8424441494e-06 5870 -154741.974156
-0.047619047619 0.37 1.82737816657e-06 5822 -158867.786416
-0.047619047619 0.4 1.81607867946e-06 5786 -163537.222704
-0.047619047619 0.43 1.80258206984e-06 5743 -168781.553811
-0.047619047619 0.46 1.79096870808e-06 5706 -174639.297024
-0.047619047619 0.49 1.77935534633e-06 5669 -181160.048266
-0.047619047619 0.52 1.76805585921e-06 5633 -188404.097365
-0.047619047619 0.55 1.75644249745e-06 5596 -196445.989484
-0.047619047619 0.58 1.74765400747e-06 5568 -205377.678182
-0.047619047619 0.61 1.73478514714e-06 5527 -215312.601697
-0.047619047619 0.64 1.7263105318e-06 5500 -226393.784294
-0.047619047619 0.67 1.7165804179e-06 5469 -238803.804134
-0.047619047619 0.7 1.70873355184e-06 5444 -252777.747868
-0.047619047619 0.73 1.69743406473e-06 5408 -268625.6512
-0.047619047619 0.76 1.68613457761e-06 5372 -286768.996828
-0.047619047619 0.79 1.67514896513e-06 5337 -307800.090952
-0.047619047619 0.82 1.66416335266e-06 5302 -332588.345345
-0.047619047619 0.85 1.64941124448e-06 5255 -362477.935405
-0.047619047619 0.88 1.63120651523e-06 5197 -399721.32613
-0.0322580645161 0.01 3.0571390145e-06 9740 -149252.337596
-0.0322580645161 0.04 2.11677058663e-06 6744 -143085.434954
-0.0322580645161 0.07 1.95230027415e-06 6220 -139856.709526
-0.0322580645161 0.1 1.86096275328e-06 5929 -138270.729159
-0.0322580645161 0.13 1.79975719806e-06 5734 -137696.24859
-0.0322580645161 0.16 1.75581474816e-06 5594 -137887.862672
-0.0322580645161 0.19 1.72317178538e-06 5490 -138716.003824
-0.0322580645161 0.22 1.69806181401e-06 5410 -140112.438269
-0.0322580645161 0.25 1.67201021871e-06 5327 -142039.406609
-0.0322580645161 0.28 1.65286386554e-06 5266 -144475.892389
-0.0322580645161 0.31 1.63403138701e-06 5206 -147418.470661
-0.0322580645161 0.34 1.61111853813e-06 5133 -150870.399022
-0.0322580645161 0.37 1.59354155817e-06 5077 -154843.715403
-0.0322580645161 0.4 1.57910332464e-06 5031 -159362.889403
-0.0322580645161 0.43 1.56497896574e-06 4986 -164458.053537
-0.0322580645161 0.46 1.55367947862e-06 4950 -170167.915189
-0.0322580645161 0.49 1.53955511973e-06 4905 -176539.352396
-0.0322580645161 0.52 1.52794175797e-06 4868 -183631.216215
-0.0322580645161 0.55 1.51695614549e-06 4833 -191516.291085
-0.0322580645161 0.58 1.50408728516e-06 4792 -200285.038784
-0.0322580645161 0.61 1.49718204304e-06 4770 -210050.477772
-0.0322580645161 0.64 1.4865103052e-06 4736 -220953.481602
-0.0322580645161 0.67 1.47113044774e-06 4687 -233170.874575
-0.0322580645161 0.7 1.46202808312e-06 4658 -246934.474791
-0.0322580645161 0.73 1.45323959314e-06 4630 -262551.130327
-0.0322580645161 0.76 1.43817361031e-06 4582 -280435.91002
-0.0322580645161 0.79 1.42373537677e-06 4536 -301168.584331
-0.0322580645161 0.82 1.41369138823e-06 4504 -325605.866758
-0.0322580645161 0.85 1.39893928004e-06 4457 -355069.585014
-0.0322580645161 0.88 1.38355942258e-06 4408 -391769.852111
-0.0243902439024 0.01 3.00158320284e-06 9563 -148823.142
-0.0243902439024 0.04 1.98117674122e-06 6312 -142295.808377
-0.0243902439024 0.07 1.7925380813e-06 5711 -138673.442888
-0.0243902439024 0.1 1.69868956329e-06 5412 -136794.449231
-0.0243902439024 0.13 1.64313375163e-06 5235 -136004.086469
-0.0243902439024 0.16 1.5885195639e-06 5061 -136013.507055
-0.0243902439024 0.19 1.54959910827e-06 4937 -136672.239708
-0.0243902439024 0.22 1.51978101727e-06 4842 -137914.769668
-0.0243902439024 0.25 1.4924739234e-06 4755 -139695.720461
-0.0243902439024 0.28 1.47364144488e-06 4695 -141997.294447
-0.0243902439024 0.31 1.45292571849e-06 4629 -144810.730107
-0.0243902439024 0.34 1.4388013596e-06 4584 -148140.214587
-0.0243902439024 0.37 1.41808563322e-06 4518 -151995.978095
-0.0243902439024 0.4 1.40647227146e-06 4481 -156398.99106
-0.0243902439024 0.43 1.39517278434e-06 4445 -161379.729886
-0.0243902439024 0.46 1.38199004937e-06 4403 -166972.801242
-0.0243902439024 0.49 1.37069056225e-06 4367 -173225.941393
-0.0243902439024 0.52 1.3606465737e-06 4335 -180196.722942
-0.0243902439024 0.55 1.35248583301e-06 4309 -187957.793598
-0.0243902439024 0.58 1.34150022053e-06 4274 -196597.605228
-0.0243902439024 0.61 1.33239785591e-06 4245 -206225.259286
-0.0243902439024 0.64 1.32203999272e-06 4212 -216980.475554
-0.0243902439024 0.67 1.31419312666e-06 4187 -229039.175135
-0.0243902439024 0.7 1.30257976491e-06 4150 -242629.232668
-0.0243902439024 0.73 1.29504677349e-06 4126 -258051.500565
-0.0243902439024 0.76 1.28343341173e-06 4089 -275714.769655
-0.0243902439024 0.79 1.27715591889e-06 4069 -296193.760237
-0.0243902439024 0.82 1.26868130355e-06 4042 -320329.123752
-0.0243902439024 0.85 1.25800956572e-06 4008 -349419.694714
-0.0243902439024 0.88 1.24827945181e-06 3977 -385635.396338
-0.0196078431373 0.01 2.93410015478e-06 9348 -148498.466954
-0.0196078431373 0.04 1.86975124326e-06 5957 -141741.668613
-0.0196078431373 0.07 1.66887147229e-06 5317 -137797.607539
-0.0196078431373 0.1 1.56654833895e-06 4991 -135703.702967
-0.0196078431373 0.13 1.50157628803e-06 4784 -134726.60019
-0.0196078431373 0.16 1.45731996348e-06 4643 -134577.515808
-0.0196078431373 0.19 1.41683013465e-06 4514 -135106.887459
-0.0196078431373 0.22 1.39172016327e-06 4434 -136231.471965
-0.0196078431373 0.25 1.36755181583e-06 4357 -137909.165628
-0.0196078431373 0.28 1.35123033444e-06 4305 -140113.087181
-0.0196078431373 0.31 1.33208398127e-06 4244 -142835.314044
-0.0196078431373 0.34 1.31952899558e-06 4204 -146075.610904
-0.0196078431373 0.37 1.30603238597e-06 4161 -149845.477111
-0.0196078431373 0.4 1.29536064814e-06 4127 -154163.371633
-0.0196078431373 0.43 1.2809224146e-06 4081 -159056.348347
-0.0196078431373 0.46 1.27244779926e-06 4054 -164561.036785
-0.0196078431373 0.49 1.26522868249e-06 4031 -170724.096266
-0.0196078431373 0.52 1.25581244323e-06 4001 -177601.95894
-0.0196078431373 0.55 1.24733782789e-06 3974 -185264.61658
-0.0196078431373 0.58 1.24357133218e-06 3962 -193800.573442
-0.0196078431373 0.61 1.23572446613e-06 3937 -203318.009157
-0.0196078431373 0.64 1.23038859721e-06 3920 -213953.627589
-0.0196078431373 0.67 1.22599435222e-06 3906 -225881.765073
-0.0196078431373 0.7 1.21814748617e-06 3881 -239326.076937
-0.0196078431373 0.73 1.21061449476e-06 3857 -254583.887996
-0.0196078431373 0.76 1.20025663157e-06 3824 -272057.258962
-0.0196078431373 0.79 1.19366526408e-06 3803 -292310.40304
-0.0196078431373 0.82 1.18738777124e-06 3783 -316171.012162
-0.0196078431373 0.85 1.17828540662e-06 3754 -344915.833831
-0.0196078431373 0.88 1.16949691664e-06 3726 -380676.137333
-0.016393442623 0.01 2.88074146562e-06 9178 -148238.951955
-0.016393442623 0.04 1.76334773958e-06 5618 -141320.153976
-0.016393442623 0.07 1.57094258394e-06 5005 -137124.470779
-0.016393442623 0.1 1.46202808312e-06 4658 -134838.515361
-0.016393442623 0.13 1.39674215755e-06 4450 -133720.919166
-0.016393442623 0.16 1.35939107513e-06 4331 -133457.703056
-0.016393442623 0.19 1.32831748556e-06 4232 -133893.294598
-0.016393442623 0.22 1.30289363955e-06 4151 -134937.013968
-0.016393442623 0.25 1.2787252921e-06 4074 -136537.370778
-0.016393442623 0.28 1.26554255713e-06 4032 -138668.696809
-0.016393442623 0.31 1.25141819824e-06 3987 -141321.315854
-0.016393442623 0.34 1.24106033504e-06 3954 -144494.482684
-0.016393442623 0.37 1.23038859721e-06 3920 -148199.166995
-0.016393442623 0.4 1.22191398187e-06 3893 -152451.568181
-0.016393442623 0.43 1.21343936654e-06 3866 -157278.86005
-0.016393442623 0.46 1.20527862584e-06 3840 -162715.929842
-0.016393442623 0.49 1.1968040105e-06 3813 -168807.113089
-0.016393442623 0.52 1.19021264302e-06 3792 -175608.216447
-0.016393442623 0.55 1.18550452339e-06 3777 -183189.303582
-0.016393442623 0.58 1.17702990805e-06 3750 -191635.99382
-0.016393442623 0.61 1.17263566306e-06 3736 -201055.874861
-0.016393442623 0.64 1.16604429557e-06 3715 -211583.312365
-0.016393442623 0.67 1.15819742952e-06 3690 -223389.018938
-0.016393442623 0.7 1.1528615606e-06 3673 -236694.706709
-0.016393442623 0.73 1.14627019312e-06 3652 -251792.803141
-0.016393442623 0.76 1.1409343242e-06 3635 -269080.336351
-0.016393442623 0.79 1.13183195958e-06 3606 -289112.329
-0.016393442623 0.82 1.12272959496e-06 3577 -312700.133592
-0.016393442623 0.85 1.11362723033e-06 3548 -341096.487136
-0.016393442623 0.88 1.10640811356e-06 3525 -376393.803972
-0.0140845070423 0.01 2.82895214966e-06 9013 -148029.711632
-0.0140845070423 0.04 1.68613457761e-06 5372 -140973.63127
-0.0140845070423 0.07 1.48556868128e-06 4733 -136589.140351
-0.0140845070423 0.1 1.38230392401e-06 4404 -134158.87826
-0.0140845070423 0.13 1.32988685877e-06 4237 -132934.942574
-0.0140845070423 0.16 1.28563053423e-06 4096 -132589.314568
-0.0140845070423 0.19 1.25518469394e-06 3999 -132948.641969
-0.0140845070423 0.22 1.23509671684e-06 3935 -133924.243252
-0.0140845070423 0.25 1.21971685938e-06 3886 -135466.431375
-0.0140845070423 0.28 1.20810349762e-06 3849 -137545.277942
-0.0140845070423 0.31 1.19554851193e-06 3809 -140145.972683
-0.0140845070423 0.34 1.18393515017e-06 3772 -143266.16501
-0.0140845070423 0.37 1.17546053484e-06 3745 -146916.188241
-0.0140845070423 0.4 1.16886916735e-06 3724 -151113.14498
-0.0140845070423 0.43 1.16008067737e-06 3696 -155882.44839
-0.0140845070423 0.46 1.15254768596e-06 3672 -161257.484374
-0.0140845070423 0.49 1.14438694526e-06 3646 -167282.033339
-0.0140845070423 0.52 1.13905107635e-06 3629 -174011.783344
-0.0140845070423 0.55 1.13245970886e-06 3608 -181515.327979
-0.0140845070423 0.58 1.1268099653e-06 3590 -189876.867145
-0.0140845070423 0.61 1.11833534997e-06 3563 -199201.497637
-0.0140845070423 0.64 1.11143010784e-06 3541 -209621.860489
-0.0140845070423 0.67 1.10829136142e-06 3531 -221308.141517
-0.0140845070423 0.7 1.09981674608e-06 3504 -234477.667424
-0.0140845070423 0.73 1.09291150395e-06 3482 -249417.619486
-0.0140845070423 0.76 1.08632013647e-06 3461 -266518.941512
-0.0140845070423 0.79 1.07941489434e-06 3439 -286328.249506
-0.0140845070423 0.82 1.07345127614e-06 3420 -309642.402001
-0.0140845070423 0.85 1.06748765794e-06 3401 -337693.600303
-0.0140845070423 0.88 1.0590130426e-06 3374 -372530.298364
-0.0123456790123 0.01 2.77779058299e-06 8850 -147851.138646
-0.0123456790123 0.04 1.62712614488e-06 5184 -140694.481585
-0.0123456790123 0.07 1.41494688679e-06 4508 -136160.801015
-0.0123456790123 0.1 1.32329549129e-06 4216 -133620.289476
-0.0123456790123 0.13 1.26208993607e-06 4021 -132309.90306
-0.0123456790123 0.16 1.22693597615e-06 3909 -131890.375247
-0.0123456790123 0.19 1.20841737226e-06 3850 -132195.55712
-0.0123456790123 0.22 1.18832939516e-06 3786 -133126.31055
-0.0123456790123 0.25 1.17389116163e-06 3740 -134622.549188
-0.0123456790123 0.28 1.16290554915e-06 3705 -136654.925463
-0.0123456790123 0.31 1.15097831275e-06 3667 -139209.841103
-0.0123456790123 0.34 1.14124819884e-06 3636 -142283.951765
-0.0123456790123 0.37 1.134970706e-06 3616 -145886.056462
-0.0123456790123 0.4 1.12524059209e-06 3585 -150031.968853
-0.0123456790123 0.43 1.11519660354e-06 3553 -154745.123921
-0.0123456790123 0.46 1.10829136142e-06 3531 -160059.795513
-0.0123456790123 0.49 1.10232774322e-06 3512 -166021.016094
-0.0123456790123 0.52 1.09353925324e-06 3484 -172681.298157
-0.0123456790123 0.55 1.08663401111e-06 3462 -180107.569468
-0.0123456790123 0.58 1.08192589148e-06 3447 -188384.658662
-0.0123456790123 0.61 1.07564839863e-06 3427 -197616.421133
-0.0123456790123 0.64 1.07062640436e-06 3411 -207933.365089
-0.0123456790123 0.67 1.06623215937e-06 3397 -219502.485
-0.0123456790123 0.7 1.06183791438e-06 3383 -232538.671407
-0.0123456790123 0.73 1.05556042154e-06 3363 -247325.153847
-0.0123456790123 0.76 1.04551643299e-06 3331 -264244.316856
-0.0123456790123 0.79 1.03955281479e-06 3312 -283832.864484
-0.0123456790123 0.82 1.03421694587e-06 3295 -306876.425881
-0.0123456790123 0.85 1.0291949516e-06 3279 -334581.940521
-0.0123456790123 0.88 1.02197583483e-06 3256 -368957.856898
-0.010989010989 0.01 2.72662901632e-06 8687 -147693.31049
-0.010989010989 0.04 1.58067269785e-06 5036 -140472.316549
-0.010989010989 0.07 1.3546829555e-06 4316 -135805.749177
-0.010989010989 0.1 1.26365930928e-06 4026 -133177.464331
-0.010989010989 0.13 1.21657811296e-06 3876 -131799.574207
-0.010989010989 0.16 1.18738777124e-06 3783 -131334.878044
-0.010989010989 0.19 1.1669859195e-06 3718 -131596.671712
-0.010989010989 0.22 1.15129218739e-06 3668 -132486.626052
-0.010989010989 0.25 1.13716782849e-06 3623 -133944.039208
-0.010989010989 0.28 1.12618221602e-06 3588 -135938.033856
-0.010989010989 0.31 1.11268560641e-06 3545 -138451.189282
-0.010989010989 0.34 1.10452486571e-06 3519 -141479.836593
-0.010989010989 0.37 1.09510862645e-06 3489 -145034.563558
-0.010989010989 0.4 1.08569238718e-06 3459 -149128.878036
-0.010989010989 0.43 1.07878714506e-06 3437 -153788.500503
-0.010989010989 0.46 1.07156802829e-06 3414 -159046.320523
-0.010989010989 0.49 1.06685990865e-06 3399 -164945.201756
-0.010989010989 0.52 1.06183791438e-06 3383 -171538.91575
-0.010989010989 0.55 1.05461879761e-06 3360 -178893.444648
-0.010989010989 0.58 1.04614418227e-06 3333 -187089.817325
-0.010989010989 0.61 1.03955281479e-06 3312 -196230.218933
-0.010989010989 0.64 1.03704181765e-06 3304 -206445.354015
-0.010989010989 0.67 1.03233369802e-06 3289 -217899.413824
-0.010989010989 0.7 1.02731170374e-06 3273 -230803.059378
-0.010989010989 0.73 1.02354520804e-06 3261 -245436.160112
-0.010989010989 0.76 1.01726771519e-06 3241 -262175.423418
-0.010989010989 0.79 1.0128734702e-06 3227 -281548.878857
-0.010989010989 0.82 1.00785147593e-06 3211 -304326.295793
-0.010989010989 0.85 1.00282948166e-06 3195 -331692.241487
-0.010989010989 0.88 9.9906298595e-07 3183 -365613.419073
-0.00990099009901 0.01 2.68645306213e-06 8559 -147555.25669
-0.00990099009901 0.04 1.53610249866e-06 4894 -140287.720573
-0.00990099009901 0.07 1.30917113239e-06 4171 -135509.817938
-0.00990099009901 0.1 1.22034460866e-06 3888 -132807.52639
-0.00990099009901 0.13 1.18267965161e-06 3768 -131389.650464
-0.00990099009901 0.16 1.15694193095e-06 3686 -130887.044265
-0.00990099009901 0.19 1.13559845528e-06 3618 -131115.815203
-0.00990099009901 0.22 1.1208463471e-06 3571 -131970.808628
-0.00990099009901 0.25 1.10389711643e-06 3517 -133390.352673
-0.00990099009901 0.28 1.09259762931e-06 3481 -135344.517739
-0.00990099009901 0.31 1.08067039291e-06 3443 -137815.876501
-0.00990099009901 0.34 1.07125415364e-06 3413 -140803.172502
-0.00990099009901 0.37 1.06403503687e-06 3390 -144312.935474
-0.00990099009901 0.4 1.05807141867e-06 3371 -148361.094259
-0.00990099009901 0.43 1.04928292869e-06 3343 -152971.076082
-0.00990099009901 0.46 1.03986668943e-06 3313 -158173.821204
-0.00990099009901 0.49 1.03610019372e-06 3301 -164012.363667
-0.00990099009901 0.52 1.03107819945e-06 3285 -170540.249349
-0.00990099009901 0.55 1.02574233053e-06 3268 -177821.926267
-0.00990099009901 0.58 1.02197583483e-06 3256 -185939.244178
-0.00990099009901 0.61 1.01632609127e-06 3238 -194993.053383
-0.00990099009901 0.64 1.01224572092e-06 3225 -205110.183476
-0.00990099009901 0.67 1.00753760129e-06 3210 -216452.034634
-0.00990099009901 0.7 1.00282948166e-06 3195 -229227.239054
-0.00990099009901 0.73 1.00031848452e-06 3187 -243710.052163
-0.00990099009901 0.76 9.98121362024e-07 3180 -260273.025126
-0.00990099009901 0.79 9.95924239529e-07 3173 -279435.158033
-0.00990099009901 0.82 9.89018997402e-07 3151 -301950.022349
-0.00990099009901 0.85 9.80544382064e-07 3124 -328978.068445
-0.00990099009901 0.88 9.76464011716e-07 3111 -362445.659844
-0.00900900900901 0.01 2.64847423043e-06 8438 -147437.394265
-0.00900900900901 0.04 1.48211606021e-06 4722 -140131.375048
-0.00900900900901 0.07 1.26554255713e-06 4032 -135259.083305
-0.00900900900901 0.1 1.19366526408e-06 3803 -132506.419616
-0.00900900900901 0.13 1.15600030702e-06 3683 -131054.673847
-0.00900900900901 0.16 1.12932096244e-06 3598 -130525.021048
-0.00900900900901 0.19 1.10734973749e-06 3528 -130722.598595
-0.00900900900901 0.22 1.09134213074e-06 3477 -131543.000903
-0.00900900900901 0.25 1.07564839863e-06 3427 -132927.065507
-0.00900900900901 0.28 1.06560441009e-06 3395 -134843.955463
-0.00900900900901 0.31 1.05744366939e-06 3369 -137279.261396
-0.00900900900901 0.34 1.0448886837e-06 3329 -140227.934595
-0.00900900900901 0.37 1.03484469516e-06 3297 -143694.047498
-0.00900900900901 0.4 1.02982270088e-06 3281 -147695.895555
-0.00900900900901 0.43 1.02480070661e-06 3265 -152256.230472
-0.00900900900901 0.46 1.01883708841e-06 3246 -157407.301216
-0.00900900900901 0.49 1.01381509413e-06 3230 -163189.429805
-0.00900900900901 0.52 1.00847922521e-06 3213 -169654.901873
-0.00900900900901 0.55 1.00534047879e-06 3203 -176868.008594
-0.00900900900901 0.58 1.00126010845e-06 3190 -184908.932224
-0.00900900900901 0.61 9.98749111308e-07 3182 -193877.541927
-0.00900900900901 0.64 9.95924239529e-07 3173 -203899.360573
-0.00900900900901 0.67 9.91216119897e-07 3158 -215132.65308
-0.00900900900901 0.7 9.86821874907e-07 3144 -227781.500816
-0.00900900900901 0.73 9.80230507422e-07 3123 -242115.731542
-0.00900900900901 0.76 9.77405635642e-07 3114 -258501.167286
-0.00900900900901 0.79 9.7269751601e-07 3099 -277448.318336
-0.00900900900901 0.82 9.67675521736e-07 3083 -299697.203223
-0.00900900900901 0.85 9.62653527462e-07 3067 -326386.690291
-0.00900900900901 0.88 9.54492786766e-07 3041 -359400.548583
-0.00826446280992 0.01 2.61363414515e-06 8327 -147334.710644
-0.00826446280992 0.04 1.44507885244e-06 4604 -139996.803203
-0.00826446280992 0.07 1.22913309864e-06 3916 -135044.800818
-0.00826446280992 0.1 1.16541654629e-06 3713 -132261.403483
-0.00826446280992 0.13 1.13057646101e-06 3602 -130783.358263
-0.00826446280992 0.16 1.10264161786e-06 3513 -130224.787931
-0.00826446280992 0.19 1.08192589148e-06 3447 -130392.918578
-0.00826446280992 0.22 1.06591828473e-06 3396 -131182.356639
-0.00826446280992 0.25 1.05493267225e-06 3361 -132536.174963
-0.00826446280992 0.28 1.0389250655e-06 3310 -134420.17659
-0.00826446280992 0.31 1.03045045017e-06 3283 -136817.813604
-0.00826446280992 0.34 1.02385908268e-06 3262 -139727.057504
-0.00826446280992 0.37 1.01663996591e-06 3239 -143154.547809
-0.00826446280992 0.4 1.01161797164e-06 3223 -147114.17848
-0.00826446280992 0.43 1.00596822808e-06 3205 -151628.818775
-0.00826446280992 0.46 1.0009462338e-06 3189 -156729.952421
-0.00826446280992 0.49 9.9749361274e-07 3178 -162457.626339
-0.00826446280992 0.52 9.9466874096e-07 3169 -168863.735914
-0.00826446280992 0.55 9.89646746686e-07 3153 -176010.816105
-0.00826446280992 0.58 9.83997003127e-07 3135 -183977.077798
-0.00826446280992 0.61 9.78347259569e-07 3117 -192860.147817
-0.00826446280992 0.64 9.76777886358e-07 3112 -202784.286039
-0.00826446280992 0.67 9.7269751601e-07 3099 -213906.546095
-0.00826446280992 0.7 9.67989396378e-07 3084 -226427.413545
-0.00826446280992 0.73 9.64222900672e-07 3072 -240613.266994
-0.00826446280992 0.76 9.57317658545e-07 3050 -256822.193344
-0.00826446280992 0.79 9.53865037481e-07 3039 -275554.637798
-0.00826446280992 0.82 9.52295664271e-07 3034 -297539.787295
-0.00826446280992 0.85 9.47587544639e-07 3019 -323894.120996
-0.00826446280992 0.88 9.41310051796e-07 2999 -356460.738163
-0.00763358778626 0.01 2.58224668093e-06 8227 -147246.918164
-0.00763358778626 0.04 1.40772777002e-06 4485 -139885.172929
-0.00763358778626 0.07 1.20308150335e-06 3833 -134868.305177
-0.00763358778626 0.1 1.14501469455e-06 3648 -132057.116982
-0.00763358778626 0.13 1.10954685999e-06 3535 -130559.17433
-0.00763358778626 0.16 1.07972876898e-06 3440 -129973.793412
-0.00763358778626 0.19 1.06152403974e-06 3382 -130113.054358
-0.00763358778626 0.22 1.04457480906e-06 3328 -130876.80811
-0.00763358778626 0.25 1.03139207409e-06 3286 -132199.688903
-0.00763358778626 0.28 1.02260358411e-06 3258 -134051.760643
-0.00763358778626 0.31 1.01350121949e-06 3229 -136418.26085
-0.00763358778626 0.34 1.00596822808e-06 3205 -139293.403058
-0.00763358778626 0.37 1.00000460988e-06 3186 -142683.139354
-0.00763358778626 0.4 9.95924239529e-07 3173 -146601.852523
-0.00763358778626 0.43 9.92785493108e-07 3163 -151073.058439
-0.00763358778626 0.46 9.86821874907e-07 3144 -156126.044258
-0.00763358778626 0.49 9.7991663278e-07 3122 -161799.551408
-0.00763358778626 0.52 9.76150137074e-07 3110 -168144.256812
-0.00763358778626 0.55 9.73325265294e-07 3101 -175223.536436
-0.00763358778626 0.58 9.68617145662e-07 3086 -183114.314927
-0.00763358778626 0.61 9.63595151388e-07 3070 -191913.047633
-0.00763358778626 0.64 9.58259282471e-07 3053 -201741.134334
-0.00763358778626 0.67 9.54806661408e-07 3042 -212752.196972
-0.00763358778626 0.7 9.52295664271e-07 3034 -225145.894609
-0.00763358778626 0.73 9.50098541776e-07 3027 -239184.192726
-0.00763358778626 0.76 9.4633204607e-07 3015 -255219.483084
-0.00763358778626 0.79 9.42251675722e-07 3002 -273742.318324
-0.00763358778626 0.82 9.38171305374e-07 2989 -295466.627625
-0.00763358778626 0.85 9.32521561815e-07 2971 -321486.006431
-0.00763358778626 0.88 9.2875506611e-07 2959 -353605.49287
-0.00709219858156 0.01 2.56121707991e-06 8160 -147173.783528
-0.00709219858156 0.04 1.37634030581e-06 4385 -139793.528954
-0.00709219858156 0.07 1.18456289946e-06 3774 -134722.804442
-0.00709219858156 0.1 1.12555446674e-06 3586 -131889.626902
-0.00709219858156 0.13 1.08851725896e-06 3468 -130368.472474
-0.00709219858156 0.16 1.06058241581e-06 3379 -129759.867447
-0.00709219858156 0.19 1.03923894015e-06 3311 -129876.59913
-0.00709219858156 0.22 1.02574233053e-06 3268 -130611.453504
-0.00709219858156 0.25 1.01475671806e-06 3233 -131909.139404
-0.00709219858156 0.28 1.00439885487e-06 3200 -133734.359361
-0.00709219858156 0.31 9.97179738098e-07 3177 -136069.261231
-0.00709219858156 0.34 9.93413242392e-07 3165 -138911.608554
-0.00709219858156 0.37 9.87763498833e-07 3147 -142266.945321
-0.00709219858156 0.4 9.7991663278e-07 3122 -146146.463108
-0.00709219858156 0.43 9.75208513147e-07 3107 -150572.097738
-0.00709219858156 0.46 9.70814268157e-07 3093 -155575.618666
-0.00709219858156 0.49 9.66733897809e-07 3080 -161195.069719
-0.00709219858156 0.52 9.61398028893e-07 3063 -167480.303464
-0.00709219858156 0.55 9.56062159976e-07 3046 -174492.082013
-0.00709219858156 0.58 9.51981789629e-07 3033 -182307.121801
-0.00709219858156 0.61 9.51040165702e-07 3030 -191021.627679
-0.00709219858156 0.64 9.48529168565e-07 3022 -200755.7751
-0.00709219858156 0.67 9.44762672859e-07 3010 -211659.975819
-0.00709219858156 0.7 9.40368427869e-07 2996 -223929.348866
-0.00709219858156 0.73 9.37229681448e-07 2986 -237821.040046
-0.00709219858156 0.76 9.32521561815e-07 2971 -253681.873935
-0.00709219858156 0.79 9.2875506611e-07 2959 -271994.110828
-0.00709219858156 0.82 9.26244068973e-07 2951 -293458.508406
-0.00709219858156 0.85 9.23105322551e-07 2941 -319146.801181
-0.00709219858156 0.88 9.20594325414e-07 2933 -350826.020314
-0.00662251655629 0.01 2.53736260711e-06 8084 -147113.539847
-0.00662251655629 0.04 1.35279970765e-06 4310 -139716.616462
-0.00662251655629 0.07 1.16604429557e-06 3715 -134604.641544
-0.00662251655629 0.1 1.1089191107e-06 3533 -131751.334196
-0.00662251655629 0.13 1.06905703115e-06 3406 -130206.37311
-0.00662251655629 0.16 1.04363318514e-06 3325 -129578.866057
-0.00662251655629 0.19 1.02228970947e-06 3257 -129671.230544
-0.00662251655629 0.22 1.00942084914e-06 3216 -130383.712248
-0.00662251655629 0.25 1.00000460988e-06 3186 -131655.574854
-0.00662251655629 0.28 9.9309936775e-07 3164 -133454.259986
-0.00662251655629 0.31 9.86194125622e-07 3142 -135763.116949
-0.00662251655629 0.34 9.77719510285e-07 3115 -138573.588198
-0.00662251655629 0.37 9.73639139937e-07 3102 -141891.442321
-0.00662251655629 0.4 9.67989396378e-07 3084 -145731.664391
-0.00662251655629 0.43 9.62025778177e-07 3065 -150114.519799
-0.00662251655629 0.46 9.54806661408e-07 3042 -155069.069227
-0.00662251655629 0.49 9.51667914986e-07 3032 -160634.096083
-0.00662251655629 0.52 9.5072629106e-07 3029 -166859.887852
-0.00662251655629 0.55 9.47901419281e-07 3020 -173807.300895
-0.00662251655629 0.58 9.42565550364e-07 3003 -181550.380414
-0.00662251655629 0.61 9.39112929301e-07 2992 -190182.569776
-0.00662251655629 0.64 9.35032558953e-07 2979 -199822.138694
-0.00662251655629 0.67 9.31893812531e-07 2969 -210617.922889
-0.00662251655629 0.7 9.28127316825e-07 2957 -222762.426004
-0.00662251655629 0.73 9.26244068973e-07 2951 -236508.654403
-0.00662251655629 0.76 9.23733071835e-07 2943 -252197.110352
-0.00662251655629 0.79 9.2153594934e-07 2936 -270302.37539
-0.00662251655629 0.82 9.18397202919e-07 2926 -291510.795897
-0.00662251655629 0.85 9.16200080424e-07 2919 -316871.916787
-0.00662251655629 0.88 9.1274745936e-07 2908 -348114.16212
-0.00621118012422 0.01 2.51256651038e-06 8005 -147062.827388
-0.00621118012422 0.04 1.32329549129e-06 4216 -139654.614993
-0.00621118012422 0.07 1.1490950649e-06 3661 -134508.52775
-0.00621118012422 0.1 1.09040050681e-06 3474 -131635.255529
-0.00621118012422 0.13 1.05367717368e-06 3357 -130070.575274
-0.00621118012422 0.16 1.02574233053e-06 3268 -129420.114441
-0.00621118012422 0.19 1.00879309986e-06 3214 -129493.697127
-0.00621118012422 0.22 9.95610364887e-07 3172 -130184.635266
-0.00621118012422 0.25 9.89646746686e-07 3153 -131434.89357
-0.00621118012422 0.28 9.7991663278e-07 3122 -133209.133622
-0.00621118012422 0.31 9.73639139937e-07 3102 -135488.095785
-0.00621118012422 0.34 9.65792273883e-07 3077 -138267.618736
-0.00621118012422 0.37 9.5951478104e-07 3057 -141551.31874
-0.00621118012422 0.4 9.52923413555e-07 3036 -145351.222599
-0.00621118012422 0.43 9.5072629106e-07 3029 -149690.374031
-0.00621118012422 0.46 9.47587544639e-07 3019 -154599.043681
-0.00621118012422 0.49 9.43507174291e-07 3006 -160113.784905
-0.00621118012422 0.52 9.38485180016e-07 2990 -166281.873747
-0.00621118012422 0.55 9.35660308237e-07 2981 -173163.580913
-0.00621118012422 0.58 9.30952188605e-07 2966 -180832.983336
-0.00621118012422 0.61 9.27813442183e-07 2956 -189382.411756
-0.00621118012422 0.64 9.25302445046e-07 2948 -198928.322036
-0.00621118012422 0.67 9.23419197193e-07 2942 -209617.389377
-0.00621118012422 0.7 9.2153594934e-07 2936 -221639.657211
-0.00621118012422 0.73 9.19338826845e-07 2929 -235243.045506
-0.00621118012422 0.76 9.1714170435e-07 2922 -250762.090723
-0.00621118012422 0.79 9.15258456497e-07 2916 -268662.29078
-0.00621118012422 0.82 9.1117808615e-07 2903 -289616.414852
-0.00621118012422 0.85 9.0835321437e-07 2894 -314651.987073
-0.00621118012422 0.88 9.04586718665e-07 2882 -345459.60508
-0.00584795321637 0.01 2.49436178113e-06 7947 -147021.414708
-0.00584795321637 0.04 1.30948500703e-06 4172 -139608.013556
-0.00584795321637 0.07 1.13654007921e-06 3621 -134432.664852
-0.00584795321637 0.1 1.07219577757e-06 3416 -131538.83501
-0.00584795321637 0.13 1.03421694587e-06 3295 -129954.688956
-0.00584795321637 0.16 1.01224572092e-06 3225 -129283.765111
-0.00584795321637 0.19 9.95924239529e-07 3173 -129338.05022
-0.00584795321637 0.22 9.88391248117e-07 3149 -130012.048814
-0.00584795321637 0.25 9.75522387789e-07 3108 -131241.246608
-0.00584795321637 0.28 9.69558769589e-07 3089 -132989.93868
-0.00584795321637 0.31 9.61084154251e-07 3062 -135240.824972
-0.00584795321637 0.34 9.53865037481e-07 3039 -137988.641135
-0.00584795321637 0.37 9.49784667134e-07 3026 -141237.288103
-0.00584795321637 0.4 9.46959795354e-07 3017 -145001.800777
-0.00584795321637 0.43 9.41310051796e-07 2999 -149300.288351
-0.00584795321637 0.46 9.36288057521e-07 2983 -154161.831592
-0.00584795321637 0.49 9.32521561815e-07 2971 -159624.240696
-0.00584795321637 0.52 9.27499567541e-07 2955 -165734.24661
-0.00584795321637 0.55 9.25302445046e-07 2948 -172551.103693
-0.00584795321637 0.58 9.22791447909e-07 2940 -180148.422694
-0.00584795321637 0.61 9.21222074698e-07 2935 -188617.42674
-0.00584795321637 0.64 9.19652701488e-07 2930 -198072.097957
-0.00584795321637 0.67 9.1714170435e-07 2922 -208656.926983
-0.00584795321637 0.7 9.15886205782e-07 2918 -220557.897406
-0.00584795321637 0.73 9.1274745936e-07 2908 -234019.391704
-0.00584795321637 0.76 9.09608712939e-07 2898 -249369.641496
-0.00584795321637 0.79 9.07725465086e-07 2892 -267065.052589
-0.00584795321637 0.82 9.04586718665e-07 2882 -287766.026065
-0.00584795321637 0.85 9.01447972243e-07 2872 -312479.025712
-0.00584795321637 0.88 8.97995351179e-07 2861 -342856.581136
-0.00552486187845 0.01 2.47333218011e-06 7880 -146987.307339
-0.00552486187845 0.04 1.28845540601e-06 4105 -139574.567771
-0.00552486187845 0.07 1.12241572031e-06 3576 -134370.127581
-0.00552486187845 0.1 1.05775754403e-06 3370 -131457.783008
-0.00552486187845 0.13 1.02040646162e-06 3251 -129853.189414
-0.00552486187845 0.16 9.99690735235e-07 3185 -129166.454666
-0.00552486187845 0.19 9.88077373475e-07 3148 -129204.269698
-0.00552486187845 0.22 9.75208513147e-07 3107 -129860.055077
-0.00552486187845 0.25 9.66733897809e-07 3080 -131068.415706
-0.00552486187845 0.28 9.58259282471e-07 3053 -132792.969135
-0.00552486187845 0.31 9.49784667134e-07 3026 -135015.77001
-0.00552486187845 0.34 9.47587544639e-07 3019 -137733.619238
-0.00552486187845 0.37 9.40368427869e-07 2996 -140950.513289
-0.00552486187845 0.4 9.35660308237e-07 2981 -144677.112686
-0.00552486187845 0.43 9.3032443932e-07 2964 -148934.072047
-0.00552486187845 0.46 9.2593019433e-07 2950 -153749.187172
-0.00552486187845 0.49 9.23733071835e-07 2943 -159160.039299
-0.00552486187845 0.52 9.21849823983e-07 2937 -165213.727551
-0.00552486187845 0.55 9.20280450772e-07 2932 -171968.560584
-0.00552486187845 0.58 9.18083328277e-07 2925 -179496.09284
-0.00552486187845 0.61 9.15886205782e-07 2918 -187885.674836
-0.00552486187845 0.64 9.13689083287e-07 2911 -197249.778978
-0.00552486187845 0.67 9.1117808615e-07 2903 -207730.425702
-0.00552486187845 0.7 9.0835321437e-07 2894 -219510.390122
-0.00552486187845 0.73 9.05842217233e-07 2886 -232830.099205
-0.00552486187845 0.76 9.03331220096e-07 2878 -248012.169014
-0.00552486187845 0.79 9.01134097601e-07 2871 -265504.678765
-0.00552486187845 0.82 8.98309225822e-07 2862 -285955.405396
-0.00552486187845 0.85 8.95484354042e-07 2853 -310348.78938
-0.00552486187845 0.88 8.92659482263e-07 2844 -340300.515839
-0.00523560209424 0.01 2.45606907479e-06 7825 -146959.675732
-0.00523560209424 0.04 1.27307554854e-06 4056 -139551.463334
-0.00523560209424 0.07 1.10923298534e-06 3534 -134320.575056
-0.00523560209424 0.1 1.04614418227e-06 3333 -131390.585425
-0.00523560209424 0.13 1.01099022235e-06 3221 -129767.690315
-0.00523560209424 0.16 9.89960621328e-07 3154 -129065.59405
-0.00523560209424 0.19 9.77719510285e-07 3115 -129089.817711
-0.00523560209424 0.22 9.66106148525e-07 3078 -129725.907129
-0.00523560209424 0.25 9.55434410692e-07 3044 -130912.854959
-0.00523560209424 0.28 9.48529168565e-07 3022 -132613.377788
-0.00523560209424 0.31 9.44134923575e-07 3008 -134811.586339
-0.00523560209424 0.34 9.36288057521e-07 2983 -137500.218326
-0.00523560209424 0.37 9.30638313963e-07 2965 -140682.626846
-0.00523560209424 0.4 9.25302445046e-07 2948 -144371.725126
-0.00523560209424 0.43 9.22791447909e-07 2940 -148587.869824
-0.00523560209424 0.46 9.2153594934e-07 2936 -153359.163917
-0.00523560209424 0.49 9.19652701488e-07 2930 -158721.83259
-0.00523560209424 0.52 9.16200080424e-07 2919 -164720.737133
-0.00523560209424 0.55 9.15258456497e-07 2916 -171413.381371
-0.00523560209424 0.58 9.1274745936e-07 2908 -178871.068798
-0.00523560209424 0.61 9.09294838297e-07 2897 -187181.433837
-0.00523560209424 0.64 9.0678384116e-07 2889 -196454.623319
-0.00523560209424 0.67 9.04272844022e-07 2881 -206831.26572
-0.00523560209424 0.7 9.01761846885e-07 2873 -218491.119585
-0.00523560209424 0.73 9.01134097601e-07 2871 -231670.622638
-0.00523560209424 0.76 8.97053727253e-07 2858 -246686.826467
-0.00523560209424 0.79 8.95484354042e-07 2853 -263978.329416
-0.00523560209424 0.82 8.92973356905e-07 2845 -284180.554655
-0.00523560209424 0.85 8.9077623441e-07 2838 -308258.285703
-0.00523560209424 0.88 8.89520735842e-07 2834 -337790.339454
-0.00497512437811 0.01 2.43911984412e-06 7771 -146938.363496
-0.00497512437811 0.04 1.25738181644e-06 4006 -139536.522959
-0.00497512437811 0.07 1.09448087716e-06 3487 -134282.337887
-0.00497512437811 0.1 1.03107819945e-06 3285 -131334.302491
-0.00497512437811 0.13 1.00000460988e-06 3186 -129696.268821
-0.00497512437811 0.16 9.85252501696e-07 3139 -128981.349117
-0.00497512437811 0.19 9.68931020304e-07 3087 -128988.795345
-0.00497512437811 0.22 9.57003783903e-07 3049 -129607.217958
-0.00497512437811 0.25 9.47587544639e-07 3019 -130771.6065
-0.00497512437811 0.28 9.40682302511e-07 2997 -132450.727506
-0.00497512437811 0.31 9.33463185742e-07 2974 -134622.892774
-0.00497512437811 0.34 9.28127316825e-07 2957 -137281.596492
-0.00497512437811 0.37 9.2436082112e-07 2945 -140431.928151
-0.00497512437811 0.4 9.2153594934e-07 2936 -144085.750254
-0.00497512437811 0.43 9.19024952203e-07 2928 -148263.475342
-0.00497512437811 0.46 9.16200080424e-07 2919 -152991.446223
-0.00497512437811 0.49 9.14944581855e-07 2915 -158305.292746
-0.00497512437811 0.52 9.1117808615e-07 2903 -164249.938022
-0.00497512437811 0.55 9.07097715802e-07 2890 -170880.672456
-0.00497512437811 0.58 9.05842217233e-07 2886 -178267.922471
-0.00497512437811 0.61 9.02703470812e-07 2876 -186498.931954
-0.00497512437811 0.64 9.01134097601e-07 2871 -195682.53313
-0.00497512437811 0.67 9.00506348317e-07 2869 -205956.929457
-0.00497512437811 0.7 8.96112103327e-07 2855 -217498.132125
-0.00497512437811 0.73 8.951704794e-07 2852 -230538.59953
-0.00497512437811 0.76 8.92659482263e-07 2844 -245389.709563
-0.00497512437811 0.79 8.91090109052e-07 2839 -262482.984735
-0.00497512437811 0.82 8.89834610484e-07 2835 -282440.229303
-0.00497512437811 0.85 8.88265237273e-07 2830 -306206.540277
-0.00497512437811 0.88 8.8638198942e-07 2824 -335324.21331
-0.00473933649289 0.01 2.42530935986e-06 7727 -146921.930947
-0.00473933649289 0.04 1.24451295611e-06 3965 -139528.904992
-0.00473933649289 0.07 1.08129814219e-06 3445 -134253.469202
-0.00473933649289 0.1 1.02040646162e-06 3251 -131286.280753
-0.00473933649289 0.13 9.90902245255e-07 3157 -129637.414412
-0.00473933649289 0.16 9.73639139937e-07 3102 -128909.445338
-0.00473933649289 0.19 9.59828655682e-07 3058 -128900.849887
-0.00473933649289 0.22 9.46645920712e-07 3016 -129499.329382
-0.00473933649289 0.25 9.39740678585e-07 2994 -130645.345846
-0.00473933649289 0.28 9.32835436458e-07 2972 -132300.52574
-0.00473933649289 0.31 9.25616319688e-07 2949 -134446.84482
-0.00473933649289 0.34 9.2153594934e-07 2936 -137078.386025
-0.00473933649289 0.37 9.19652701488e-07 2930 -140198.25561
-0.00473933649289 0.4 9.1714170435e-07 2922 -143818.661018
-0.00473933649289 0.43 9.14316832571e-07 2913 -147957.491823
-0.00473933649289 0.46 9.10864211507e-07 2902 -152641.976676
-0.00473933649289 0.49 9.0678384116e-07 2889 -157906.638664
-0.00473933649289 0.52 9.05214467949e-07 2884 -163795.943485
-0.00473933649289 0.55 9.02703470812e-07 2876 -170365.530082
-0.00473933649289 0.58 9.00820222959e-07 2870 -177684.264667
-0.00473933649289 0.61 8.98936975106e-07 2864 -185837.66307
-0.00473933649289 0.64 8.96112103327e-07 2855 -194932.285085
-0.00473933649289 0.67 8.94228855474e-07 2849 -205104.54319
-0.00473933649289 0.7 8.92659482263e-07 2844 -216528.211911
-0.00473933649289 0.73 8.91090109052e-07 2839 -229431.479485
-0.00473933649289 0.76 8.89834610484e-07 2835 -244120.126548
-0.00473933649289 0.79 8.88265237273e-07 2830 -261017.550775
-0.00473933649289 0.82 8.86695864062e-07 2825 -280732.699102
-0.00473933649289 0.85 8.85126490851e-07 2820 -304190.835947
-0.00473933649289 0.88 8.83557117641e-07 2815 -332899.471879
-0.00452488687783 0.01 2.40647688133e-06 7667 -146910.094233
-0.00452488687783 0.04 1.23038859721e-06 3920 -139527.85159
-0.00452488687783 0.07 1.07188190293e-06 3415 -134234.447172
-0.00452488687783 0.1 1.01224572092e-06 3225 -131248.837418
-0.00452488687783 0.13 9.85566376338e-07 3140 -129588.806326
-0.00452488687783 0.16 9.65792273883e-07 3077 -128847.553548
-0.00452488687783 0.19 9.47901419281e-07 3020 -128822.03236
-0.00452488687783 0.22 9.41623926438e-07 3000 -129403.871166
-0.00452488687783 0.25 9.32835436458e-07 2972 -130529.83343
-0.00452488687783 0.28 9.2436082112e-07 2945 -132162.391738
-0.00452488687783 0.31 9.2153594934e-07 2936 -134284.170943
-0.00452488687783 0.34 9.19024952203e-07 2928 -136889.511307
-0.00452488687783 0.37 9.14630707213e-07 2914 -139979.993091
-0.00452488687783 0.4 9.1117808615e-07 2903 -143565.874344
-0.00452488687783 0.43 9.07725465086e-07 2892 -147666.191863
-0.00452488687783 0.46 9.05528342591e-07 2885 -152306.819895
-0.00452488687783 0.49 9.02703470812e-07 2876 -157522.995481
-0.00452488687783 0.52 9.00506348317e-07 2869 -163358.347833
-0.00452488687783 0.55 8.98936975106e-07 2864 -169867.800602
-0.00452488687783 0.58 8.95798228684e-07 2854 -177118.010813
-0.00452488687783 0.61 8.94228855474e-07 2849 -185194.161899
-0.00452488687783 0.64 8.92659482263e-07 2844 -194201.247774
-0.00452488687783 0.67 8.9077623441e-07 2838 -204272.964496
-0.00452488687783 0.7 8.89834610484e-07 2835 -215580.653565
-0.00452488687783 0.73 8.88265237273e-07 2830 -228348.413361
-0.00452488687783 0.76 8.86695864062e-07 2825 -242876.210071
-0.00452488687783 0.79 8.85126490851e-07 2820 -259579.484224
-0.00452488687783 0.82 8.84184866925e-07 2817 -279055.451194
-0.00452488687783 0.85 8.82615493714e-07 2812 -302209.212815
-0.00452488687783 0.88 8.81673869788e-07 2809 -330514.562288
-0.004329004329 0.01 2.39392189565e-06 7627 -146902.005174
-0.004329004329 0.04 1.21312549189e-06 3865 -139532.532669
-0.004329004329 0.07 1.06058241581e-06 3379 -134222.522239
-0.004329004329 0.1 1.00282948166e-06 3195 -131221.094733
-0.004329004329 0.13 9.76777886358e-07 3112 -129548.415203
-0.004329004329 0.16 9.56689909261e-07 3048 -128794.442697
-0.004329004329 0.19 9.45390422143e-07 3012 -128752.422661
-0.004329004329 0.22 9.33777060384e-07 2975 -129317.975025
-0.004329004329 0.25 9.24988570404e-07 2947 -130424.293114
-0.004329004329 0.28 9.2153594934e-07 2936 -132035.923299
-0.004329004329 0.31 9.17455578992e-07 2923 -134134.553053
-0.004329004329 0.34 9.13375208645e-07 2910 -136712.837444
-0.004329004329 0.37 9.10236462223e-07 2900 -139773.032314
-0.004329004329 0.4 9.06469966517e-07 2888 -143325.022151
-0.004329004329 0.43 9.03331220096e-07 2878 -147386.926646
-0.004329004329 0.46 9.00820222959e-07 2870 -151985.160426
-0.004329004329 0.49 8.9956472439e-07 2866 -157153.992073
-0.004329004329 0.52 8.95798228684e-07 2854 -162935.565699
-0.004329004329 0.55 8.94228855474e-07 2849 -169384.687355
-0.004329004329 0.58 8.92659482263e-07 2844 -176567.633263
-0.004329004329 0.61 8.9077623441e-07 2838 -184567.58659
-0.004329004329 0.64 8.89520735842e-07 2834 -193488.260841
-0.004329004329 0.67 8.88265237273e-07 2830 -203460.973902
-0.004329004329 0.7 8.8638198942e-07 2824 -214653.752692
-0.004329004329 0.73 8.85440365494e-07 2821 -227286.999522
-0.004329004329 0.76 8.83870992283e-07 2816 -241655.805776
-0.004329004329 0.79 8.83243242999e-07 2814 -258167.304918
-0.004329004329 0.82 8.82301619072e-07 2811 -277406.889832
-0.004329004329 0.85 8.81359995146e-07 2808 -300260.731598
-0.004329004329 0.88 8.79162872651e-07 2801 -328167.722745
-0.00414937759336 0.01 2.38011141139e-06 7583 -146897.710399
-0.00414937759336 0.04 1.20151213013e-06 3828 -139541.934017
-0.00414937759336 0.07 1.05210780047e-06 3352 -134216.317437
-0.00414937759336 0.1 9.9309936775e-07 3164 -131200.73167
-0.00414937759336 0.13 9.67361647094e-07 3082 -129514.859693
-0.00414937759336 0.16 9.48529168565e-07 3022 -128748.17688
-0.00414937759336 0.19 9.37229681448e-07 2986 -128692.736358
-0.00414937759336 0.22 9.27499567541e-07 2955 -129240.691832
-0.00414937759336 0.25 9.20594325414e-07 2933 -130328.146655
-0.00414937759336 0.28 9.16827829708e-07 2921 -131919.761021
-0.00414937759336 0.31 9.13375208645e-07 2910 -133995.235862
-0.00414937759336 0.34 9.09294838297e-07 2897 -136546.83057
-0.00414937759336 0.37 9.05214467949e-07 2884 -139576.333623
-0.00414937759336 0.4 9.02075721527e-07 2874 -143094.574228
-0.00414937759336 0.43 9.00192473674e-07 2868 -147119.341148
-0.00414937759336 0.46 8.96112103327e-07 2855 -151675.75189
-0.00414937759336 0.49 8.951704794e-07 2852 -156797.009176
-0.00414937759336 0.52 8.92973356905e-07 2845 -162526.178934
-0.00414937759336 0.55 8.91090109052e-07 2839 -168915.892183
-0.00414937759336 0.58 8.89834610484e-07 2835 -176032.197668
-0.00414937759336 0.61 8.88579111915e-07 2831 -183956.897513
-0.00414937759336 0.64 8.86068114778e-07 2823 -192791.762804
-0.00414937759336 0.67 8.85440365494e-07 2821 -202666.041157
-0.00414937759336 0.7 8.84498741567e-07 2818 -213745.479962
-0.00414937759336 0.73 8.83557117641e-07 2815 -226246.078356
-0.00414937759336 0.76 8.82301619072e-07 2811 -240457.545945
-0.00414937759336 0.79 8.81673869788e-07 2809 -256779.782032
-0.00414937759336 0.82 8.80104496577e-07 2804 -275786.023428
-0.00414937759336 0.85 8.79162872651e-07 2801 -298342.90977
-0.00414937759336 0.88 8.78535123366e-07 2799 -325857.838742
-0.00398406374502 0.01 2.36630092714e-06 7539 -146896.546338
-0.00398406374502 0.04 1.19460688801e-06 3806 -139556.88352
-0.00398406374502 0.07 1.04363318514e-06 3325 -134216.089308
-0.00398406374502 0.1 9.85566376338e-07 3140 -131186.774449
-0.00398406374502 0.13 9.61711903535e-07 3064 -129488.791203
-0.00398406374502 0.16 9.43821048933e-07 3007 -128707.714367
-0.00398406374502 0.19 9.31893812531e-07 2969 -128640.128272
-0.00398406374502 0.22 9.21849823983e-07 2937 -129170.828086
-0.00398406374502 0.25 9.17455578992e-07 2923 -130240.74617
-0.00398406374502 0.28 9.13375208645e-07 2910 -131812.516984
-0.00398406374502 0.31 9.0835321437e-07 2894 -133864.925842
-0.00398406374502 0.34 9.04900593307e-07 2883 -136389.688266
-0.00398406374502 0.37 9.01134097601e-07 2871 -139389.180671
-0.00398406374502 0.4 8.99250849748e-07 2865 -142874.307236
-0.00398406374502 0.43 8.95798228684e-07 2854 -146861.75702
-0.00398406374502 0.46 8.93914980832e-07 2848 -151376.839706
-0.00398406374502 0.49 8.91717858337e-07 2841 -156451.745349
-0.00398406374502 0.52 8.89834610484e-07 2835 -162128.636273
-0.00398406374502 0.55 8.88579111915e-07 2831 -168460.160255
-0.00398406374502 0.58 8.86695864062e-07 2825 -175510.398175
-0.00398406374502 0.61 8.86068114778e-07 2823 -183360.230347
-0.00398406374502 0.64 8.84812616209e-07 2819 -192110.311274
-0.00398406374502 0.67 8.83870992283e-07 2816 -201887.530965
-0.00398406374502 0.7 8.82301619072e-07 2811 -212854.603394
-0.00398406374502 0.73 8.8198774443e-07 2810 -225224.302567
-0.00398406374502 0.76 8.80418371219e-07 2805 -239280.81813
-0.00398406374502 0.79 8.79476747293e-07 2802 -255415.429487
-0.00398406374502 0.82 8.78848998009e-07 2800 -274190.879727
-0.00398406374502 0.85 8.77907374082e-07 2797 -296455.638918
-0.00398406374502 0.88 8.7759349944e-07 2796 -323584.155146
-0.00383141762452 0.01 2.35594306395e-06 7506 -146898.326001
-0.00383141762452 0.04 1.18832939516e-06 3786 -139577.142287
-0.00383141762452 0.07 1.0351585698e-06 3298 -134220.334849
-0.00383141762452 0.1 9.81799880632e-07 3128 -131178.749423
-0.00383141762452 0.13 9.5512053605e-07 3043 -129469.423497
-0.00383141762452 0.16 9.38799054658e-07 2991 -128675.260149
-0.00383141762452 0.19 9.24988570404e-07 2947 -128592.957638
-0.00383141762452 0.22 9.19024952203e-07 2928 -129108.393194
-0.00383141762452 0.25 9.13689083287e-07 2911 -130161.552182
-0.00383141762452 0.28 9.08980963655e-07 2896 -131713.000872
-0.00383141762452 0.31 9.04586718665e-07 2882 -133741.912421
-0.00383141762452 0.34 9.00506348317e-07 2869 -136240.572764
-0.00383141762452 0.37 8.98309225822e-07 2862 -139211.215136
-0.00383141762452 0.4 8.94856604758e-07 2851 -142662.893233
-0.00383141762452 0.43 8.92659482263e-07 2844 -146613.523056
-0.00383141762452 0.46 8.90462359768e-07 2837 -151087.361865
-0.00383141762452 0.49 8.88892986557e-07 2832 -156116.676967
-0.00383141762452 0.52 8.87323613346e-07 2827 -161742.230631
-0.00383141762452 0.55 8.85754240136e-07 2822 -168015.550269
-0.00383141762452 0.58 8.84812616209e-07 2819 -175000.917134
-0.00383141762452 0.61 8.83870992283e-07 2816 -182777.061108
-0.00383141762452 0.64 8.82301619072e-07 2811 -191443.210303
-0.00383141762452 0.67 8.82301619072e-07 2811 -201124.42789
-0.00383141762452 0.7 8.81673869788e-07 2809 -211980.754529
-0.00383141762452 0.73 8.79790621935e-07 2803 -224220.491908
-0.00383141762452 0.76 8.79162872651e-07 2801 -238123.036483
-0.00383141762452 0.79 8.78535123366e-07 2799 -254073.153247
-0.00383141762452 0.82 8.77907374082e-07 2797 -272621.221463
-0.00383141762452 0.85 8.76965750156e-07 2794 -294597.728551
-0.00383141762452 0.88 8.76338000871e-07 2792 -321345.419757
-0.00369003690037 0.01 2.3458990754e-06 7474 -146902.911264
-0.00369003690037 0.04 1.18016865447e-06 3760 -139600.453545
-0.00369003690037 0.07 1.02260358411e-06 3258 -134228.494701
-0.00369003690037 0.1 9.76777886358e-07 3112 -131175.95533
-0.00369003690037 0.13 9.47587544639e-07 3019 -129455.461522
-0.00369003690037 0.16 9.31266063247e-07 2967 -128647.718701
-0.00369003690037 0.19 9.21222074698e-07 2935 -128550.685643
-0.00369003690037 0.22 9.15258456497e-07 2916 -129053.558567
-0.00369003690037 0.25 9.09608712939e-07 2898 -130088.926144
-0.00369003690037 0.28 9.04586718665e-07 2882 -131619.841103
-0.00369003690037 0.31 9.00820222959e-07 2870 -133625.806346
-1.0 0.01 3.45324881289e-06 11002 -152373.756762
-1.0 0.04 3.38262701841e-06 10777 -152405.770449
-1.0 0.07 3.35406442597e-06 10686 -153164.537314
-1.0 0.1 3.33429032352e-06 10623 -154401.200111
-1.0 0.13 3.30698322965e-06 10536 -156056.750373
-1.0 0.16 3.30698322965e-06 10536 -158092.563181
-1.0 0.19 3.30698322965e-06 10536 -160524.168077
-1.0 0.22 3.28595362863e-06 10469 -163338.491856
-1.0 0.25 3.28407038077e-06 10463 -166548.430599
-1.0 0.28 3.28407038077e-06 10463 -170173.765055
-1.0 0.31 3.28407038077e-06 10463 -174231.987109
-1.0 0.34 3.26147140654e-06 10391 -178735.091444
-1.0 0.37 3.26147140654e-06 10391 -183715.722798
-1.0 0.4 3.26147140654e-06 10391 -189211.308601
-1.0 0.43 3.26147140654e-06 10391 -195260.710977
-1.0 0.46 3.25739103619e-06 10378 -201910.210955
-1.0 0.49 3.23322268875e-06 10301 -209212.13195
-1.0 0.52 3.23322268875e-06 10301 -217226.599833
-1.0 0.55 3.23322268875e-06 10301 -226044.689665
-1.0 0.58 3.23322268875e-06 10301 -235764.690988
-1.0 0.61 3.23322268875e-06 10301 -246507.568015
-1.0 0.64 3.23322268875e-06 10301 -258424.514499
-1.0 0.67 3.23322268875e-06 10301 -271706.978841
-1.0 0.7 3.21407633557e-06 10240 -286594.302167
-1.0 0.73 3.21407633557e-06 10240 -303418.139175
-1.0 0.76 3.21407633557e-06 10240 -322623.131242
-1.0 0.79 3.21407633557e-06 10240 -344830.756962
-1.0 0.82 3.21407633557e-06 10240 -370952.165726
-1.0 0.85 3.19775485418e-06 10188 -402393.216523
-1.0 0.88 3.19241898527e-06 10171 -441521.055457
-0.0909090909091 0.01 3.0750298691e-06 9797 -150463.291574
-0.0909090909091 0.04 2.64376611079e-06 8423 -146426.454929
-0.0909090909091 0.07 2.52198274964e-06 8035 -144774.783776
-0.0909090909091 0.1 2.44288633982e-06 7783 -144284.276633
-0.0909090909091 0.13 2.39643289278e-06 7635 -144559.509024
-0.0909090909091 0.16 2.36190668215e-06 7525 -145459.762822
-0.0909090909091 0.19 2.32894984472e-06 7420 -146895.533962
-1.0 0.01 3.45324881289e-06 11002 -152373.756762
-1.0 0.04 3.38262701841e-06 10777 -152405.770449
-1.0 0.07 3.35406442597e-06 10686 -153164.537314
-1.0 0.1 3.33429032352e-06 10623 -154401.200111
-1.0 0.13 3.30698322965e-06 10536 -156056.750373
-1.0 0.16 3.30698322965e-06 10536 -158092.563181
-1.0 0.19 3.30698322965e-06 10536 -160524.168077
-1.0 0.22 3.28595362863e-06 10469 -163338.491856
-1.0 0.25 3.28407038077e-06 10463 -166548.430599
-1.0 0.28 3.28407038077e-06 10463 -170173.765055
-1.0 0.31 3.28407038077e-06 10463 -174231.987109
-1.0 0.34 3.26147140654e-06 10391 -178735.091444
-1.0 0.37 3.26147140654e-06 10391 -183715.722798
-1.0 0.4 3.26147140654e-06 10391 -189211.308601
-1.0 0.43 3.26147140654e-06 10391 -195260.710977
-1.0 0.46 3.25739103619e-06 10378 -201910.210955
-1.0 0.49 3.23322268875e-06 10301 -209212.13195
-1.0 0.52 3.23322268875e-06 10301 -217226.599833
-1.0 0.55 3.23322268875e-06 10301 -226044.689665
-1.0 0.58 3.23322268875e-06 10301 -235764.690988
-1.0 0.61 3.23322268875e-06 10301 -246507.568015
-1.0 0.64 3.23322268875e-06 10301 -258424.514499
-1.0 0.67 3.23322268875e-06 10301 -271706.978841
-1.0 0.7 3.21407633557e-06 10240 -286594.302167
-1.0 0.73 3.21407633557e-06 10240 -303418.139175
-1.0 0.76 3.21407633557e-06 10240 -322623.131242
-1.0 0.79 3.21407633557e-06 10240 -344830.756962
-1.0 0.82 3.21407633557e-06 10240 -370952.165726
-1.0 0.85 3.19775485418e-06 10188 -402393.216523
-1.0 0.88 3.19241898527e-06 10171 -441521.055457
-0.0909090909091 0.01 3.0750298691e-06 9797 -150463.291574
-0.0909090909091 0.04 2.64376611079e-06 8423 -146426.454929
-0.0909090909091 0.07 2.52198274964e-06 8035 -144774.783776
-0.0909090909091 0.1 2.44288633982e-06 7783 -144284.276633
-0.0909090909091 0.13 2.39643289278e-06 7635 -144559.509024
-0.0909090909091 0.16 2.36190668215e-06 7525 -145459.762822
-0.0909090909091 0.19 2.32894984472e-06 7420 -146895.533962
-0.0909090909091 0.22 2.29567913266e-06 7314 -148827.173822
-0.0909090909091 0.25 2.27496340627e-06 7248 -151237.723392
-0.0909090909091 0.28 2.25487542918e-06 7184 -154121.451004
-0.0909090909091 0.31 2.24169269421e-06 7142 -157484.470574
-0.0909090909091 0.34 2.22819608459e-06 7099 -161337.94231
-0.0909090909091 0.37 2.20653873429e-06 7030 -165698.258589
-0.0909090909091 0.4 2.1917866261e-06 6983 -170594.028285
-0.0909090909091 0.43 2.18362588541e-06 6957 -176058.93665
-0.0909090909091 0.46 2.17295414758e-06 6923 -182135.66092
-0.0909090909091 0.49 2.16824602794e-06 6908 -188874.899404
-0.0909090909091 0.52 2.15882978868e-06 6878 -196339.502374
-0.0909090909091 0.55 2.14941354942e-06 6848 -204605.31655
-0.0909090909091 0.58 2.14031118479e-06 6819 -213766.700883
-0.0909090909091 0.61 2.12775619911e-06 6779 -223938.297053
-0.0909090909091 0.64 2.12242033019e-06 6762 -235265.93441
-0.0909090909091 0.67 2.11394571485e-06 6735 -247935.42533
-0.0909090909091 0.7 2.10296010238e-06 6700 -262185.724641
-0.0909090909091 0.73 2.09322998847e-06 6669 -278332.096551
-0.0909090909091 0.76 2.08130275207e-06 6631 -296803.170057
-0.0909090909091 0.79 2.07125876352e-06 6599 -318201.827345
-0.0909090909091 0.82 2.05336790892e-06 6542 -343410.417577
-0.0909090909091 0.85 2.04395166965e-06 6512 -373799.089191
-0.0909090909091 0.88 2.03076893468e-06 6470 -411665.87129
-0.047619047619 0.01 2.99938608035e-06 9556 -149763.532956
-0.047619047619 0.04 2.33114696722e-06 7427 -144303.444655
-0.047619047619 0.07 2.15192454655e-06 6856 -141652.327419
-0.047619047619 0.1 2.0800472535e-06 6627 -140455.986397
-0.047619047619 0.13 2.01946944757e-06 6434 -140194.999096
-0.047619047619 0.16 1.98494323693e-06 6324 -140646.765177
-0.047619047619 0.19 1.95606676985e-06 6232 -141704.232879
-0.047619047619 0.22 1.93001517456e-06 6149 -143307.788155
-0.047619047619 0.25 1.90051095819e-06 6055 -145420.471085
-0.047619047619 0.28 1.88105073038e-06 5993 -148029.74579
-0.047619047619 0.31 1.86190437721e-06 5932 -151134.210114
-0.047619047619 0.34 1.8424441494e-06 5870 -154741.974156
-0.047619047619 0.37 1.82737816657e-06 5822 -158867.786416
-0.047619047619 0.4 1.81607867946e-06 5786 -163537.222704
-0.047619047619 0.43 1.80258206984e-06 5743 -168781.553811
-0.047619047619 0.46 1.79096870808e-06 5706 -174639.297024
-0.047619047619 0.49 1.77935534633e-06 5669 -181160.048266
-0.047619047619 0.52 1.76805585921e-06 5633 -188404.097365
-0.047619047619 0.55 1.75644249745e-06 5596 -196445.989484
-0.047619047619 0.58 1.74765400747e-06 5568 -205377.678182
-0.047619047619 0.61 1.73478514714e-06 5527 -215312.601697
-0.047619047619 0.64 1.7263105318e-06 5500 -226393.784294
-0.047619047619 0.67 1.7165804179e-06 5469 -238803.804134
-0.047619047619 0.7 1.70873355184e-06 5444 -252777.747868
-0.047619047619 0.73 1.69743406473e-06 5408 -268625.6512
-0.047619047619 0.76 1.68613457761e-06 5372 -286768.996828
-0.047619047619 0.79 1.67514896513e-06 5337 -307800.090952
-0.047619047619 0.82 1.66416335266e-06 5302 -332588.345345
-0.047619047619 0.85 1.64941124448e-06 5255 -362477.935405
-0.047619047619 0.88 1.63120651523e-06 5197 -399721.32613
-0.0322580645161 0.01 3.0571390145e-06 9740 -149252.337596
-0.0322580645161 0.04 2.11677058663e-06 6744 -143085.434954
-0.0322580645161 0.07 1.95230027415e-06 6220 -139856.709526
-0.0322580645161 0.1 1.86096275328e-06 5929 -138270.729159
-0.0322580645161 0.13 1.79975719806e-06 5734 -137696.24859
-0.0322580645161 0.16 1.75581474816e-06 5594 -137887.862672
-0.0322580645161 0.19 1.72317178538e-06 5490 -138716.003824
-0.0322580645161 0.22 1.69806181401e-06 5410 -140112.438269
-0.0322580645161 0.25 1.67201021871e-06 5327 -142039.406609
-0.0322580645161 0.28 1.65286386554e-06 5266 -144475.892389
-0.0322580645161 0.31 1.63403138701e-06 5206 -147418.470661
-0.0322580645161 0.34 1.61111853813e-06 5133 -150870.399022
-0.0322580645161 0.37 1.59354155817e-06 5077 -154843.715403
-0.0322580645161 0.4 1.57910332464e-06 5031 -159362.889403
-0.0322580645161 0.43 1.56497896574e-06 4986 -164458.053537
-0.0322580645161 0.46 1.55367947862e-06 4950 -170167.915189
-0.0322580645161 0.49 1.53955511973e-06 4905 -176539.352396
-0.0322580645161 0.52 1.52794175797e-06 4868 -183631.216215
-0.0322580645161 0.55 1.51695614549e-06 4833 -191516.291085
-0.0322580645161 0.58 1.50408728516e-06 4792 -200285.038784
-0.0322580645161 0.61 1.49718204304e-06 4770 -210050.477772
-0.0322580645161 0.64 1.4865103052e-06 4736 -220953.481602
-0.0322580645161 0.67 1.47113044774e-06 4687 -233170.874575
-0.0322580645161 0.7 1.46202808312e-06 4658 -246934.474791
-0.0322580645161 0.73 1.45323959314e-06 4630 -262551.130327
-0.0322580645161 0.76 1.43817361031e-06 4582 -280435.91002
-0.0322580645161 0.79 1.42373537677e-06 4536 -301168.584331
-0.0322580645161 0.82 1.41369138823e-06 4504 -325605.866758
-0.0322580645161 0.85 1.39893928004e-06 4457 -355069.585014
-0.0322580645161 0.88 1.38355942258e-06 4408 -391769.852111
-0.0243902439024 0.01 3.00158320284e-06 9563 -148823.142
-0.0243902439024 0.04 1.98117674122e-06 6312 -142295.808377
-0.0243902439024 0.07 1.7925380813e-06 5711 -138673.442888
-0.0243902439024 0.1 1.69868956329e-06 5412 -136794.449231
-0.0243902439024 0.13 1.64313375163e-06 5235 -136004.086469
-0.0243902439024 0.16 1.5885195639e-06 5061 -136013.507055
-0.0243902439024 0.19 1.54959910827e-06 4937 -136672.239708
-0.0243902439024 0.22 1.51978101727e-06 4842 -137914.769668
-0.0243902439024 0.25 1.4924739234e-06 4755 -139695.720461
-0.0243902439024 0.28 1.47364144488e-06 4695 -141997.294447
-0.0243902439024 0.31 1.45292571849e-06 4629 -144810.730107
-0.0243902439024 0.34 1.4388013596e-06 4584 -148140.214587
-0.0243902439024 0.37 1.41808563322e-06 4518 -151995.978095
-0.0243902439024 0.4 1.40647227146e-06 4481 -156398.99106
-0.0243902439024 0.43 1.39517278434e-06 4445 -161379.729886
-0.0243902439024 0.46 1.38199004937e-06 4403 -166972.801242
-0.0243902439024 0.49 1.37069056225e-06 4367 -173225.941393
-0.0243902439024 0.52 1.3606465737e-06 4335 -180196.722942
-0.0243902439024 0.55 1.35248583301e-06 4309 -187957.793598
-0.0243902439024 0.58 1.34150022053e-06 4274 -196597.605228
-0.0243902439024 0.61 1.33239785591e-06 4245 -206225.259286
-0.0243902439024 0.64 1.32203999272e-06 4212 -216980.475554
-0.0243902439024 0.67 1.31419312666e-06 4187 -229039.175135
-0.0243902439024 0.7 1.30257976491e-06 4150 -242629.232668
-0.0243902439024 0.73 1.29504677349e-06 4126 -258051.500565
-0.0243902439024 0.76 1.28343341173e-06 4089 -275714.769655
-0.0243902439024 0.79 1.27715591889e-06 4069 -296193.760237
-0.0243902439024 0.82 1.26868130355e-06 4042 -320329.123752
-0.0243902439024 0.85 1.25800956572e-06 4008 -349419.694714
-0.0243902439024 0.88 1.24827945181e-06 3977 -385635.396338
-0.0196078431373 0.01 2.93410015478e-06 9348 -148498.466954
-0.0196078431373 0.04 1.86975124326e-06 5957 -141741.668613
-0.0196078431373 0.07 1.66887147229e-06 5317 -137797.607539
-0.0196078431373 0.1 1.56654833895e-06 4991 -135703.702967
-0.0196078431373 0.13 1.50157628803e-06 4784 -134726.60019
-0.0196078431373 0.16 1.45731996348e-06 4643 -134577.515808
-0.0196078431373 0.19 1.41683013465e-06 4514 -135106.887459
-0.0196078431373 0.22 1.39172016327e-06 4434 -136231.471965
-0.0196078431373 0.25 1.36755181583e-06 4357 -137909.165628
-0.0196078431373 0.28 1.35123033444e-06 4305 -140113.087181
-0.0196078431373 0.31 1.33208398127e-06 4244 -142835.314044
-0.0196078431373 0.34 1.31952899558e-06 4204 -146075.610904
-0.0196078431373 0.37 1.30603238597e-06 4161 -149845.477111
-0.0196078431373 0.4 1.29536064814e-06 4127 -154163.371633
-0.0196078431373 0.43 1.2809224146e-06 4081 -159056.348347
-0.0196078431373 0.46 1.27244779926e-06 4054 -164561.036785
-0.0196078431373 0.49 1.26522868249e-06 4031 -170724.096266
-0.0196078431373 0.52 1.25581244323e-06 4001 -177601.95894
-0.0196078431373 0.55 1.24733782789e-06 3974 -185264.61658
-0.0196078431373 0.58 1.24357133218e-06 3962 -193800.573442
-0.0196078431373 0.61 1.23572446613e-06 3937 -203318.009157
-0.0196078431373 0.64 1.23038859721e-06 3920 -213953.627589
-0.0196078431373 0.67 1.22599435222e-06 3906 -225881.765073
-0.0196078431373 0.7 1.21814748617e-06 3881 -239326.076937
-0.0196078431373 0.73 1.21061449476e-06 3857 -254583.887996
-0.0196078431373 0.76 1.20025663157e-06 3824 -272057.258962
-0.0196078431373 0.79 1.19366526408e-06 3803 -292310.40304
-0.0196078431373 0.82 1.18738777124e-06 3783 -316171.012162
-0.0196078431373 0.85 1.17828540662e-06 3754 -344915.833831
-0.0196078431373 0.88 1.16949691664e-06 3726 -380676.137333
-0.016393442623 0.01 2.88074146562e-06 9178 -148238.951955
-0.016393442623 0.04 1.76334773958e-06 5618 -141320.153976
-0.016393442623 0.07 1.57094258394e-06 5005 -137124.470779
-0.016393442623 0.1 1.46202808312e-06 4658 -134838.515361
-0.016393442623 0.13 1.39674215755e-06 4450 -133720.919166
-0.016393442623 0.16 1.35939107513e-06 4331 -133457.703056
-0.016393442623 0.19 1.32831748556e-06 4232 -133893.294598
-0.016393442623 0.22 1.30289363955e-06 4151 -134937.013968
-0.016393442623 0.25 1.2787252921e-06 4074 -136537.370778
-0.016393442623 0.28 1.26554255713e-06 4032 -138668.696809
-0.016393442623 0.31 1.25141819824e-06 3987 -141321.315854
-0.016393442623 0.34 1.24106033504e-06 3954 -144494.482684
-0.016393442623 0.37 1.23038859721e-06 3920 -148199.166995
-0.016393442623 0.4 1.22191398187e-06 3893 -152451.568181
-0.016393442623 0.43 1.21343936654e-06 3866 -157278.86005
-0.016393442623 0.46 1.20527862584e-06 3840 -162715.929842
-0.016393442623 0.49 1.1968040105e-06 3813 -168807.113089
-0.016393442623 0.52 1.19021264302e-06 3792 -175608.216447
-0.016393442623 0.55 1.18550452339e-06 3777 -183189.303582
-0.016393442623 0.58 1.17702990805e-06 3750 -191635.99382
-0.016393442623 0.61 1.17263566306e-06 3736 -201055.874861
-0.016393442623 0.64 1.16604429557e-06 3715 -211583.312365
-0.016393442623 0.67 1.15819742952e-06 3690 -223389.018938
-0.016393442623 0.7 1.1528615606e-06 3673 -236694.706709
-0.016393442623 0.73 1.14627019312e-06 3652 -251792.803141
-0.016393442623 0.76 1.1409343242e-06 3635 -269080.336351
-0.016393442623 0.79 1.13183195958e-06 3606 -289112.329
-0.016393442623 0.82 1.12272959496e-06 3577 -312700.133592
-0.016393442623 0.85 1.11362723033e-06 3548 -341096.487136
-0.016393442623 0.88 1.10640811356e-06 3525 -376393.803972
-0.0140845070423 0.01 2.82895214966e-06 9013 -148029.711632
-0.0140845070423 0.04 1.68613457761e-06 5372 -140973.63127
-0.0140845070423 0.07 1.48556868128e-06 4733 -136589.140351
-0.0140845070423 0.1 1.38230392401e-06 4404 -134158.87826
-0.0140845070423 0.13 1.32988685877e-06 4237 -132934.942574
-0.0140845070423 0.16 1.28563053423e-06 4096 -132589.314568
-0.0140845070423 0.19 1.25518469394e-06 3999 -132948.641969
-0.0140845070423 0.22 1.23509671684e-06 3935 -133924.243252
-0.0140845070423 0.25 1.21971685938e-06 3886 -135466.431375
-0.0140845070423 0.28 1.20810349762e-06 3849 -137545.277942
-0.0140845070423 0.31 1.19554851193e-06 3809 -140145.972683
-0.0140845070423 0.34 1.18393515017e-06 3772 -143266.16501
-0.0140845070423 0.37 1.17546053484e-06 3745 -146916.188241
-0.0140845070423 0.4 1.16886916735e-06 3724 -151113.14498
-0.0140845070423 0.43 1.16008067737e-06 3696 -155882.44839
-0.0140845070423 0.46 1.15254768596e-06 3672 -161257.484374
-0.0140845070423 0.49 1.14438694526e-06 3646 -167282.033339
-0.0140845070423 0.52 1.13905107635e-06 3629 -174011.783344
-0.0140845070423 0.55 1.13245970886e-06 3608 -181515.327979
-0.0140845070423 0.58 1.1268099653e-06 3590 -189876.867145
-0.0140845070423 0.61 1.11833534997e-06 3563 -199201.497637
-0.0140845070423 0.64 1.11143010784e-06 3541 -209621.860489
-0.0140845070423 0.67 1.10829136142e-06 3531 -221308.141517
-0.0140845070423 0.7 1.09981674608e-06 3504 -234477.667424
-0.0140845070423 0.73 1.09291150395e-06 3482 -249417.619486
-0.0140845070423 0.76 1.08632013647e-06 3461 -266518.941512
-0.0140845070423 0.79 1.07941489434e-06 3439 -286328.249506
-0.0140845070423 0.82 1.07345127614e-06 3420 -309642.402001
-0.0140845070423 0.85 1.06748765794e-06 3401 -337693.600303
-0.0140845070423 0.88 1.0590130426e-06 3374 -372530.298364
-0.0123456790123 0.01 2.77779058299e-06 8850 -147851.138646
-0.0123456790123 0.04 1.62712614488e-06 5184 -140694.481585
-0.0123456790123 0.07 1.41494688679e-06 4508 -136160.801015
-0.0123456790123 0.1 1.32329549129e-06 4216 -133620.289476
-0.0123456790123 0.13 1.26208993607e-06 4021 -132309.90306
-0.0123456790123 0.16 1.22693597615e-06 3909 -131890.375247
-0.0123456790123 0.19 1.20841737226e-06 3850 -132195.55712
-0.0123456790123 0.22 1.18832939516e-06 3786 -133126.31055
-0.0123456790123 0.25 1.17389116163e-06 3740 -134622.549188
-0.0123456790123 0.28 1.16290554915e-06 3705 -136654.925463
-0.0123456790123 0.31 1.15097831275e-06 3667 -139209.841103
-0.0123456790123 0.34 1.14124819884e-06 3636 -142283.951765
-0.0123456790123 0.37 1.134970706e-06 3616 -145886.056462
-0.0123456790123 0.4 1.12524059209e-06 3585 -150031.968853
-0.0123456790123 0.43 1.11519660354e-06 3553 -154745.123921
-0.0123456790123 0.46 1.10829136142e-06 3531 -160059.795513
-0.0123456790123 0.49 1.10232774322e-06 3512 -166021.016094
-0.0123456790123 0.52 1.09353925324e-06 3484 -172681.298157
-0.0123456790123 0.55 1.08663401111e-06 3462 -180107.569468
-0.0123456790123 0.58 1.08192589148e-06 3447 -188384.658662
-0.0123456790123 0.61 1.07564839863e-06 3427 -197616.421133
-0.0123456790123 0.64 1.07062640436e-06 3411 -207933.365089
-0.0123456790123 0.67 1.06623215937e-06 3397 -219502.485
-0.0123456790123 0.7 1.06183791438e-06 3383 -232538.671407
-0.0123456790123 0.73 1.05556042154e-06 3363 -247325.153847
-0.0123456790123 0.76 1.04551643299e-06 3331 -264244.316856
-0.0123456790123 0.79 1.03955281479e-06 3312 -283832.864484
-0.0123456790123 0.82 1.03421694587e-06 3295 -306876.425881
-0.0123456790123 0.85 1.0291949516e-06 3279 -334581.940521
-0.0123456790123 0.88 1.02197583483e-06 3256 -368957.856898
-0.010989010989 0.01 2.72662901632e-06 8687 -147693.31049
-0.010989010989 0.04 1.58067269785e-06 5036 -140472.316549
-0.010989010989 0.07 1.3546829555e-06 4316 -135805.749177
-0.010989010989 0.1 1.26365930928e-06 4026 -133177.464331
-0.010989010989 0.13 1.21657811296e-06 3876 -131799.574207
-0.010989010989 0.16 1.18738777124e-06 3783 -131334.878044
-0.010989010989 0.19 1.1669859195e-06 3718 -131596.671712
-0.010989010989 0.22 1.15129218739e-06 3668 -132486.626052
-0.010989010989 0.25 1.13716782849e-06 3623 -133944.039208
-0.010989010989 0.28 1.12618221602e-06 3588 -135938.033856
-0.010989010989 0.31 1.11268560641e-06 3545 -138451.189282
-0.010989010989 0.34 1.10452486571e-06 3519 -141479.836593
-0.010989010989 0.37 1.09510862645e-06 3489 -145034.563558
-0.010989010989 0.4 1.08569238718e-06 3459 -149128.878036
-0.010989010989 0.43 1.07878714506e-06 3437 -153788.500503
-0.010989010989 0.46 1.07156802829e-06 3414 -159046.320523
-0.010989010989 0.49 1.06685990865e-06 3399 -164945.201756
-0.010989010989 0.52 1.06183791438e-06 3383 -171538.91575
-0.010989010989 0.55 1.05461879761e-06 3360 -178893.444648
-0.010989010989 0.58 1.04614418227e-06 3333 -187089.817325
-0.010989010989 0.61 1.03955281479e-06 3312 -196230.218933
-0.010989010989 0.64 1.03704181765e-06 3304 -206445.354015
-0.010989010989 0.67 1.03233369802e-06 3289 -217899.413824
-0.010989010989 0.7 1.02731170374e-06 3273 -230803.059378
-0.010989010989 0.73 1.02354520804e-06 3261 -245436.160112
-0.010989010989 0.76 1.01726771519e-06 3241 -262175.423418
-0.010989010989 0.79 1.0128734702e-06 3227 -281548.878857
-0.010989010989 0.82 1.00785147593e-06 3211 -304326.295793
-0.010989010989 0.85 1.00282948166e-06 3195 -331692.241487
-0.010989010989 0.88 9.9906298595e-07 3183 -365613.419073
-0.00990099009901 0.01 2.68645306213e-06 8559 -147555.25669
-0.00990099009901 0.04 1.53610249866e-06 4894 -140287.720573
-0.00990099009901 0.07 1.30917113239e-06 4171 -135509.817938
-0.00990099009901 0.1 1.22034460866e-06 3888 -132807.52639
-0.00990099009901 0.13 1.18267965161e-06 3768 -131389.650464
-0.00990099009901 0.16 1.15694193095e-06 3686 -130887.044265
-0.00990099009901 0.19 1.13559845528e-06 3618 -131115.815203
-0.00990099009901 0.22 1.1208463471e-06 3571 -131970.808628
-0.00990099009901 0.25 1.10389711643e-06 3517 -133390.352673
-0.00990099009901 0.28 1.09259762931e-06 3481 -135344.517739
-0.00990099009901 0.31 1.08067039291e-06 3443 -137815.876501
-0.00990099009901 0.34 1.07125415364e-06 3413 -140803.172502
-0.00990099009901 0.37 1.06403503687e-06 3390 -144312.935474
-0.00990099009901 0.4 1.05807141867e-06 3371 -148361.094259
-0.00990099009901 0.43 1.04928292869e-06 3343 -152971.076082
-0.00990099009901 0.46 1.03986668943e-06 3313 -158173.821204
-0.00990099009901 0.49 1.03610019372e-06 3301 -164012.363667
-0.00990099009901 0.52 1.03107819945e-06 3285 -170540.249349
-0.00990099009901 0.55 1.02574233053e-06 3268 -177821.926267
-0.00990099009901 0.58 1.02197583483e-06 3256 -185939.244178
-0.00990099009901 0.61 1.01632609127e-06 3238 -194993.053383
-0.00990099009901 0.64 1.01224572092e-06 3225 -205110.183476
-0.00990099009901 0.67 1.00753760129e-06 3210 -216452.034634
-0.00990099009901 0.7 1.00282948166e-06 3195 -229227.239054
-0.00990099009901 0.73 1.00031848452e-06 3187 -243710.052163
-0.00990099009901 0.76 9.98121362024e-07 3180 -260273.025126
-0.00990099009901 0.79 9.95924239529e-07 3173 -279435.158033
-0.00990099009901 0.82 9.89018997402e-07 3151 -301950.022349
-0.00990099009901 0.85 9.80544382064e-07 3124 -328978.068445
-0.00990099009901 0.88 9.76464011716e-07 3111 -362445.659844
-0.00900900900901 0.01 2.64847423043e-06 8438 -147437.394265
-0.00900900900901 0.04 1.48211606021e-06 4722 -140131.375048
-0.00900900900901 0.07 1.26554255713e-06 4032 -135259.083305
-0.00900900900901 0.1 1.19366526408e-06 3803 -132506.419616
-0.00900900900901 0.13 1.15600030702e-06 3683 -131054.673847
-0.00900900900901 0.16 1.12932096244e-06 3598 -130525.021048
-0.00900900900901 0.19 1.10734973749e-06 3528 -130722.598595
-0.00900900900901 0.22 1.09134213074e-06 3477 -131543.000903
-0.00900900900901 0.25 1.07564839863e-06 3427 -132927.065507
-0.00900900900901 0.28 1.06560441009e-06 3395 -134843.955463
-0.00900900900901 0.31 1.05744366939e-06 3369 -137279.261396
-0.00900900900901 0.34 1.0448886837e-06 3329 -140227.934595
-0.00900900900901 0.37 1.03484469516e-06 3297 -143694.047498
-0.00900900900901 0.4 1.02982270088e-06 3281 -147695.895555
-0.00900900900901 0.43 1.02480070661e-06 3265 -152256.230472
-0.00900900900901 0.46 1.01883708841e-06 3246 -157407.301216
-0.00900900900901 0.49 1.01381509413e-06 3230 -163189.429805
-0.00900900900901 0.52 1.00847922521e-06 3213 -169654.901873
-0.00900900900901 0.55 1.00534047879e-06 3203 -176868.008594
-0.00900900900901 0.58 1.00126010845e-06 3190 -184908.932224
-0.00900900900901 0.61 9.98749111308e-07 3182 -193877.541927
-0.00900900900901 0.64 9.95924239529e-07 3173 -203899.360573
-0.00900900900901 0.67 9.91216119897e-07 3158 -215132.65308
-0.00900900900901 0.7 9.86821874907e-07 3144 -227781.500816
-0.00900900900901 0.73 9.80230507422e-07 3123 -242115.731542
-0.00900900900901 0.76 9.77405635642e-07 3114 -258501.167286
-0.00900900900901 0.79 9.7269751601e-07 3099 -277448.318336
-0.00900900900901 0.82 9.67675521736e-07 3083 -299697.203223
-0.00900900900901 0.85 9.62653527462e-07 3067 -326386.690291
-0.00900900900901 0.88 9.54492786766e-07 3041 -359400.548583
-0.00826446280992 0.01 2.61363414515e-06 8327 -147334.710644
-0.00826446280992 0.04 1.44507885244e-06 4604 -139996.803203
-0.00826446280992 0.07 1.22913309864e-06 3916 -135044.800818
-0.00826446280992 0.1 1.16541654629e-06 3713 -132261.403483
-0.00826446280992 0.13 1.13057646101e-06 3602 -130783.358263
-0.00826446280992 0.16 1.10264161786e-06 3513 -130224.787931
-0.00826446280992 0.19 1.08192589148e-06 3447 -130392.918578
-0.00826446280992 0.22 1.06591828473e-06 3396 -131182.356639
-0.00826446280992 0.25 1.05493267225e-06 3361 -132536.174963
-0.00826446280992 0.28 1.0389250655e-06 3310 -134420.17659
-0.00826446280992 0.31 1.03045045017e-06 3283 -136817.813604
-0.00826446280992 0.34 1.02385908268e-06 3262 -139727.057504
-0.00826446280992 0.37 1.01663996591e-06 3239 -143154.547809
-0.00826446280992 0.4 1.01161797164e-06 3223 -147114.17848
-0.00826446280992 0.43 1.00596822808e-06 3205 -151628.818775
-0.00826446280992 0.46 1.0009462338e-06 3189 -156729.952421
-0.00826446280992 0.49 9.9749361274e-07 3178 -162457.626339
-0.00826446280992 0.52 9.9466874096e-07 3169 -168863.735914
-0.00826446280992 0.55 9.89646746686e-07 3153 -176010.816105
-0.00826446280992 0.58 9.83997003127e-07 3135 -183977.077798
-0.00826446280992 0.61 9.78347259569e-07 3117 -192860.147817
-0.00826446280992 0.64 9.76777886358e-07 3112 -202784.286039
-0.00826446280992 0.67 9.7269751601e-07 3099 -213906.546095
-0.00826446280992 0.7 9.67989396378e-07 3084 -226427.413545
-0.00826446280992 0.73 9.64222900672e-07 3072 -240613.266994
-0.00826446280992 0.76 9.57317658545e-07 3050 -256822.193344
-0.00826446280992 0.79 9.53865037481e-07 3039 -275554.637798
-0.00826446280992 0.82 9.52295664271e-07 3034 -297539.787295
-0.00826446280992 0.85 9.47587544639e-07 3019 -323894.120996
-0.00826446280992 0.88 9.41310051796e-07 2999 -356460.738163
-0.00763358778626 0.01 2.58224668093e-06 8227 -147246.918164
-0.00763358778626 0.04 1.40772777002e-06 4485 -139885.172929
-0.00763358778626 0.07 1.20308150335e-06 3833 -134868.305177
-0.00763358778626 0.1 1.14501469455e-06 3648 -132057.116982
-0.00763358778626 0.13 1.10954685999e-06 3535 -130559.17433
-0.00763358778626 0.16 1.07972876898e-06 3440 -129973.793412
-0.00763358778626 0.19 1.06152403974e-06 3382 -130113.054358
-0.00763358778626 0.22 1.04457480906e-06 3328 -130876.80811
-0.00763358778626 0.25 1.03139207409e-06 3286 -132199.688903
-0.00763358778626 0.28 1.02260358411e-06 3258 -134051.760643
-0.00763358778626 0.31 1.01350121949e-06 3229 -136418.26085
-0.00763358778626 0.34 1.00596822808e-06 3205 -139293.403058
-0.00763358778626 0.37 1.00000460988e-06 3186 -142683.139354
-0.00763358778626 0.4 9.95924239529e-07 3173 -146601.852523
-0.00763358778626 0.43 9.92785493108e-07 3163 -151073.058439
-0.00763358778626 0.46 9.86821874907e-07 3144 -156126.044258
-0.00763358778626 0.49 9.7991663278e-07 3122 -161799.551408
-0.00763358778626 0.52 9.76150137074e-07 3110 -168144.256812
-0.00763358778626 0.55 9.73325265294e-07 3101 -175223.536436
-0.00763358778626 0.58 9.68617145662e-07 3086 -183114.314927
-0.00763358778626 0.61 9.63595151388e-07 3070 -191913.047633
-0.00763358778626 0.64 9.58259282471e-07 3053 -201741.134334
-0.00763358778626 0.67 9.54806661408e-07 3042 -212752.196972
-0.00763358778626 0.7 9.52295664271e-07 3034 -225145.894609
-0.00763358778626 0.73 9.50098541776e-07 3027 -239184.192726
-0.00763358778626 0.76 9.4633204607e-07 3015 -255219.483084
-0.00763358778626 0.79 9.42251675722e-07 3002 -273742.318324
-0.00763358778626 0.82 9.38171305374e-07 2989 -295466.627625
-0.00763358778626 0.85 9.32521561815e-07 2971 -321486.006431
-0.00763358778626 0.88 9.2875506611e-07 2959 -353605.49287
-0.00709219858156 0.01 2.56121707991e-06 8160 -147173.783528
-0.00709219858156 0.04 1.37634030581e-06 4385 -139793.528954
-0.00709219858156 0.07 1.18456289946e-06 3774 -134722.804442
-0.00709219858156 0.1 1.12555446674e-06 3586 -131889.626902
-0.00709219858156 0.13 1.08851725896e-06 3468 -130368.472474
-0.00709219858156 0.16 1.06058241581e-06 3379 -129759.867447
-0.00709219858156 0.19 1.03923894015e-06 3311 -129876.59913
-0.00709219858156 0.22 1.02574233053e-06 3268 -130611.453504
-0.00709219858156 0.25 1.01475671806e-06 3233 -131909.139404
-0.00709219858156 0.28 1.00439885487e-06 3200 -133734.359361
-0.00709219858156 0.31 9.97179738098e-07 3177 -136069.261231
-0.00709219858156 0.34 9.93413242392e-07 3165 -138911.608554
-0.00709219858156 0.37 9.87763498833e-07 3147 -142266.945321
-0.00709219858156 0.4 9.7991663278e-07 3122 -146146.463108
-0.00709219858156 0.43 9.75208513147e-07 3107 -150572.097738
-0.00709219858156 0.46 9.70814268157e-07 3093 -155575.618666
-0.00709219858156 0.49 9.66733897809e-07 3080 -161195.069719
-0.00709219858156 0.52 9.61398028893e-07 3063 -167480.303464
-0.00709219858156 0.55 9.56062159976e-07 3046 -174492.082013
-0.00709219858156 0.58 9.51981789629e-07 3033 -182307.121801
-0.00709219858156 0.61 9.51040165702e-07 3030 -191021.627679
-0.00709219858156 0.64 9.48529168565e-07 3022 -200755.7751
-0.00709219858156 0.67 9.44762672859e-07 3010 -211659.975819
-0.00709219858156 0.7 9.40368427869e-07 2996 -223929.348866
-0.00709219858156 0.73 9.37229681448e-07 2986 -237821.040046
-0.00709219858156 0.76 9.32521561815e-07 2971 -253681.873935
-0.00709219858156 0.79 9.2875506611e-07 2959 -271994.110828
-0.00709219858156 0.82 9.26244068973e-07 2951 -293458.508406
-0.00709219858156 0.85 9.23105322551e-07 2941 -319146.801181
-0.00709219858156 0.88 9.20594325414e-07 2933 -350826.020314
-0.00662251655629 0.01 2.53736260711e-06 8084 -147113.539847
-0.00662251655629 0.04 1.35279970765e-06 4310 -139716.616462
-0.00662251655629 0.07 1.16604429557e-06 3715 -134604.641544
-0.00662251655629 0.1 1.1089191107e-06 3533 -131751.334196
-0.00662251655629 0.13 1.06905703115e-06 3406 -130206.37311
-0.00662251655629 0.16 1.04363318514e-06 3325 -129578.866057
-0.00662251655629 0.19 1.02228970947e-06 3257 -129671.230544
-0.00662251655629 0.22 1.00942084914e-06 3216 -130383.712248
-0.00662251655629 0.25 1.00000460988e-06 3186 -131655.574854
-0.00662251655629 0.28 9.9309936775e-07 3164 -133454.259986
-0.00662251655629 0.31 9.86194125622e-07 3142 -135763.116949
-0.00662251655629 0.34 9.77719510285e-07 3115 -138573.588198
-0.00662251655629 0.37 9.73639139937e-07 3102 -141891.442321
-0.00662251655629 0.4 9.67989396378e-07 3084 -145731.664391
-0.00662251655629 0.43 9.62025778177e-07 3065 -150114.519799
-0.00662251655629 0.46 9.54806661408e-07 3042 -155069.069227
-0.00662251655629 0.49 9.51667914986e-07 3032 -160634.096083
-0.00662251655629 0.52 9.5072629106e-07 3029 -166859.887852
-0.00662251655629 0.55 9.47901419281e-07 3020 -173807.300895
-0.00662251655629 0.58 9.42565550364e-07 3003 -181550.380414
-0.00662251655629 0.61 9.39112929301e-07 2992 -190182.569776
-0.00662251655629 0.64 9.35032558953e-07 2979 -199822.138694
-0.00662251655629 0.67 9.31893812531e-07 2969 -210617.922889
-0.00662251655629 0.7 9.28127316825e-07 2957 -222762.426004
-0.00662251655629 0.73 9.26244068973e-07 2951 -236508.654403
-0.00662251655629 0.76 9.23733071835e-07 2943 -252197.110352
-0.00662251655629 0.79 9.2153594934e-07 2936 -270302.37539
-0.00662251655629 0.82 9.18397202919e-07 2926 -291510.795897
-0.00662251655629 0.85 9.16200080424e-07 2919 -316871.916787
-0.00662251655629 0.88 9.1274745936e-07 2908 -348114.16212
-0.00621118012422 0.01 2.51256651038e-06 8005 -147062.827388
-0.00621118012422 0.04 1.32329549129e-06 4216 -139654.614993
-0.00621118012422 0.07 1.1490950649e-06 3661 -134508.52775
-0.00621118012422 0.1 1.09040050681e-06 3474 -131635.255529
-0.00621118012422 0.13 1.05367717368e-06 3357 -130070.575274
-0.00621118012422 0.16 1.02574233053e-06 3268 -129420.114441
-0.00621118012422 0.19 1.00879309986e-06 3214 -129493.697127
-0.00621118012422 0.22 9.95610364887e-07 3172 -130184.635266
-0.00621118012422 0.25 9.89646746686e-07 3153 -131434.89357
-0.00621118012422 0.28 9.7991663278e-07 3122 -133209.133622
-0.00621118012422 0.31 9.73639139937e-07 3102 -135488.095785
-0.00621118012422 0.34 9.65792273883e-07 3077 -138267.618736
-0.00621118012422 0.37 9.5951478104e-07 3057 -141551.31874
-0.00621118012422 0.4 9.52923413555e-07 3036 -145351.222599
-0.00621118012422 0.43 9.5072629106e-07 3029 -149690.374031
-0.00621118012422 0.46 9.47587544639e-07 3019 -154599.043681
-0.00621118012422 0.49 9.43507174291e-07 3006 -160113.784905
-0.00621118012422 0.52 9.38485180016e-07 2990 -166281.873747
-0.00621118012422 0.55 9.35660308237e-07 2981 -173163.580913
-0.00621118012422 0.58 9.30952188605e-07 2966 -180832.983336
-0.00621118012422 0.61 9.27813442183e-07 2956 -189382.411756
-0.00621118012422 0.64 9.25302445046e-07 2948 -198928.322036
-0.00621118012422 0.67 9.23419197193e-07 2942 -209617.389377
-0.00621118012422 0.7 9.2153594934e-07 2936 -221639.657211
-0.00621118012422 0.73 9.19338826845e-07 2929 -235243.045506
-0.00621118012422 0.76 9.1714170435e-07 2922 -250762.090723
-0.00621118012422 0.79 9.15258456497e-07 2916 -268662.29078
-0.00621118012422 0.82 9.1117808615e-07 2903 -289616.414852
-0.00621118012422 0.85 9.0835321437e-07 2894 -314651.987073
-0.00621118012422 0.88 9.04586718665e-07 2882 -345459.60508
-0.00584795321637 0.01 2.49436178113e-06 7947 -147021.414708
-0.00584795321637 0.04 1.30948500703e-06 4172 -139608.013556
-0.00584795321637 0.07 1.13654007921e-06 3621 -134432.664852
-0.00584795321637 0.1 1.07219577757e-06 3416 -131538.83501
-0.00584795321637 0.13 1.03421694587e-06 3295 -129954.688956
-0.00584795321637 0.16 1.01224572092e-06 3225 -129283.765111
-0.00584795321637 0.19 9.95924239529e-07 3173 -129338.05022
-0.00584795321637 0.22 9.88391248117e-07 3149 -130012.048814
-0.00584795321637 0.25 9.75522387789e-07 3108 -131241.246608
-0.00584795321637 0.28 9.69558769589e-07 3089 -132989.93868
-0.00584795321637 0.31 9.61084154251e-07 3062 -135240.824972
-0.00584795321637 0.34 9.53865037481e-07 3039 -137988.641135
-0.00584795321637 0.37 9.49784667134e-07 3026 -141237.288103
-0.00584795321637 0.4 9.46959795354e-07 3017 -145001.800777
-0.00584795321637 0.43 9.41310051796e-07 2999 -149300.288351
-0.00584795321637 0.46 9.36288057521e-07 2983 -154161.831592
-0.00584795321637 0.49 9.32521561815e-07 2971 -159624.240696
-0.00584795321637 0.52 9.27499567541e-07 2955 -165734.24661
-0.00584795321637 0.55 9.25302445046e-07 2948 -172551.103693
-0.00584795321637 0.58 9.22791447909e-07 2940 -180148.422694
-0.00584795321637 0.61 9.21222074698e-07 2935 -188617.42674
-0.00584795321637 0.64 9.19652701488e-07 2930 -198072.097957
-0.00584795321637 0.67 9.1714170435e-07 2922 -208656.926983
-0.00584795321637 0.7 9.15886205782e-07 2918 -220557.897406
-0.00584795321637 0.73 9.1274745936e-07 2908 -234019.391704
-0.00584795321637 0.76 9.09608712939e-07 2898 -249369.641496
-0.00584795321637 0.79 9.07725465086e-07 2892 -267065.052589
-0.00584795321637 0.82 9.04586718665e-07 2882 -287766.026065
-0.00584795321637 0.85 9.01447972243e-07 2872 -312479.025712
-0.00584795321637 0.88 8.97995351179e-07 2861 -342856.581136
-0.00552486187845 0.01 2.47333218011e-06 7880 -146987.307339
-0.00552486187845 0.04 1.28845540601e-06 4105 -139574.567771
-0.00552486187845 0.07 1.12241572031e-06 3576 -134370.127581
-0.00552486187845 0.1 1.05775754403e-06 3370 -131457.783008
-0.00552486187845 0.13 1.02040646162e-06 3251 -129853.189414
-0.00552486187845 0.16 9.99690735235e-07 3185 -129166.454666
-0.00552486187845 0.19 9.88077373475e-07 3148 -129204.269698
-0.00552486187845 0.22 9.75208513147e-07 3107 -129860.055077
-0.00552486187845 0.25 9.66733897809e-07 3080 -131068.415706
-0.00552486187845 0.28 9.58259282471e-07 3053 -132792.969135
-0.00552486187845 0.31 9.49784667134e-07 3026 -135015.77001
-0.00552486187845 0.34 9.47587544639e-07 3019 -137733.619238
-0.00552486187845 0.37 9.40368427869e-07 2996 -140950.513289
-0.00552486187845 0.4 9.35660308237e-07 2981 -144677.112686
-0.00552486187845 0.43 9.3032443932e-07 2964 -148934.072047
-0.00552486187845 0.46 9.2593019433e-07 2950 -153749.187172
-0.00552486187845 0.49 9.23733071835e-07 2943 -159160.039299
-0.00552486187845 0.52 9.21849823983e-07 2937 -165213.727551
-0.00552486187845 0.55 9.20280450772e-07 2932 -171968.560584
-0.00552486187845 0.58 9.18083328277e-07 2925 -179496.09284
-0.00552486187845 0.61 9.15886205782e-07 2918 -187885.674836
-0.00552486187845 0.64 9.13689083287e-07 2911 -197249.778978
-0.00552486187845 0.67 9.1117808615e-07 2903 -207730.425702
-0.00552486187845 0.7 9.0835321437e-07 2894 -219510.390122
-0.00552486187845 0.73 9.05842217233e-07 2886 -232830.099205
-0.00552486187845 0.76 9.03331220096e-07 2878 -248012.169014
-0.00552486187845 0.79 9.01134097601e-07 2871 -265504.678765
-0.00552486187845 0.82 8.98309225822e-07 2862 -285955.405396
-0.00552486187845 0.85 8.95484354042e-07 2853 -310348.78938
-0.00552486187845 0.88 8.92659482263e-07 2844 -340300.515839
-0.00523560209424 0.01 2.45606907479e-06 7825 -146959.675732
-0.00523560209424 0.04 1.27307554854e-06 4056 -139551.463334
-0.00523560209424 0.07 1.10923298534e-06 3534 -134320.575056
-0.00523560209424 0.1 1.04614418227e-06 3333 -131390.585425
-0.00523560209424 0.13 1.01099022235e-06 3221 -129767.690315
-0.00523560209424 0.16 9.89960621328e-07 3154 -129065.59405
-0.00523560209424 0.19 9.77719510285e-07 3115 -129089.817711
-0.00523560209424 0.22 9.66106148525e-07 3078 -129725.907129
-0.00523560209424 0.25 9.55434410692e-07 3044 -130912.854959
-0.00523560209424 0.28 9.48529168565e-07 3022 -132613.377788
-0.00523560209424 0.31 9.44134923575e-07 3008 -134811.586339
-0.00523560209424 0.34 9.36288057521e-07 2983 -137500.218326
-0.00523560209424 0.37 9.30638313963e-07 2965 -140682.626846
-0.00523560209424 0.4 9.25302445046e-07 2948 -144371.725126
-0.00523560209424 0.43 9.22791447909e-07 2940 -148587.869824
-0.00523560209424 0.46 9.2153594934e-07 2936 -153359.163917
-0.00523560209424 0.49 9.19652701488e-07 2930 -158721.83259
-0.00523560209424 0.52 9.16200080424e-07 2919 -164720.737133
-0.00523560209424 0.55 9.15258456497e-07 2916 -171413.381371
-0.00523560209424 0.58 9.1274745936e-07 2908 -178871.068798
-0.00523560209424 0.61 9.09294838297e-07 2897 -187181.433837
-0.00523560209424 0.64 9.0678384116e-07 2889 -196454.623319
-0.00523560209424 0.67 9.04272844022e-07 2881 -206831.26572
-0.00523560209424 0.7 9.01761846885e-07 2873 -218491.119585
-0.00523560209424 0.73 9.01134097601e-07 2871 -231670.622638
-0.00523560209424 0.76 8.97053727253e-07 2858 -246686.826467
-0.00523560209424 0.79 8.95484354042e-07 2853 -263978.329416
-0.00523560209424 0.82 8.92973356905e-07 2845 -284180.554655
-0.00523560209424 0.85 8.9077623441e-07 2838 -308258.285703
-0.00523560209424 0.88 8.89520735842e-07 2834 -337790.339454
-0.00497512437811 0.01 2.43911984412e-06 7771 -146938.363496
-0.00497512437811 0.04 1.25738181644e-06 4006 -139536.522959
-0.00497512437811 0.07 1.09448087716e-06 3487 -134282.337887
-0.00497512437811 0.1 1.03107819945e-06 3285 -131334.302491
-0.00497512437811 0.13 1.00000460988e-06 3186 -129696.268821
-0.00497512437811 0.16 9.85252501696e-07 3139 -128981.349117
-0.00497512437811 0.19 9.68931020304e-07 3087 -128988.795345
-0.00497512437811 0.22 9.57003783903e-07 3049 -129607.217958
-0.00497512437811 0.25 9.47587544639e-07 3019 -130771.6065
-0.00497512437811 0.28 9.40682302511e-07 2997 -132450.727506
-0.00497512437811 0.31 9.33463185742e-07 2974 -134622.892774
-0.00497512437811 0.34 9.28127316825e-07 2957 -137281.596492
-0.00497512437811 0.37 9.2436082112e-07 2945 -140431.928151
-0.00497512437811 0.4 9.2153594934e-07 2936 -144085.750254
-0.00497512437811 0.43 9.19024952203e-07 2928 -148263.475342
-0.00497512437811 0.46 9.16200080424e-07 2919 -152991.446223
-0.00497512437811 0.49 9.14944581855e-07 2915 -158305.292746
-0.00497512437811 0.52 9.1117808615e-07 2903 -164249.938022
-0.00497512437811 0.55 9.07097715802e-07 2890 -170880.672456
-0.00497512437811 0.58 9.05842217233e-07 2886 -178267.922471
-0.00497512437811 0.61 9.02703470812e-07 2876 -186498.931954
-0.00497512437811 0.64 9.01134097601e-07 2871 -195682.53313
-0.00497512437811 0.67 9.00506348317e-07 2869 -205956.929457
-0.00497512437811 0.7 8.96112103327e-07 2855 -217498.132125
-0.00497512437811 0.73 8.951704794e-07 2852 -230538.59953
-0.00497512437811 0.76 8.92659482263e-07 2844 -245389.709563
-0.00497512437811 0.79 8.91090109052e-07 2839 -262482.984735
-0.00497512437811 0.82 8.89834610484e-07 2835 -282440.229303
-0.00497512437811 0.85 8.88265237273e-07 2830 -306206.540277
-0.00497512437811 0.88 8.8638198942e-07 2824 -335324.21331
-0.00473933649289 0.01 2.42530935986e-06 7727 -146921.930947
-0.00473933649289 0.04 1.24451295611e-06 3965 -139528.904992
-0.00473933649289 0.07 1.08129814219e-06 3445 -134253.469202
-0.00473933649289 0.1 1.02040646162e-06 3251 -131286.280753
-0.00473933649289 0.13 9.90902245255e-07 3157 -129637.414412
-0.00473933649289 0.16 9.73639139937e-07 3102 -128909.445338
-0.00473933649289 0.19 9.59828655682e-07 3058 -128900.849887
-0.00473933649289 0.22 9.46645920712e-07 3016 -129499.329382
-0.00473933649289 0.25 9.39740678585e-07 2994 -130645.345846
-0.00473933649289 0.28 9.32835436458e-07 2972 -132300.52574
-0.00473933649289 0.31 9.25616319688e-07 2949 -134446.84482
-0.00473933649289 0.34 9.2153594934e-07 2936 -137078.386025
-0.00473933649289 0.37 9.19652701488e-07 2930 -140198.25561
-0.00473933649289 0.4 9.1714170435e-07 2922 -143818.661018
-0.00473933649289 0.43 9.14316832571e-07 2913 -147957.491823
-0.00473933649289 0.46 9.10864211507e-07 2902 -152641.976676
-0.00473933649289 0.49 9.0678384116e-07 2889 -157906.638664
-0.00473933649289 0.52 9.05214467949e-07 2884 -163795.943485
-0.00473933649289 0.55 9.02703470812e-07 2876 -170365.530082
-0.00473933649289 0.58 9.00820222959e-07 2870 -177684.264667
-0.00473933649289 0.61 8.98936975106e-07 2864 -185837.66307
-0.00473933649289 0.64 8.96112103327e-07 2855 -194932.285085
-0.00473933649289 0.67 8.94228855474e-07 2849 -205104.54319
-0.00473933649289 0.7 8.92659482263e-07 2844 -216528.211911
-0.00473933649289 0.73 8.91090109052e-07 2839 -229431.479485
-0.00473933649289 0.76 8.89834610484e-07 2835 -244120.126548
-0.00473933649289 0.79 8.88265237273e-07 2830 -261017.550775
-0.00473933649289 0.82 8.86695864062e-07 2825 -280732.699102
-0.00473933649289 0.85 8.85126490851e-07 2820 -304190.835947
-0.00473933649289 0.88 8.83557117641e-07 2815 -332899.471879
-0.00452488687783 0.01 2.40647688133e-06 7667 -146910.094233
-0.00452488687783 0.04 1.23038859721e-06 3920 -139527.85159
-0.00452488687783 0.07 1.07188190293e-06 3415 -134234.447172
-0.00452488687783 0.1 1.01224572092e-06 3225 -131248.837418
-0.00452488687783 0.13 9.85566376338e-07 3140 -129588.806326
-0.00452488687783 0.16 9.65792273883e-07 3077 -128847.553548
-0.00452488687783 0.19 9.47901419281e-07 3020 -128822.03236
-0.00452488687783 0.22 9.41623926438e-07 3000 -129403.871166
-0.00452488687783 0.25 9.32835436458e-07 2972 -130529.83343
-0.00452488687783 0.28 9.2436082112e-07 2945 -132162.391738
-0.00452488687783 0.31 9.2153594934e-07 2936 -134284.170943
-0.00452488687783 0.34 9.19024952203e-07 2928 -136889.511307
-0.00452488687783 0.37 9.14630707213e-07 2914 -139979.993091
-0.00452488687783 0.4 9.1117808615e-07 2903 -143565.874344
-0.00452488687783 0.43 9.07725465086e-07 2892 -147666.191863
-0.00452488687783 0.46 9.05528342591e-07 2885 -152306.819895
-0.00452488687783 0.49 9.02703470812e-07 2876 -157522.995481
-0.00452488687783 0.52 9.00506348317e-07 2869 -163358.347833
-0.00452488687783 0.55 8.98936975106e-07 2864 -169867.800602
-0.00452488687783 0.58 8.95798228684e-07 2854 -177118.010813
-0.00452488687783 0.61 8.94228855474e-07 2849 -185194.161899
-0.00452488687783 0.64 8.92659482263e-07 2844 -194201.247774
-0.00452488687783 0.67 8.9077623441e-07 2838 -204272.964496
-0.00452488687783 0.7 8.89834610484e-07 2835 -215580.653565
-0.00452488687783 0.73 8.88265237273e-07 2830 -228348.413361
-0.00452488687783 0.76 8.86695864062e-07 2825 -242876.210071
-0.00452488687783 0.79 8.85126490851e-07 2820 -259579.484224
-0.00452488687783 0.82 8.84184866925e-07 2817 -279055.451194
-0.00452488687783 0.85 8.82615493714e-07 2812 -302209.212815
-0.00452488687783 0.88 8.81673869788e-07 2809 -330514.562288
-0.004329004329 0.01 2.39392189565e-06 7627 -146902.005174
-0.004329004329 0.04 1.21312549189e-06 3865 -139532.532669
-0.004329004329 0.07 1.06058241581e-06 3379 -134222.522239
-0.004329004329 0.1 1.00282948166e-06 3195 -131221.094733
-0.004329004329 0.13 9.76777886358e-07 3112 -129548.415203
-0.004329004329 0.16 9.56689909261e-07 3048 -128794.442697
-0.004329004329 0.19 9.45390422143e-07 3012 -128752.422661
-0.004329004329 0.22 9.33777060384e-07 2975 -129317.975025
-0.004329004329 0.25 9.24988570404e-07 2947 -130424.293114
-0.004329004329 0.28 9.2153594934e-07 2936 -132035.923299
-0.004329004329 0.31 9.17455578992e-07 2923 -134134.553053
-0.004329004329 0.34 9.13375208645e-07 2910 -136712.837444
-0.004329004329 0.37 9.10236462223e-07 2900 -139773.032314
-0.004329004329 0.4 9.06469966517e-07 2888 -143325.022151
-0.004329004329 0.43 9.03331220096e-07 2878 -147386.926646
-0.004329004329 0.46 9.00820222959e-07 2870 -151985.160426
-0.004329004329 0.49 8.9956472439e-07 2866 -157153.992073
-0.004329004329 0.52 8.95798228684e-07 2854 -162935.565699
-0.004329004329 0.55 8.94228855474e-07 2849 -169384.687355
-0.004329004329 0.58 8.92659482263e-07 2844 -176567.633263
-0.004329004329 0.61 8.9077623441e-07 2838 -184567.58659
-0.004329004329 0.64 8.89520735842e-07 2834 -193488.260841
-0.004329004329 0.67 8.88265237273e-07 2830 -203460.973902
-0.004329004329 0.7 8.8638198942e-07 2824 -214653.752692
-0.004329004329 0.73 8.85440365494e-07 2821 -227286.999522
-0.004329004329 0.76 8.83870992283e-07 2816 -241655.805776
-0.004329004329 0.79 8.83243242999e-07 2814 -258167.304918
-0.004329004329 0.82 8.82301619072e-07 2811 -277406.889832
-0.004329004329 0.85 8.81359995146e-07 2808 -300260.731598
-0.004329004329 0.88 8.79162872651e-07 2801 -328167.722745
-0.00414937759336 0.01 2.38011141139e-06 7583 -146897.710399
-0.00414937759336 0.04 1.20151213013e-06 3828 -139541.934017
-0.00414937759336 0.07 1.05210780047e-06 3352 -134216.317437
-0.00414937759336 0.1 9.9309936775e-07 3164 -131200.73167
-0.00414937759336 0.13 9.67361647094e-07 3082 -129514.859693
-0.00414937759336 0.16 9.48529168565e-07 3022 -128748.17688
-0.00414937759336 0.19 9.37229681448e-07 2986 -128692.736358
-0.00414937759336 0.22 9.27499567541e-07 2955 -129240.691832
-0.00414937759336 0.25 9.20594325414e-07 2933 -130328.146655
-0.00414937759336 0.28 9.16827829708e-07 2921 -131919.761021
-0.00414937759336 0.31 9.13375208645e-07 2910 -133995.235862
-0.00414937759336 0.34 9.09294838297e-07 2897 -136546.83057
-0.00414937759336 0.37 9.05214467949e-07 2884 -139576.333623
-0.00414937759336 0.4 9.02075721527e-07 2874 -143094.574228
-0.00414937759336 0.43 9.00192473674e-07 2868 -147119.341148
-0.00414937759336 0.46 8.96112103327e-07 2855 -151675.75189
-0.00414937759336 0.49 8.951704794e-07 2852 -156797.009176
-0.00414937759336 0.52 8.92973356905e-07 2845 -162526.178934
-0.00414937759336 0.55 8.91090109052e-07 2839 -168915.892183
-0.00414937759336 0.58 8.89834610484e-07 2835 -176032.197668
-0.00414937759336 0.61 8.88579111915e-07 2831 -183956.897513
-0.00414937759336 0.64 8.86068114778e-07 2823 -192791.762804
-0.00414937759336 0.67 8.85440365494e-07 2821 -202666.041157
-0.00414937759336 0.7 8.84498741567e-07 2818 -213745.479962
-0.00414937759336 0.73 8.83557117641e-07 2815 -226246.078356
-0.00414937759336 0.76 8.82301619072e-07 2811 -240457.545945
-0.00414937759336 0.79 8.81673869788e-07 2809 -256779.782032
-0.00414937759336 0.82 8.80104496577e-07 2804 -275786.023428
-0.00414937759336 0.85 8.79162872651e-07 2801 -298342.90977
-0.00414937759336 0.88 8.78535123366e-07 2799 -325857.838742
-0.00398406374502 0.01 2.36630092714e-06 7539 -146896.546338
-0.00398406374502 0.04 1.19460688801e-06 3806 -139556.88352
-0.00398406374502 0.07 1.04363318514e-06 3325 -134216.089308
-0.00398406374502 0.1 9.85566376338e-07 3140 -131186.774449
-0.00398406374502 0.13 9.61711903535e-07 3064 -129488.791203
-0.00398406374502 0.16 9.43821048933e-07 3007 -128707.714367
-0.00398406374502 0.19 9.31893812531e-07 2969 -128640.128272
-0.00398406374502 0.22 9.21849823983e-07 2937 -129170.828086
-0.00398406374502 0.25 9.17455578992e-07 2923 -130240.74617
-0.00398406374502 0.28 9.13375208645e-07 2910 -131812.516984
-0.00398406374502 0.31 9.0835321437e-07 2894 -133864.925842
-0.00398406374502 0.34 9.04900593307e-07 2883 -136389.688266
-0.00398406374502 0.37 9.01134097601e-07 2871 -139389.180671
-0.00398406374502 0.4 8.99250849748e-07 2865 -142874.307236
-0.00398406374502 0.43 8.95798228684e-07 2854 -146861.75702
-0.00398406374502 0.46 8.93914980832e-07 2848 -151376.839706
-0.00398406374502 0.49 8.91717858337e-07 2841 -156451.745349
-0.00398406374502 0.52 8.89834610484e-07 2835 -162128.636273
-0.00398406374502 0.55 8.88579111915e-07 2831 -168460.160255
-0.00398406374502 0.58 8.86695864062e-07 2825 -175510.398175
-0.00398406374502 0.61 8.86068114778e-07 2823 -183360.230347
-0.00398406374502 0.64 8.84812616209e-07 2819 -192110.311274
-0.00398406374502 0.67 8.83870992283e-07 2816 -201887.530965
-0.00398406374502 0.7 8.82301619072e-07 2811 -212854.603394
-0.00398406374502 0.73 8.8198774443e-07 2810 -225224.302567
-0.00398406374502 0.76 8.80418371219e-07 2805 -239280.81813
-0.00398406374502 0.79 8.79476747293e-07 2802 -255415.429487
-0.00398406374502 0.82 8.78848998009e-07 2800 -274190.879727
-0.00398406374502 0.85 8.77907374082e-07 2797 -296455.638918
-0.00398406374502 0.88 8.7759349944e-07 2796 -323584.155146
-0.00383141762452 0.01 2.35594306395e-06 7506 -146898.326001
-0.00383141762452 0.04 1.18832939516e-06 3786 -139577.142287
-0.00383141762452 0.07 1.0351585698e-06 3298 -134220.334849
-0.00383141762452 0.1 9.81799880632e-07 3128 -131178.749423
-0.00383141762452 0.13 9.5512053605e-07 3043 -129469.423497
-0.00383141762452 0.16 9.38799054658e-07 2991 -128675.260149
-0.00383141762452 0.19 9.24988570404e-07 2947 -128592.957638
-0.00383141762452 0.22 9.19024952203e-07 2928 -129108.393194
-0.00383141762452 0.25 9.13689083287e-07 2911 -130161.552182
-0.00383141762452 0.28 9.08980963655e-07 2896 -131713.000872
-0.00383141762452 0.31 9.04586718665e-07 2882 -133741.912421
-0.00383141762452 0.34 9.00506348317e-07 2869 -136240.572764
-0.00383141762452 0.37 8.98309225822e-07 2862 -139211.215136
-0.00383141762452 0.4 8.94856604758e-07 2851 -142662.893233
-0.00383141762452 0.43 8.92659482263e-07 2844 -146613.523056
-0.00383141762452 0.46 8.90462359768e-07 2837 -151087.361865
-0.00383141762452 0.49 8.88892986557e-07 2832 -156116.676967
-0.00383141762452 0.52 8.87323613346e-07 2827 -161742.230631
-0.00383141762452 0.55 8.85754240136e-07 2822 -168015.550269
-0.00383141762452 0.58 8.84812616209e-07 2819 -175000.917134
-0.00383141762452 0.61 8.83870992283e-07 2816 -182777.061108
-0.00383141762452 0.64 8.82301619072e-07 2811 -191443.210303
-0.00383141762452 0.67 8.82301619072e-07 2811 -201124.42789
-0.00383141762452 0.7 8.81673869788e-07 2809 -211980.754529
-0.00383141762452 0.73 8.79790621935e-07 2803 -224220.491908
-0.00383141762452 0.76 8.79162872651e-07 2801 -238123.036483
-0.00383141762452 0.79 8.78535123366e-07 2799 -254073.153247
-0.00383141762452 0.82 8.77907374082e-07 2797 -272621.221463
-0.00383141762452 0.85 8.76965750156e-07 2794 -294597.728551
-0.00383141762452 0.88 8.76338000871e-07 2792 -321345.419757
-0.00369003690037 0.01 2.3458990754e-06 7474 -146902.911264
-0.00369003690037 0.04 1.18016865447e-06 3760 -139600.453545
-0.00369003690037 0.07 1.02260358411e-06 3258 -134228.494701
-0.00369003690037 0.1 9.76777886358e-07 3112 -131175.95533
-0.00369003690037 0.13 9.47587544639e-07 3019 -129455.461522
-0.00369003690037 0.16 9.31266063247e-07 2967 -128647.718701
-0.00369003690037 0.19 9.21222074698e-07 2935 -128550.685643
-0.00369003690037 0.22 9.15258456497e-07 2916 -129053.558567
-0.00369003690037 0.25 9.09608712939e-07 2898 -130088.926144
-0.00369003690037 0.28 9.04586718665e-07 2882 -131619.841103
-0.00369003690037 0.31 9.00820222959e-07 2870 -133625.806346
-0.00369003690037 0.34 8.97681476537e-07 2860 -136099.239215
-0.00369003690037 0.37 8.94542730116e-07 2850 -139040.422012
-0.00369003690037 0.4 8.92345607621e-07 2843 -142459.707795
-0.00369003690037 0.43 8.89520735842e-07 2834 -146373.719832
-0.00369003690037 0.46 8.88265237273e-07 2830 -150806.834058
-0.00369003690037 0.49 8.85754240136e-07 2822 -155790.654042
-0.00369003690037 0.52 8.85126490851e-07 2820 -161365.62631
-0.00369003690037 0.55 8.83870992283e-07 2816 -167582.108538
-0.00369003690037 0.58 8.82929368356e-07 2813 -174502.930855
-0.00369003690037 0.61 8.82301619072e-07 2811 -182206.409636
-0.00369003690037 0.64 8.81359995146e-07 2808 -190789.814114
-0.00369003690037 0.67 8.79790621935e-07 2803 -200375.872384
-0.00369003690037 0.7 8.79162872651e-07 2801 -211122.021043
-0.00369003690037 0.73 8.78848998009e-07 2800 -223233.606916
-0.00369003690037 0.76 8.78221248724e-07 2798 -236984.631188
-0.00369003690037 0.79 8.77279624798e-07 2795 -252752.190623
-0.00369003690037 0.82 8.76965750156e-07 2794 -271075.857856
-0.00369003690037 0.85 8.76338000871e-07 2792 -292768.106776
-0.00369003690037 0.88 8.76338000871e-07 2792 -319141.028329
-0.00355871886121 0.01 2.333971839e-06 7436 -146910.043667
-0.00355871886121 0.04 1.17451891091e-06 3742 -139626.960248
-0.00355871886121 0.07 1.01412896877e-06 3231 -134239.412039
-0.00355871886121 0.1 9.68931020304e-07 3087 -131177.852282
-0.00355871886121 0.13 9.4193780108e-07 3001 -129445.932017
-0.00355871886121 0.16 9.26557943615e-07 2952 -128625.650293
-0.00355871886121 0.19 9.18083328277e-07 2925 -128514.830804
-0.00355871886121 0.22 9.12119710076e-07 2906 -129003.575253
-0.00355871886121 0.25 9.05214467949e-07 2884 -130022.13665
-0.00355871886121 0.28 9.01447972243e-07 2872 -131532.835202
-0.00355871886121 0.31 8.97995351179e-07 2861 -133516.405664
-0.00355871886121 0.34 8.94542730116e-07 2850 -135963.785337
-0.00355871886121 0.37 8.91717858337e-07 2841 -138876.52871
-0.00355871886121 0.4 8.89206861199e-07 2833 -142263.684627
-0.00355871886121 0.43 8.87323613346e-07 2827 -146141.798862
-0.00355871886121 0.46 8.85754240136e-07 2822 -150534.566064
-0.00355871886121 0.49 8.84498741567e-07 2818 -155473.474229
-0.00355871886121 0.52 8.83557117641e-07 2815 -160998.2123
-0.00355871886121 0.55 8.82301619072e-07 2811 -167158.516695
-0.00355871886121 0.58 8.8198774443e-07 2810 -174015.940431
-0.00355871886121 0.61 8.81046120504e-07 2807 -181647.39032
-0.00355871886121 0.64 8.79790621935e-07 2803 -190148.643597
-0.00355871886121 0.67 8.79162872651e-07 2801 -199640.636449
-0.00355871886121 0.7 8.78535123366e-07 2799 -210278.272234
-0.00355871886121 0.73 8.77907374082e-07 2797 -222263.212665
-0.00355871886121 0.76 8.77279624798e-07 2795 -235864.343201
-0.00355871886121 0.79 8.76651875514e-07 2793 -251451.679987
-0.00355871886121 0.82 8.76338000871e-07 2792 -269553.890686
-0.00355871886121 0.85 8.76338000871e-07 2792 -290966.199599
-0.00355871886121 0.88 8.76338000871e-07 2792 -316970.428259
-0.00343642611684 0.01 2.32424172509e-06 7405 -146919.238808
-0.00343642611684 0.04 1.16604429557e-06 3715 -139657.053341
-0.00343642611684 0.07 1.01004859843e-06 3218 -134254.820483
-0.00343642611684 0.1 9.63595151388e-07 3070 -131183.170105
-0.00343642611684 0.13 9.39112929301e-07 2992 -129441.12248
-0.00343642611684 0.16 9.21222074698e-07 2935 -128608.269102
-0.00343642611684 0.19 9.15258456497e-07 2916 -128484.722898
-0.00343642611684 0.22 9.08667089012e-07 2895 -128958.554784
-0.00343642611684 0.25 9.02389596169e-07 2875 -129960.726071
-0.00343642611684 0.28 8.99250849748e-07 2865 -131451.555083
-0.00343642611684 0.31 8.93914980832e-07 2848 -133412.339924
-0.00343642611684 0.34 8.91717858337e-07 2841 -135834.406994
-0.00343642611684 0.37 8.88892986557e-07 2832 -138718.791293
-0.00343642611684 0.4 8.87009738704e-07 2826 -142074.359671
-0.00343642611684 0.43 8.85440365494e-07 2821 -145917.085078
-0.00343642611684 0.46 8.84184866925e-07 2817 -150270.192397
-0.00343642611684 0.49 8.83243242999e-07 2814 -155164.739924
-0.00343642611684 0.52 8.8198774443e-07 2810 -160639.618173
-0.00343642611684 0.55 8.81359995146e-07 2808 -166744.179217
-0.00343642611684 0.58 8.79790621935e-07 2803 -173538.874187
-0.00343642611684 0.61 8.79162872651e-07 2801 -181098.898646
-0.00343642611684 0.64 8.78848998009e-07 2800 -189519.023077
-0.00343642611684 0.67 8.78221248724e-07 2798 -198918.412527
-0.00343642611684 0.7 8.77279624798e-07 2795 -209448.759416
-0.00343642611684 0.73 8.76965750156e-07 2794 -221308.379648
-0.00343642611684 0.76 8.76651875514e-07 2793 -234761.543653
-0.00343642611684 0.79 8.76338000871e-07 2792 -250171.068343
-0.00343642611684 0.82 8.76338000871e-07 2792 -268055.061749
-0.00343642611684 0.85 8.76338000871e-07 2792 -289191.549714
-0.00343642611684 0.88 8.76338000871e-07 2792 -314832.549724
-0.00332225913621 0.01 2.31639485904e-06 7380 -146930.568497
-0.00332225913621 0.04 1.16165005058e-06 3701 -139689.43807
-0.00332225913621 0.07 1.0031433563e-06 3196 -134273.748462
-0.00332225913621 0.1 9.57317658545e-07 3050 -131192.098485
-0.00332225913621 0.13 9.331493111e-07 2973 -129439.580181
-0.00332225913621 0.16 9.18083328277e-07 2925 -128595.56623
-0.00332225913621 0.19 9.11805835434e-07 2905 -128459.64247
-0.00332225913621 0.22 9.04586718665e-07 2882 -128918.169139
-0.00332225913621 0.25 8.99250849748e-07 2865 -129903.062013
-0.00332225913621 0.28 8.94542730116e-07 2850 -131375.112632
-0.00332225913621 0.31 8.91403983694e-07 2840 -133313.425327
-0.00332225913621 0.34 8.88892986557e-07 2832 -135710.493796
-0.00332225913621 0.37 8.86695864062e-07 2825 -138567.043602
-0.00332225913621 0.4 8.85440365494e-07 2821 -141891.288007
-0.00332225913621 0.43 8.83870992283e-07 2816 -145699.071193
-0.00332225913621 0.46 8.82301619072e-07 2811 -150013.141511
-0.00332225913621 0.49 8.8198774443e-07 2810 -154863.565259
-0.00332225913621 0.52 8.81359995146e-07 2808 -160289.545146
-0.00332225913621 0.55 8.79790621935e-07 2803 -166338.512263
-0.00332225913621 0.58 8.79162872651e-07 2801 -173070.739225
-0.00332225913621 0.61 8.78535123366e-07 2799 -180560.688067
-0.00332225913621 0.64 8.7759349944e-07 2796 -188900.69513
-0.00332225913621 0.67 8.77279624798e-07 2795 -198208.029983
-0.00332225913621 0.7 8.76651875514e-07 2793 -208632.589387
-0.00332225913621 0.73 8.76338000871e-07 2792 -220368.690851
-0.00332225913621 0.76 8.76338000871e-07 2792 -233675.733324
-0.00332225913621 0.79 8.76338000871e-07 2792 -248909.912954
-0.00332225913621 0.82 8.76338000871e-07 2792 -266578.757709
-0.00332225913621 0.85 8.76338000871e-07 2792 -287443.316909
-0.00332225913621 0.88 8.76338000871e-07 2792 -312726.660768
-0.0032154340836 0.01 2.3079202437e-06 7353 -146943.896413
-0.0032154340836 0.04 1.15348930989e-06 3675 -139723.460219
-0.0032154340836 0.07 9.98749111308e-07 3182 -134295.826837
-0.0032154340836 0.1 9.53237288197e-07 3037 -131203.998448
-0.0032154340836 0.13 9.28441191468e-07 2958 -129441.468119
-0.0032154340836 0.16 9.1714170435e-07 2922 -128587.27635
-0.0032154340836 0.19 9.08667089012e-07 2895 -128439.092866
-0.0032154340836 0.22 9.02075721527e-07 2874 -128881.915098
-0.0032154340836 0.25 8.96739852611e-07 2857 -129849.76856
-0.0032154340836 0.28 8.92659482263e-07 2844 -131302.928751
-0.0032154340836 0.31 8.89206861199e-07 2833 -133219.394623
-0.0032154340836 0.34 8.87009738704e-07 2826 -135591.810933
-0.0032154340836 0.37 8.85440365494e-07 2821 -138420.590878
-0.0032154340836 0.4 8.83243242999e-07 2814 -141714.05956
-0.0032154340836 0.43 8.8198774443e-07 2810 -145487.275564
-0.0032154340836 0.46 8.8198774443e-07 2810 -149762.614981
-0.0032154340836 0.49 8.80104496577e-07 2804 -154569.995142
-0.0032154340836 0.52 8.79162872651e-07 2801 -159946.748897
-0.0032154340836 0.55 8.79162872651e-07 2801 -165941.1116
-0.0032154340836 0.58 8.77907374082e-07 2797 -172611.660795
-0.0032154340836 0.61 8.7759349944e-07 2796 -180031.73197
-0.0032154340836 0.64 8.76965750156e-07 2794 -188292.764048
-0.0032154340836 0.67 8.76651875514e-07 2793 -197509.588669
-0.0032154340836 0.7 8.76338000871e-07 2792 -207829.269193
-0.0032154340836 0.73 8.76338000871e-07 2792 -219443.425948
-0.0032154340836 0.76 8.76338000871e-07 2792 -232606.593507
-0.0032154340836 0.79 8.76338000871e-07 2792 -247667.718894
-0.0032154340836 0.82 8.76338000871e-07 2792 -265124.188515
-0.0032154340836 0.85 8.76338000871e-07 2792 -285720.753326
-0.0032154340836 0.88 8.76338000871e-07 2792 -310651.970836
-0.00311526479751 0.01 2.299759503e-06 7327 -146958.833789
-0.00311526479751 0.04 1.14752569169e-06 3656 -139758.445526
-0.00311526479751 0.07 9.92157743823e-07 3161 -134320.11665
-0.00311526479751 0.1 9.47901419281e-07 3020 -131218.672861
-0.00311526479751 0.13 9.24046946478e-07 2944 -129446.334236
-0.00311526479751 0.16 9.14316832571e-07 2913 -128582.730881
-0.00311526479751 0.19 9.04900593307e-07 2883 -128422.174049
-0.00311526479751 0.22 8.98623100464e-07 2863 -128849.566524
-0.00311526479751 0.25 8.93914980832e-07 2848 -129800.056613
-0.00311526479751 0.28 8.89520735842e-07 2834 -131234.213795
-0.00311526479751 0.31 8.87637487989e-07 2828 -133129.975661
-0.00311526479751 0.34 8.85440365494e-07 2821 -135477.92291
-0.00311526479751 0.37 8.83557117641e-07 2815 -138279.418957
-0.00311526479751 0.4 8.8198774443e-07 2810 -141542.13994
-0.00311526479751 0.43 8.81673869788e-07 2809 -145281.275969
-0.00311526479751 0.46 8.79790621935e-07 2803 -149518.456504
-0.00311526479751 0.49 8.79162872651e-07 2801 -154282.576231
-0.00311526479751 0.52 8.78221248724e-07 2798 -159611.295979
-0.00311526479751 0.55 8.7759349944e-07 2796 -165551.27767
-0.00311526479751 0.58 8.77279624798e-07 2795 -172160.929064
-0.00311526479751 0.61 8.76965750156e-07 2794 -179512.120254
-0.00311526479751 0.64 8.76338000871e-07 2792 -187694.790616
-0.00311526479751 0.67 8.76338000871e-07 2792 -196822.140315
-0.00311526479751 0.7 8.76338000871e-07 2792 -207038.701064
-0.00311526479751 0.73 8.76338000871e-07 2792 -218532.376443
-0.00311526479751 0.76 8.76338000871e-07 2792 -231553.26517
-0.00311526479751 0.79 8.76338000871e-07 2792 -246443.752472
-0.00311526479751 0.82 8.76338000871e-07 2792 -263690.82096
-0.00311526479751 0.85 8.76338000871e-07 2792 -284023.185721
-0.00311526479751 0.88 8.76338000871e-07 2792 -308607.743632
-0.00302114803625 0.01 2.29285426088e-06 7305 -146975.528387
-0.00302114803625 0.04 1.14281757205e-06 3641 -139795.186949
-0.00302114803625 0.07 9.86194125622e-07 3142 -134346.014379
-0.00302114803625 0.1 9.41623926438e-07 3000 -131235.85944
-0.00302114803625 0.13 9.20594325414e-07 2933 -129453.911764
-0.00302114803625 0.16 9.10864211507e-07 2902 -128580.590337
-0.00302114803625 0.19 9.02389596169e-07 2875 -128408.332867
-0.00302114803625 0.22 8.96425977969e-07 2856 -128821.061999
-0.00302114803625 0.25 8.91403983694e-07 2840 -129754.263027
-0.00302114803625 0.28 8.88265237273e-07 2830 -131169.341054
-0.00302114803625 0.31 8.85126490851e-07 2820 -133044.280709
-0.00302114803625 0.34 8.84184866925e-07 2817 -135368.482289
-0.00302114803625 0.37 8.82301619072e-07 2811 -138142.918016
-0.00302114803625 0.4 8.81673869788e-07 2809 -141375.532359
-0.00302114803625 0.43 8.79790621935e-07 2803 -145080.739317
-0.00302114803625 0.46 8.78848998009e-07 2800 -149279.651957
-0.00302114803625 0.49 8.78221248724e-07 2798 -154001.285375
-0.00302114803625 0.52 8.7759349944e-07 2796 -159282.405551
-0.00302114803625 0.55 8.77279624798e-07 2795 -165168.990432
-0.00302114803625 0.58 8.76651875514e-07 2793 -171718.287037
-0.00302114803625 0.61 8.76338000871e-07 2792 -179001.373912
-0.00302114803625 0.64 8.76338000871e-07 2792 -187106.585972
-0.00302114803625 0.67 8.76338000871e-07 2792 -196145.493521
-0.00302114803625 0.7 8.76338000871e-07 2792 -206260.163142
-0.00302114803625 0.73 8.76338000871e-07 2792 -217635.009152
-0.00302114803625 0.76 8.76338000871e-07 2792 -230515.411061
-0.00302114803625 0.79 8.76338000871e-07 2792 -245237.282204
-0.00302114803625 0.82 8.76338000871e-07 2792 -262277.938479
-0.00302114803625 0.85 8.76338000871e-07 2792 -282350.072651
-0.00302114803625 0.88 8.76338000871e-07 2792 -306593.367538
-0.00293255131965 0.01 2.28720451732e-06 7287 -146993.685307
-0.00293255131965 0.04 1.14062044956e-06 3634 -139833.436709
-0.00293255131965 0.07 9.82427629917e-07 3130 -134374.350326
-0.00293255131965 0.1 9.39740678585e-07 2994 -131255.665326
-0.00293255131965 0.13 9.18083328277e-07 2925 -129464.519348
-0.00293255131965 0.16 9.08039339728e-07 2893 -128581.650395
-0.00293255131965 0.19 8.9956472439e-07 2866 -128397.225063
-0.00293255131965 0.22 8.93601106189e-07 2847 -128795.529783
-0.00293255131965 0.25 8.89520735842e-07 2834 -129712.063997
-0.00293255131965 0.28 8.8638198942e-07 2824 -131108.229679
-0.00293255131965 0.31 8.84184866925e-07 2817 -132961.866184
-0.00293255131965 0.34 8.82929368356e-07 2813 -135263.26911
-0.00293255131965 0.37 8.8198774443e-07 2810 -138010.971496
-0.00293255131965 0.4 8.79476747293e-07 2802 -141213.606661
-0.00293255131965 0.43 8.78848998009e-07 2800 -144884.845889
-0.00293255131965 0.46 8.78221248724e-07 2798 -149046.235397
-0.00293255131965 0.49 8.7759349944e-07 2796 -153725.873916
-0.00293255131965 0.52 8.77279624798e-07 2795 -158959.874205
-0.00293255131965 0.55 8.76651875514e-07 2793 -164793.697742
-0.00293255131965 0.58 8.76338000871e-07 2792 -171283.4172
-0.00293255131965 0.61 8.76338000871e-07 2792 -178499.073714
-0.00293255131965 0.64 8.76338000871e-07 2792 -186527.973367
-0.00293255131965 0.67 8.76338000871e-07 2792 -195479.413498
-0.00293255131965 0.7 8.76338000871e-07 2792 -205493.194339
-0.00293255131965 0.73 8.76338000871e-07 2792 -216750.644356
-0.00293255131965 0.76 8.76338000871e-07 2792 -229492.464362
-0.00293255131965 0.79 8.76338000871e-07 2792 -244048.028173
-0.00293255131965 0.82 8.76338000871e-07 2792 -260884.958667
-0.00293255131965 0.85 8.76338000871e-07 2792 -280700.733404
-0.00293255131965 0.88 8.76338000871e-07 2792 -304608.249833
-0.002849002849 0.01 2.28218252304e-06 7271 -147013.253489
-0.002849002849 0.04 1.13559845528e-06 3618 -139873.012339
-0.002849002849 0.07 9.77719510285e-07 3115 -134405.091973
-0.002849002849 0.1 9.37857430732e-07 2988 -131278.503601
-0.002849002849 0.13 9.16200080424e-07 2919 -129477.361614
-0.002849002849 0.16 9.05214467949e-07 2884 -128584.909011
-0.002849002849 0.19 8.97995351179e-07 2861 -128388.288062
-0.002849002849 0.22 8.91403983694e-07 2840 -128772.993144
-0.002849002849 0.25 8.87951362631e-07 2829 -129673.026609
-0.002849002849 0.28 8.85126490851e-07 2820 -131050.397478
-0.002849002849 0.31 8.83243242999e-07 2814 -132883.345632
-0.002849002849 0.34 8.8198774443e-07 2810 -135161.371807
-0.002849002849 0.37 8.79790621935e-07 2803 -137883.326038
-0.002849002849 0.4 8.78848998009e-07 2800 -141055.744023
-0.002849002849 0.43 8.78221248724e-07 2798 -144693.79051
-0.002849002849 0.46 8.7759349944e-07 2796 -148817.90949
-0.002849002849 0.49 8.77279624798e-07 2795 -153456.022173
-0.002849002849 0.52 8.76651875514e-07 2793 -158643.52327
-0.002849002849 0.55 8.76338000871e-07 2792 -164424.918755
-0.002849002849 0.58 8.76338000871e-07 2792 -170855.935245
-0.002849002849 0.61 8.76338000871e-07 2792 -178005.18282
-0.002849002849 0.64 8.76338000871e-07 2792 -185958.395099
-0.002849002849 0.67 8.76338000871e-07 2792 -194823.470268
-0.002849002849 0.7 8.76338000871e-07 2792 -204737.539188
-0.002849002849 0.73 8.76338000871e-07 2792 -215878.863493
-0.002849002849 0.76 8.76338000871e-07 2792 -228483.870724
-0.002849002849 0.79 8.76338000871e-07 2792 -242875.425233
-0.002849002849 0.82 8.76338000871e-07 2792 -259511.584565
-0.002849002849 0.85 8.76338000871e-07 2792 -279074.664877
-0.002849002849 0.88 8.76338000871e-07 2792 -302651.726484
-0.00277008310249 0.01 2.27527728092e-06 7249 -147034.026691
-0.00277008310249 0.04 1.13183195958e-06 3606 -139913.883274
-0.00277008310249 0.07 9.75522387789e-07 3108 -134437.291135
-0.00277008310249 0.1 9.331493111e-07 2973 -131302.982018
-0.00277008310249 0.13 9.14002957929e-07 2912 -129492.727547
-0.00277008310249 0.16 9.03017345454e-07 2877 -128590.25122
-0.00277008310249 0.19 8.94228855474e-07 2849 -128381.885665
-0.00277008310249 0.22 8.89520735842e-07 2834 -128753.041184
-0.00277008310249 0.25 8.8638198942e-07 2824 -129637.124842
-0.00277008310249 0.28 8.84184866925e-07 2817 -130996.087058
-0.00277008310249 0.31 8.8198774443e-07 2810 -132808.127913
-0.00277008310249 0.34 8.81046120504e-07 2807 -135062.887608
-0.00277008310249 0.37 8.78848998009e-07 2800 -137758.879338
-0.00277008310249 0.4 8.78221248724e-07 2798 -140902.095976
-0.00277008310249 0.43 8.7759349944e-07 2796 -144507.146814
-0.00277008310249 0.46 8.77279624798e-07 2795 -148594.559223
-0.00277008310249 0.49 8.76651875514e-07 2793 -153191.401349
-0.00277008310249 0.52 8.76338000871e-07 2792 -158332.815005
-0.00277008310249 0.55 8.76338000871e-07 2792 -164062.705079
-0.00277008310249 0.58 8.76338000871e-07 2792 -170435.543673
-0.00277008310249 0.61 8.76338000871e-07 2792 -177519.131708
-0.00277008310249 0.64 8.76338000871e-07 2792 -185397.655619
-0.00277008310249 0.67 8.76338000871e-07 2792 -194177.171462
-0.00277008310249 0.7 8.76338000871e-07 2792 -203992.810063
-0.00277008310249 0.73 8.76338000871e-07 2792 -215019.435373
-0.00277008310249 0.76 8.76338000871e-07 2792 -227489.240853
-0.00277008310249 0.79 8.76338000871e-07 2792 -241718.992539
-0.00277008310249 0.82 8.76338000871e-07 2792 -258157.27184
-0.00277008310249 0.85 8.76338000871e-07 2792 -277471.524077
-0.00277008310249 0.88 8.76338000871e-07 2792 -300723.307411
-0.00269541778976 0.01 2.26837203879e-06 7227 -147055.823508
-0.00269541778976 0.04 1.13026258637e-06 3601 -139955.91341
-0.00269541778976 0.07 9.73639139937e-07 3102 -134471.075601
-0.00269541778976 0.1 9.29068940752e-07 2960 -131328.528321
-0.00269541778976 0.13 9.1117808615e-07 2903 -129510.4152
-0.00269541778976 0.16 9.00506348317e-07 2869 -128597.799262
-0.00269541778976 0.19 8.92659482263e-07 2844 -128377.46531
-0.00269541778976 0.22 8.88265237273e-07 2830 -128735.225221
-0.00269541778976 0.25 8.85126490851e-07 2820 -129603.850825
-0.00269541778976 0.28 8.82615493714e-07 2812 -130944.763866
-0.00269541778976 0.31 8.81359995146e-07 2808 -132736.095451
-0.00269541778976 0.34 8.79476747293e-07 2802 -134967.654277
-0.00269541778976 0.37 8.78535123366e-07 2799 -137637.605056
-0.00269541778976 0.4 8.7759349944e-07 2796 -140752.350967
-0.00269541778976 0.43 8.77279624798e-07 2795 -144324.789103
-0.00269541778976 0.46 8.76651875514e-07 2793 -148375.68646
-0.00269541778976 0.49 8.76338000871e-07 2792 -152931.839851
-0.00269541778976 0.52 8.76338000871e-07 2792 -158027.717077
-0.00269541778976 0.55 8.76338000871e-07 2792 -163706.573501
-0.00269541778976 0.58 8.76338000871e-07 2792 -170022.002102
-0.00269541778976 0.61 8.76338000871e-07 2792 -177040.555187
-0.00269541778976 0.64 8.76338000871e-07 2792 -184845.269819
-0.00269541778976 0.67 8.76338000871e-07 2792 -193540.337243
-0.00269541778976 0.7 8.76338000871e-07 2792 -203258.56466
-0.00269541778976 0.73 8.76338000871e-07 2792 -214172.004205
-0.00269541778976 0.76 8.76338000871e-07 2792 -226508.354962
-0.00269541778976 0.79 8.76338000871e-07 2792 -240578.367567
-0.00269541778976 0.82 8.76338000871e-07 2792 -256821.572343
-0.00269541778976 0.85 8.76338000871e-07 2792 -275890.777807
-0.00269541778976 0.88 8.76338000871e-07 2792 -298822.580066
-0.00262467191601 0.01 2.26146679666e-06 7205 -147078.461406
-0.00262467191601 0.04 1.12555446674e-06 3586 -139999.212202
-0.00262467191601 0.07 9.70814268157e-07 3093 -134506.064173
-0.00262467191601 0.1 9.26244068973e-07 2951 -131355.547225
-0.00262467191601 0.13 9.09608712939e-07 2898 -129529.997057
-0.00262467191601 0.16 8.97681476537e-07 2860 -128607.007079
-0.00262467191601 0.19 8.91090109052e-07 2839 -128375.026827
-0.00262467191601 0.22 8.87009738704e-07 2826 -128719.456731
-0.00262467191601 0.25 8.83870992283e-07 2816 -129573.175846
-0.00262467191601 0.28 8.81673869788e-07 2809 -130896.082341
-0.00262467191601 0.31 8.79790621935e-07 2803 -132667.209901
-0.00262467191601 0.34 8.78848998009e-07 2800 -134875.371011
-0.00262467191601 0.37 8.77907374082e-07 2797 -137519.689976
-0.00262467191601 0.4 8.77279624798e-07 2795 -140605.945097
-0.00262467191601 0.43 8.76651875514e-07 2793 -144146.482815
-0.00262467191601 0.46 8.76338000871e-07 2792 -148161.259529
-0.00262467191601 0.49 8.76338000871e-07 2792 -152677.140203
-0.00262467191601 0.52 8.76338000871e-07 2792 -157728.018983
-0.00262467191601 0.55 8.76338000871e-07 2792 -163356.330471
-0.00262467191601 0.58 8.76338000871e-07 2792 -169614.903173
-0.00262467191601 0.61 8.76338000871e-07 2792 -176569.201188
-0.00262467191601 0.64 8.76338000871e-07 2792 -184300.899527
-0.00262467191601 0.67 8.76338000871e-07 2792 -192912.548317
-0.00262467191601 0.7 8.76338000871e-07 2792 -202534.633964
-0.00262467191601 0.73 8.76338000871e-07 2792 -213336.16488
-0.00262467191601 0.76 8.76338000871e-07 2792 -225540.876997
-0.00262467191601 0.79 8.76338000871e-07 2792 -239453.322105
-0.00262467191601 0.82 8.76338000871e-07 2792 -255504.139723
-0.00262467191601 0.85 8.76338000871e-07 2792 -274331.986361
-0.00262467191601 0.88 8.76338000871e-07 2792 -296948.9919
-0.00255754475703 0.01 2.25456155453e-06 7183 -147101.778922
-0.00255754475703 0.04 1.1230434696e-06 3578 -140043.269336
-0.00255754475703 0.07 9.66420023167e-07 3079 -134542.209058
-0.00255754475703 0.1 9.21849823983e-07 2937 -131384.375454
-0.00255754475703 0.13 9.07097715802e-07 2890 -129551.3471
-0.00255754475703 0.16 8.97053727253e-07 2858 -128617.894753
-0.00255754475703 0.19 8.89206861199e-07 2833 -128374.61431
-0.00255754475703 0.22 8.84812616209e-07 2819 -128705.909589
-0.00255754475703 0.25 8.82929368356e-07 2813 -129544.547284
-0.00255754475703 0.28 8.81046120504e-07 2807 -130850.100365
-0.00255754475703 0.31 8.78848998009e-07 2800 -132600.79155
-0.00255754475703 0.34 8.78221248724e-07 2798 -134786.210934
-0.00255754475703 0.37 8.77279624798e-07 2795 -137405.001072
-0.00255754475703 0.4 8.76651875514e-07 2793 -140462.689247
-0.00255754475703 0.43 8.76338000871e-07 2792 -143971.8305
-0.00255754475703 0.46 8.76338000871e-07 2792 -147951.062152
-0.00255754475703 0.49 8.76338000871e-07 2792 -152427.162556
-0.00255754475703 0.52 8.76338000871e-07 2792 -157433.486207
-0.00255754475703 0.55 8.76338000871e-07 2792 -163011.727365
-0.00255754475703 0.58 8.76338000871e-07 2792 -169214.026411
-0.00255754475703 0.61 8.76338000871e-07 2792 -176104.780632
-0.00255754475703 0.64 8.76338000871e-07 2792 -183764.287857
-0.00255754475703 0.67 8.76338000871e-07 2792 -192293.496916
-0.00255754475703 0.7 8.76338000871e-07 2792 -201820.64819
-0.00255754475703 0.73 8.76338000871e-07 2792 -212511.750242
-0.00255754475703 0.76 8.76338000871e-07 2792 -224586.428488
-0.00255754475703 0.79 8.76338000871e-07 2792 -238343.529046
-0.00255754475703 0.82 8.76338000871e-07 2792 -254204.718336
-0.00255754475703 0.85 8.76338000871e-07 2792 -272794.79172
-0.00255754475703 0.88 8.76338000871e-07 2792 -295102.076623
-0.00249376558603 0.01 2.24891181098e-06 7165 -147125.618471
-0.00249376558603 0.04 1.11739372604e-06 3560 -140087.942678
-0.00249376558603 0.07 9.60770279609e-07 3061 -134579.491422
-0.00249376558603 0.1 9.19338826845e-07 2929 -131414.488086
-0.00249376558603 0.13 9.05214467949e-07 2884 -129573.77054
-0.00249376558603 0.16 8.93287231547e-07 2846 -128630.700287
-0.00249376558603 0.19 8.88265237273e-07 2830 -128376.000051
-0.00249376558603 0.22 8.84184866925e-07 2817 -128694.132812
-0.00249376558603 0.25 8.81673869788e-07 2809 -129517.567928
-0.00249376558603 0.28 8.79790621935e-07 2803 -130806.445984
-0.00249376558603 0.31 8.78848998009e-07 2800 -132537.022564
-0.00249376558603 0.34 8.7759349944e-07 2796 -134699.913037
-0.00249376558603 0.37 8.76965750156e-07 2794 -137293.283289
-0.00249376558603 0.4 8.76338000871e-07 2792 -140322.752613
-0.00249376558603 0.43 8.76338000871e-07 2792 -143800.49234
-0.00249376558603 0.46 8.76338000871e-07 2792 -147744.981772
-0.00249376558603 0.49 8.76338000871e-07 2792 -152181.630655
-0.00249376558603 0.52 8.76338000871e-07 2792 -157143.775639
-0.00249376558603 0.55 8.76338000871e-07 2792 -162672.594251
-0.00249376558603 0.58 8.76338000871e-07 2792 -168819.143789
-0.00249376558603 0.61 8.76338000871e-07 2792 -175647.048242
-0.00249376558603 0.64 8.76338000871e-07 2792 -183235.241755
-0.00249376558603 0.67 8.76338000871e-07 2792 -191682.913718
-0.00249376558603 0.7 8.76338000871e-07 2792 -201116.313685
-0.00249376558603 0.73 8.76338000871e-07 2792 -211698.431255
-0.00249376558603 0.76 8.76338000871e-07 2792 -223644.834926
-0.00249376558603 0.79 8.76338000871e-07 2792 -237248.625794
-0.00249376558603 0.82 8.76338000871e-07 2792 -252922.97848
-0.00249376558603 0.85 8.76338000871e-07 2792 -271278.895428
-0.00249376558603 0.88 8.76338000871e-07 2792 -293281.435978
-0.00243309002433 0.01 2.24577306455e-06 7155 -147150.401354
-0.00243309002433 0.04 1.11519660354e-06 3553 -140133.71442
-0.00243309002433 0.07 9.58259282471e-07 3053 -134617.104337
-0.00243309002433 0.1 9.1714170435e-07 2922 -131445.49881
-0.00243309002433 0.13 9.02703470812e-07 2876 -129597.025182
-0.00243309002433 0.16 8.92659482263e-07 2844 -128644.817969
-0.00243309002433 0.19 8.87009738704e-07 2826 -128378.932512
-0.00243309002433 0.22 8.83243242999e-07 2814 -128684.10983
-0.00243309002433 0.25 8.81673869788e-07 2809 -129492.757247
-0.00243309002433 0.28 8.78848998009e-07 2800 -130764.59749
-0.00243309002433 0.31 8.77907374082e-07 2797 -132475.670354
-0.00243309002433 0.34 8.77279624798e-07 2795 -134616.219023
-0.00243309002433 0.37 8.76651875514e-07 2793 -137184.51461
-0.00243309002433 0.4 8.76338000871e-07 2792 -140185.980281
-0.00243309002433 0.43 8.76338000871e-07 2792 -143632.513262
-0.00243309002433 0.46 8.76338000871e-07 2792 -147542.538756
-0.00243309002433 0.49 8.76338000871e-07 2792 -151940.389884
-0.00243309002433 0.52 8.76338000871e-07 2792 -156858.829526
-0.00243309002433 0.55 8.76338000871e-07 2792 -162338.582761
-0.00243309002433 0.58 8.76338000871e-07 2792 -168430.10258
-0.00243309002433 0.61 8.76338000871e-07 2792 -175195.782472
-0.00243309002433 0.64 8.76338000871e-07 2792 -182713.463366
-0.00243309002433 0.67 8.76338000871e-07 2792 -191080.678996
-0.00243309002433 0.7 8.76338000871e-07 2792 -200421.379559
-0.00243309002433 0.73 8.76338000871e-07 2792 -210895.917388
-0.00243309002433 0.76 8.76338000871e-07 2792 -222715.792145
-0.00243309002433 0.79 8.76338000871e-07 2792 -236168.419383
-0.00243309002433 0.82 8.76338000871e-07 2792 -251658.558102
-0.00243309002433 0.85 8.76338000871e-07 2792 -269783.946946
-0.00243309002433 0.88 8.76338000871e-07 2792 -291486.706659
-0.00237529691211 0.01 2.24075107028e-06 7139 -147175.838241
-0.00237529691211 0.04 1.11237173177e-06 3544 -140180.173691
-0.00237529691211 0.07 9.56689909261e-07 3048 -134655.946391
-0.00237529691211 0.1 9.14630707213e-07 2914 -131477.280741
-0.00237529691211 0.13 9.00820222959e-07 2870 -129621.51858
-0.00237529691211 0.16 8.9077623441e-07 2838 -128660.587479
-0.00237529691211 0.19 8.85440365494e-07 2821 -128383.179432
-0.00237529691211 0.22 8.82615493714e-07 2812 -128675.750197
-0.00237529691211 0.25 8.80732245861e-07 2806 -129469.939158
-0.00237529691211 0.28 8.78848998009e-07 2800 -130724.431398
-0.00237529691211 0.31 8.7759349944e-07 2796 -132416.524184
-0.00237529691211 0.34 8.76651875514e-07 2793 -134535.065895
-0.00237529691211 0.37 8.76338000871e-07 2792 -137078.53746
-0.00237529691211 0.4 8.76338000871e-07 2792 -140052.244147
-0.00237529691211 0.43 8.76338000871e-07 2792 -143468.008208
-0.00237529691211 0.46 8.76338000871e-07 2792 -147343.460921
-0.00237529691211 0.49 8.76338000871e-07 2792 -151703.148529
-0.00237529691211 0.52 8.76338000871e-07 2792 -156578.363378
-0.00237529691211 0.55 8.76338000871e-07 2792 -162009.663429
-0.00237529691211 0.58 8.76338000871e-07 2792 -168046.656307
-0.00237529691211 0.61 8.76338000871e-07 2792 -174750.84111
-0.00237529691211 0.64 8.76338000871e-07 2792 -182198.778175
-0.00237529691211 0.67 8.76338000871e-07 2792 -190486.452511
-0.00237529691211 0.7 8.76338000871e-07 2792 -199735.736016
-0.00237529691211 0.73 8.76338000871e-07 2792 -210103.978518
-0.00237529691211 0.76 8.76338000871e-07 2792 -221799.015833
-0.00237529691211 0.79 8.76338000871e-07 2792 -235102.6197
-0.00237529691211 0.82 8.76338000871e-07 2792 -250411.237382
-0.00237529691211 0.85 8.76338000871e-07 2792 -268309.567556
-0.00237529691211 0.88 8.76338000871e-07 2792 -289717.489069
-0.00232018561485 0.01 2.23541520136e-06 7122 -147201.919993
-0.00232018561485 0.04 1.11017460927e-06 3537 -140227.143287
-0.00232018561485 0.07 9.52295664271e-07 3034 -134695.530603
-0.00232018561485 0.1 9.14316832571e-07 2913 -131509.854122
-0.00232018561485 0.13 8.98936975106e-07 2864 -129647.422346
-0.00232018561485 0.16 8.89834610484e-07 2835 -128677.393489
-0.00232018561485 0.19 8.84812616209e-07 2819 -128389.071352
-0.00232018561485 0.22 8.81673869788e-07 2809 -128668.972073
-0.00232018561485 0.25 8.79476747293e-07 2802 -129448.347983
-0.00232018561485 0.28 8.78221248724e-07 2798 -130686.074789
-0.00232018561485 0.31 8.77279624798e-07 2795 -132359.331116
-0.00232018561485 0.34 8.76338000871e-07 2792 -134456.180447
-0.00232018561485 0.37 8.76338000871e-07 2792 -136975.175113
-0.00232018561485 0.4 8.76338000871e-07 2792 -139921.515887
-0.00232018561485 0.43 8.76338000871e-07 2792 -143306.61441
-0.00232018561485 0.46 8.76338000871e-07 2792 -147147.888932
-0.00232018561485 0.49 8.76338000871e-07 2792 -151469.520314
-0.00232018561485 0.52 8.76338000871e-07 2792 -156302.272219
-0.00232018561485 0.55 8.76338000871e-07 2792 -161685.55821
-0.00232018561485 0.58 8.76338000871e-07 2792 -167668.636581
-0.00232018561485 0.61 8.76338000871e-07 2792 -174312.061458
-0.00232018561485 0.64 8.76338000871e-07 2792 -181691.032068
-0.00232018561485 0.67 8.76338000871e-07 2792 -189900.10322
-0.00232018561485 0.7 8.76338000871e-07 2792 -199059.042383
-0.00232018561485 0.73 8.76338000871e-07 2792 -209322.474243
-0.00232018561485 0.76 8.76338000871e-07 2792 -220894.280816
-0.00232018561485 0.79 8.76338000871e-07 2792 -234050.937778
-0.00232018561485 0.82 8.76338000871e-07 2792 -249180.722782
-0.00232018561485 0.85 8.76338000871e-07 2792 -266855.495851
-0.00232018561485 0.88 8.76338000871e-07 2792 -287973.363852
-0.00226757369615 0.01 2.23039320709e-06 7106 -147228.353408
-0.00226757369615 0.04 1.1089191107e-06 3533 -140274.748414
-0.00226757369615 0.07 9.51040165702e-07 3030 -134735.775621
-0.00226757369615 0.1 9.13061334002e-07 2909 -131543.414317
-0.00226757369615 0.13 8.97367601895e-07 2859 -129674.379354
-0.00226757369615 0.16 8.88265237273e-07 2830 -128695.053907
-0.00226757369615 0.19 8.83870992283e-07 2816 -128396.265326
-0.00226757369615 0.22 8.81359995146e-07 2808 -128663.654115
-0.00226757369615 0.25 8.78848998009e-07 2800 -129428.339355
-0.00226757369615 0.28 8.7759349944e-07 2796 -130649.533785
-0.00226757369615 0.31 8.76651875514e-07 2793 -132303.911687
-0.00226757369615 0.34 8.76338000871e-07 2792 -134379.526768
-0.00226757369615 0.37 8.76338000871e-07 2792 -136874.381016
-0.00226757369615 0.4 8.76338000871e-07 2792 -139793.628669
-0.00226757369615 0.43 8.76338000871e-07 2792 -143148.267528
-0.00226757369615 0.46 8.76338000871e-07 2792 -146955.742723
-0.00226757369615 0.49 8.76338000871e-07 2792 -151239.444439
-0.00226757369615 0.52 8.76338000871e-07 2792 -156030.212202
-0.00226757369615 0.55 8.76338000871e-07 2792 -161366.195002
-0.00226757369615 0.58 8.76338000871e-07 2792 -167295.93926
-0.00226757369615 0.61 8.76338000871e-07 2792 -173879.185901
-0.00226757369615 0.64 8.76338000871e-07 2792 -181190.110585
-0.00226757369615 0.67 8.76338000871e-07 2792 -189321.468683
-0.00226757369615 0.7 8.76338000871e-07 2792 -198391.189288
-0.00226757369615 0.73 8.76338000871e-07 2792 -208551.11452
-0.00226757369615 0.76 8.76338000871e-07 2792 -220001.412069
-0.00226757369615 0.79 8.76338000871e-07 2792 -233013.144953
-0.00226757369615 0.82 8.76338000871e-07 2792 -247966.712056
-0.00226757369615 0.85 8.76338000871e-07 2792 -265421.41593
-0.00226757369615 0.88 8.76338000871e-07 2792 -286254.005469
-0.00221729490022 0.01 2.22694058603e-06 7095 -147255.330452
-0.00221729490022 0.04 1.10703586285e-06 3527 -140322.8558
-0.00221729490022 0.07 9.47273669996e-07 3018 -134776.695233
-0.00221729490022 0.1 9.1117808615e-07 2903 -131578.010071
-0.00221729490022 0.13 8.96425977969e-07 2856 -129702.198617
-0.00221729490022 0.16 8.87323613346e-07 2827 -128713.623734
-0.00221729490022 0.19 8.82929368356e-07 2813 -128404.820697
-0.00221729490022 0.22 8.80418371219e-07 2805 -128659.552266
-0.00221729490022 0.25 8.78221248724e-07 2798 -129409.877247
-0.00221729490022 0.28 8.77279624798e-07 2795 -130614.576892
-0.00221729490022 0.31 8.76338000871e-07 2792 -132250.029694
-0.00221729490022 0.34 8.76338000871e-07 2792 -134304.875352
-0.00221729490022 0.37 8.76338000871e-07 2792 -136775.948618
-0.00221729490022 0.4 8.76338000871e-07 2792 -139668.316433
-0.00221729490022 0.43 8.76338000871e-07 2792 -142992.90707
-0.00221729490022 0.46 8.76338000871e-07 2792 -146766.745495
-0.00221729490022 0.49 8.76338000871e-07 2792 -151013.043345
-0.00221729490022 0.52 8.76338000871e-07 2792 -155761.953098
-0.00221729490022 0.55 8.76338000871e-07 2792 -161051.344941
-0.00221729490022 0.58 8.76338000871e-07 2792 -166928.37411
-0.00221729490022 0.61 8.76338000871e-07 2792 -173452.209813
-0.00221729490022 0.64 8.76338000871e-07 2792 -180695.754012
-0.00221729490022 0.67 8.76338000871e-07 2792 -188750.429604
-0.00221729490022 0.7 8.76338000871e-07 2792 -197731.995156
-0.00221729490022 0.73 8.76338000871e-07 2792 -207789.764847
-0.00221729490022 0.76 8.76338000871e-07 2792 -219120.164773
-0.00221729490022 0.79 8.76338000871e-07 2792 -231989.031777
-0.00221729490022 0.82 8.76338000871e-07 2792 -246768.960651
-0.00221729490022 0.85 8.76338000871e-07 2792 -264007.00014
-0.00221729490022 0.88 8.76338000871e-07 2792 -284559.052071
-0.00216919739696 0.01 2.2238018396e-06 7085 -147282.800089
-0.00216919739696 0.04 1.10609423892e-06 3524 -140371.652954
-0.00216919739696 0.07 9.44134923575e-07 3008 -134818.10161
-0.00216919739696 0.1 9.09294838297e-07 2897 -131613.215196
-0.00216919739696 0.13 8.92973356905e-07 2845 -129730.446726
-0.00216919739696 0.16 8.8638198942e-07 2824 -128733.163296
-0.00216919739696 0.19 8.8198774443e-07 2810 -128414.46293
-0.00216919739696 0.22 8.79476747293e-07 2802 -128656.736223
-0.00216919739696 0.25 8.7759349944e-07 2796 -129392.742209
-0.00216919739696 0.28 8.76965750156e-07 2794 -130581.079386
-0.00216919739696 0.31 8.76338000871e-07 2792 -132198.009217
-0.00216919739696 0.34 8.76338000871e-07 2792 -134232.13401
-0.00216919739696 0.37 8.76338000871e-07 2792 -136679.768648
-0.00216919739696 0.4 8.76338000871e-07 2792 -139545.548074
-0.00216919739696 0.43 8.76338000871e-07 2792 -142840.399688
-0.00216919739696 0.46 8.76338000871e-07 2792 -146580.910711
-0.00216919739696 0.49 8.76338000871e-07 2792 -150790.137445
-0.00216919739696 0.52 8.76338000871e-07 2792 -155497.540233
-0.00216919739696 0.55 8.76338000871e-07 2792 -160740.718536
-0.00216919739696 0.58 8.76338000871e-07 2792 -166565.850819
-0.00216919739696 0.61 8.76338000871e-07 2792 -173030.885615
-0.00216919739696 0.64 8.76338000871e-07 2792 -180207.915501
-0.00216919739696 0.67 8.76338000871e-07 2792 -188186.792101
-0.00216919739696 0.7 8.76338000871e-07 2792 -197081.334657
-0.00216919739696 0.73 8.76338000871e-07 2792 -207038.233596
-0.00216919739696 0.76 8.76338000871e-07 2792 -218250.360184
-0.00216919739696 0.79 8.76338000871e-07 2792 -230978.381752
-0.00216919739696 0.82 8.76338000871e-07 2792 -245587.22239
-0.00216919739696 0.85 8.76338000871e-07 2792 -262611.968725
-0.00216919739696 0.88 8.76338000871e-07 2792 -282888.12568
-0.00212314225053 0.01 2.21815209605e-06 7067 -147310.491407
-0.00212314225053 0.04 1.10578036428e-06 3523 -140421.199684
-0.00212314225053 0.07 9.39112929301e-07 2992 -134859.755188
-0.00212314225053 0.1 9.08667089012e-07 2895 -131648.963486
-0.00212314225053 0.13 8.92659482263e-07 2844 -129759.199194
-0.00212314225053 0.16 8.84812616209e-07 2819 -128753.811288
-0.00212314225053 0.19 8.81673869788e-07 2809 -128424.825883
-0.00212314225053 0.22 8.78848998009e-07 2800 -128654.998244
-0.00212314225053 0.25 8.77279624798e-07 2795 -129376.78548
-0.00212314225053 0.28 8.76338000871e-07 2792 -130548.990094
-0.00212314225053 0.31 8.76338000871e-07 2792 -132147.747544
-0.00212314225053 0.34 8.76338000871e-07 2792 -134160.975578
-0.00212314225053 0.37 8.76338000871e-07 2792 -136585.596196
-0.00212314225053 0.4 8.76338000871e-07 2792 -139425.148855
-0.00212314225053 0.43 8.76338000871e-07 2792 -142690.510937
-0.00212314225053 0.46 8.76338000871e-07 2792 -146398.126357
-0.00212314225053 0.49 8.76338000871e-07 2792 -150570.550917
-0.00212314225053 0.52 8.76338000871e-07 2792 -155237.022781
-0.00212314225053 0.55 8.76338000871e-07 2792 -160434.219052
-0.00212314225053 0.58 8.76338000871e-07 2792 -166208.108128
-0.00212314225053 0.61 8.76338000871e-07 2792 -172615.172935
-0.00212314225053 0.64 8.76338000871e-07 2792 -179726.430529
-0.00212314225053 0.67 8.76338000871e-07 2792 -187630.394206
-0.00212314225053 0.7 8.76338000871e-07 2792 -196439.054159
-0.00212314225053 0.73 8.76338000871e-07 2792 -206296.37535
-0.00212314225053 0.76 8.76338000871e-07 2792 -217391.805418
-0.00212314225053 0.79 8.76338000871e-07 2792 -229980.960327
-0.00212314225053 0.82 8.76338000871e-07 2792 -244421.280144
-0.00212314225053 0.85 8.76338000871e-07 2792 -261236.031786
-0.00212314225053 0.88 8.76338000871e-07 2792 -281240.889701
-0.002079002079 0.01 2.21281622713e-06 7050 -147338.467751
-0.002079002079 0.04 1.10421099107e-06 3518 -140470.995334
-0.002079002079 0.07 9.3754355609e-07 2987 -134901.862787
-0.002079002079 0.1 9.07097715802e-07 2890 -131685.58954
-0.002079002079 0.13 8.91717858337e-07 2841 -129788.536889
-0.002079002079 0.16 8.84498741567e-07 2818 -128775.305125
-0.002079002079 0.19 8.81046120504e-07 2807 -128436.09363
-0.002079002079 0.22 8.78535123366e-07 2799 -128654.488499
-0.002079002079 0.25 8.77279624798e-07 2795 -129361.998619
-0.002079002079 0.28 8.76338000871e-07 2792 -130518.311679
-0.002079002079 0.31 8.76338000871e-07 2792 -132098.897212
-0.002079002079 0.34 8.76338000871e-07 2792 -134091.669514
-0.002079002079 0.37 8.76338000871e-07 2792 -136493.365967
-0.002079002079 0.4 8.76338000871e-07 2792 -139307.02939
-0.002079002079 0.43 8.76338000871e-07 2792 -142543.233491
-0.002079002079 0.46 8.76338000871e-07 2792 -146218.300325
-0.002079002079 0.49 8.76338000871e-07 2792 -150354.292706
-0.002079002079 0.52 8.76338000871e-07 2792 -154980.152215
-0.002079002079 0.55 8.76338000871e-07 2792 -160131.960048
-0.002079002079 0.58 8.76338000871e-07 2792 -165854.951009
-0.002079002079 0.61 8.76338000871e-07 2792 -172204.873103
-0.002079002079 0.64 8.76338000871e-07 2792 -179251.17042
-0.002079002079 0.67 8.76338000871e-07 2792 -187081.180967
-0.002079002079 0.7 8.76338000871e-07 2792 -195804.941353
-0.002079002079 0.73 8.76338000871e-07 2792 -205564.07283
-0.002079002079 0.76 8.76338000871e-07 2792 -216544.349537
-0.002079002079 0.79 8.76338000871e-07 2792 -228996.584283
-0.002079002079 0.82 8.76338000871e-07 2792 -243270.856136
-0.002079002079 0.85 8.76338000871e-07 2792 -259878.951767
-0.002079002079 0.88 8.76338000871e-07 2792 -279616.997715
-0.0020366598778 0.01 2.20653873429e-06 7030 -147366.657378
-0.0020366598778 0.04 1.10169999393e-06 3510 -140521.097313
-0.0020366598778 0.07 9.35974182879e-07 2982 -134944.811954
-0.0020366598778 0.1 9.05214467949e-07 2884 -131722.614467
-0.0020366598778 0.13 8.90462359768e-07 2837 -129818.472425
-0.0020366598778 0.16 8.83870992283e-07 2816 -128797.487364
-0.0020366598778 0.19 8.79790621935e-07 2803 -128448.146832
-0.0020366598778 0.22 8.77907374082e-07 2797 -128654.944284
-0.0020366598778 0.25 8.76651875514e-07 2793 -129348.545288
-0.0020366598778 0.28 8.76338000871e-07 2792 -130488.901182
-0.0020366598778 0.31 8.76338000871e-07 2792 -132051.563124
-0.0020366598778 0.34 8.76338000871e-07 2792 -134024.129151
-0.0020366598778 0.37 8.76338000871e-07 2792 -136402.746626
-0.0020366598778 0.4 8.76338000871e-07 2792 -139190.997296
-0.0020366598778 0.43 8.76338000871e-07 2792 -142398.413766
-0.0020366598778 0.46 8.76338000871e-07 2792 -146041.214592
-0.0020366598778 0.49 8.76338000871e-07 2792 -150141.270477
-0.0020366598778 0.52 8.76338000871e-07 2792 -154726.879642
-0.0020366598778 0.55 8.76338000871e-07 2792 -159833.839546
-0.0020366598778 0.58 8.76338000871e-07 2792 -165506.377582
-0.0020366598778 0.61 8.76338000871e-07 2792 -171799.756504
-0.0020366598778 0.64 8.76338000871e-07 2792 -178782.04091
-0.0020366598778 0.67 8.76338000871e-07 2792 -186538.956645
-0.0020366598778 0.7 8.76338000871e-07 2792 -195178.969611
-0.0020366598778 0.73 8.76338000871e-07 2792 -204841.103007
-0.0020366598778 0.76 8.76338000871e-07 2792 -215707.855683
-0.0020366598778 0.79 8.76338000871e-07 2792 -228025.077359
-0.0020366598778 0.82 8.76338000871e-07 2792 -242135.760789
-0.0020366598778 0.85 8.76338000871e-07 2792 -258540.401976
-0.0020366598778 0.88 8.76338000871e-07 2792 -278016.151974
-0.00199600798403 0.01 2.20308611322e-06 7019 -147394.978768
-0.00199600798403 0.04 1.10044449536e-06 3506 -140571.69612
-0.00199600798403 0.07 9.35346433595e-07 2980 -134988.348449
-0.00199600798403 0.1 9.03017345454e-07 2877 -131760.084209
-0.00199600798403 0.13 8.88892986557e-07 2832 -129849.228452
-0.00199600798403 0.16 8.82929368356e-07 2813 -128820.128461
-0.00199600798403 0.19 8.79476747293e-07 2802 -128460.868102
-0.00199600798403 0.22 8.7759349944e-07 2796 -128656.104516
-0.00199600798403 0.25 8.76338000871e-07 2792 -129336.063513
-0.00199600798403 0.28 8.76338000871e-07 2792 -130460.663625
-0.00199600798403 0.31 8.76338000871e-07 2792 -132005.62897
-0.00199600798403 0.34 8.76338000871e-07 2792 -133958.073654
-0.00199600798403 0.37 8.76338000871e-07 2792 -136313.982107
-0.00199600798403 0.4 8.76338000871e-07 2792 -139076.993276
-0.00199600798403 0.43 8.76338000871e-07 2792 -142255.978643
-0.00199600798403 0.46 8.76338000871e-07 2792 -145866.893255
-0.00199600798403 0.49 8.76338000871e-07 2792 -149931.36575
-0.00199600798403 0.52 8.76338000871e-07 2792 -154477.183171
-0.00199600798403 0.55 8.76338000871e-07 2792 -159539.666717
-0.00199600798403 0.58 8.76338000871e-07 2792 -165162.441944
-0.00199600798403 0.61 8.76338000871e-07 2792 -171399.726992
-0.00199600798403 0.64 8.76338000871e-07 2792 -178318.826
-0.00199600798403 0.67 8.76338000871e-07 2792 -186003.668609
-0.00199600798403 0.7 8.76338000871e-07 2792 -194560.939637
-0.00199600798403 0.73 8.76338000871e-07 2792 -204127.378989
-0.00199600798403 0.76 8.76338000871e-07 2792 -214882.126619
-0.00199600798403 0.79 8.76338000871e-07 2792 -227066.27179
-0.00199600798403 0.82 8.76338000871e-07 2792 -241015.775219
-0.00199600798403 0.85 8.76338000871e-07 2792 -257220.161639
-0.00199600798403 0.88 8.76338000871e-07 2792 -276437.979078
-0.00195694716243 0.01 2.19649474574e-06 6998 -147423.428163
-0.00195694716243 0.04 1.09981674608e-06 3504 -140622.535126
-0.00195694716243 0.07 9.34404809668e-07 2977 -135032.440906
-0.00195694716243 0.1 9.02075721527e-07 2874 -131797.857223
-0.00195694716243 0.13 8.88265237273e-07 2830 -129880.299354
-0.00195694716243 0.16 8.82301619072e-07 2811 -128843.299019
-0.00195694716243 0.19 8.78848998009e-07 2800 -128474.502796
-0.00195694716243 0.22 8.77279624798e-07 2795 -128658.030755
-0.00195694716243 0.25 8.76338000871e-07 2792 -129324.662821
-0.00195694716243 0.28 8.76338000871e-07 2792 -130433.647001
-0.00195694716243 0.31 8.76338000871e-07 2792 -131961.086088
-0.00195694716243 0.34 8.76338000871e-07 2792 -133893.487612
-0.00195694716243 0.37 8.76338000871e-07 2792 -136227.015655
-0.00195694716243 0.4 8.76338000871e-07 2792 -138964.729615
-0.00195694716243 0.43 8.76338000871e-07 2792 -142115.772987
-0.00195694716243 0.46 8.76338000871e-07 2792 -145695.18458
-0.00195694716243 0.49 8.76338000871e-07 2792 -149724.414817
-0.00195694716243 0.52 8.76338000871e-07 2792 -154230.972533
-0.00195694716243 0.55 8.76338000871e-07 2792 -159249.434361
-0.00195694716243 0.58 8.76338000871e-07 2792 -164822.992682
-0.00195694716243 0.61 8.76338000871e-07 2792 -171004.83682
-0.00195694716243 0.64 8.76338000871e-07 2792 -177861.357919
-0.00195694716243 0.67 8.76338000871e-07 2792 -185475.133208
-0.00195694716243 0.7 8.76338000871e-07 2792 -193950.754192
-0.00195694716243 0.73 8.76338000871e-07 2792 -203422.758017
-0.00195694716243 0.76 8.76338000871e-07 2792 -214066.987443
-0.00195694716243 0.79 8.76338000871e-07 2792 -226119.983946
-0.00195694716243 0.82 8.76338000871e-07 2792 -239910.701348
-0.00195694716243 0.85 8.76338000871e-07 2792 -255917.968513
-0.00195694716243 0.88 8.76338000871e-07 2792 -274882.193269
-0.00191938579655 0.01 2.19115887682e-06 6981 -147451.934341
-0.00191938579655 0.04 1.09856124751e-06 3500 -140673.678257
-0.00191938579655 0.07 9.32521561815e-07 2971 -135076.842628
-0.00191938579655 0.1 9.00820222959e-07 2870 -131836.165762
-0.00191938579655 0.13 8.87637487989e-07 2828 -129911.724527
-0.00191938579655 0.16 8.81673869788e-07 2809 -128866.8353
-0.00191938579655 0.19 8.78535123366e-07 2799 -128488.863071
-0.00191938579655 0.22 8.76965750156e-07 2794 -128660.639883
-0.00191938579655 0.25 8.76338000871e-07 2792 -129314.27788
-0.00191938579655 0.28 8.76338000871e-07 2792 -130407.897907
-0.00191938579655 0.31 8.76338000871e-07 2792 -131917.738869
-0.00191938579655 0.34 8.76338000871e-07 2792 -133830.354281
-0.00191938579655 0.37 8.76338000871e-07 2792 -136141.691268
-0.00191938579655 0.4 8.76338000871e-07 2792 -138854.365008
-0.00191938579655 0.43 8.76338000871e-07 2792 -141977.735716
-0.00191938579655 0.46 8.76338000871e-07 2792 -145526.033949
-0.00191938579655 0.49 8.76338000871e-07 2792 -149520.445531
-0.00191938579655 0.52 8.76338000871e-07 2792 -153988.114946
-0.00191938579655 0.55 8.76338000871e-07 2792 -158963.087222
-0.00191938579655 0.58 8.76338000871e-07 2792 -164487.894852
-0.00191938579655 0.61 8.76338000871e-07 2792 -170615.036269
-0.00191938579655 0.64 8.76338000871e-07 2792 -177409.602908
-0.00191938579655 0.67 8.76338000871e-07 2792 -184953.154828
-0.00191938579655 0.7 8.76338000871e-07 2792 -193348.294442
-0.00191938579655 0.73 8.76338000871e-07 2792 -202727.079487
-0.00191938579655 0.76 8.76338000871e-07 2792 -213262.351354
-0.00191938579655 0.79 8.76338000871e-07 2792 -225185.989135
-0.00191938579655 0.82 8.76338000871e-07 2792 -238820.34477
-0.00191938579655 0.85 8.76338000871e-07 2792 -254633.578146
-0.00191938579655 0.88 8.76338000871e-07 2792 -273348.471185
-0.00188323917137 0.01 2.18770625576e-06 6970 -147480.571156
-0.00188323917137 0.04 1.09793349823e-06 3498 -140724.908812
-0.00188323917137 0.07 9.30638313963e-07 2965 -135121.49168
-0.00188323917137 0.1 8.99878599032e-07 2867 -131874.797941
-0.00188323917137 0.13 8.86695864062e-07 2825 -129943.800368
-0.00188323917137 0.16 8.81673869788e-07 2809 -128890.905937
-0.00188323917137 0.19 8.78221248724e-07 2798 -128503.723225
-0.00188323917137 0.22 8.76651875514e-07 2793 -128663.9337
-0.00188323917137 0.25 8.76338000871e-07 2792 -129304.680029
-0.00188323917137 0.28 8.76338000871e-07 2792 -130383.124795
-0.00188323917137 0.31 8.76338000871e-07 2792 -131875.49038
-0.00188323917137 0.34 8.76338000871e-07 2792 -133768.649334
-0.00188323917137 0.37 8.76338000871e-07 2792 -136057.874494
-0.00188323917137 0.4 8.76338000871e-07 2792 -138745.900827
-0.00188323917137 0.43 8.76338000871e-07 2792 -141841.632305
-0.00188323917137 0.46 8.76338000871e-07 2792 -145359.308678
-0.00188323917137 0.49 8.76338000871e-07 2792 -149319.306333
-0.00188323917137 0.52 8.76338000871e-07 2792 -153748.506885
-0.00188323917137 0.55 8.76338000871e-07 2792 -158680.550231
-0.00188323917137 0.58 8.76338000871e-07 2792 -164157.153858
-0.00188323917137 0.61 8.76338000871e-07 2792 -170230.148256
-0.00188323917137 0.64 8.76338000871e-07 2792 -176963.585599
-0.00188323917137 0.67 8.76338000871e-07 2792 -184437.63751
-0.00188323917137 0.7 8.76338000871e-07 2792 -192753.368592
-0.00188323917137 0.73 8.76338000871e-07 2792 -202040.259323
-0.00188323917137 0.76 8.76338000871e-07 2792 -212468.01416
-0.00188323917137 0.79 8.76338000871e-07 2792 -224264.191284
-0.00188323917137 0.82 8.76338000871e-07 2792 -237744.464747
-0.00188323917137 0.85 8.76338000871e-07 2792 -253366.771419
-0.00188323917137 0.88 8.76338000871e-07 2792 -271836.514871
-0.00184842883549 0.01 2.18268426148e-06 6954 -147509.330856
-0.00184842883549 0.04 1.09793349823e-06 3498 -140776.2088
-0.00184842883549 0.07 9.28441191468e-07 2958 -135166.438478
-0.00184842883549 0.1 8.98309225822e-07 2862 -131913.666798
-0.00184842883549 0.13 8.85754240136e-07 2822 -129976.176665
-0.00184842883549 0.16 8.81046120504e-07 2807 -128915.54008
-0.00184842883549 0.19 8.7759349944e-07 2796 -128518.971293
-0.00184842883549 0.22 8.76338000871e-07 2792 -128668.092906
-0.00184842883549 0.25 8.76338000871e-07 2792 -129295.838809
-0.00184842883549 0.28 8.76338000871e-07 2792 -130359.423772
-0.00184842883549 0.31 8.76338000871e-07 2792 -131834.491199
-0.00184842883549 0.34 8.76338000871e-07 2792 -133708.228708
-0.00184842883549 0.37 8.76338000871e-07 2792 -135975.606996
-0.00184842883549 0.4 8.76338000871e-07 2792 -138639.277198
-0.00184842883549 0.43 8.76338000871e-07 2792 -141707.53089
-0.00184842883549 0.46 8.76338000871e-07 2792 -145194.943785
-0.00184842883549 0.49 8.76338000871e-07 2792 -149120.960527
-0.00184842883549 0.52 8.76338000871e-07 2792 -153512.15242
-0.00184842883549 0.55 8.76338000871e-07 2792 -158401.679795
-0.00184842883549 0.58 8.76338000871e-07 2792 -163830.674641
-0.00184842883549 0.61 8.76338000871e-07 2792 -169850.123689
-0.00184842883549 0.64 8.76338000871e-07 2792 -176523.197684
-0.00184842883549 0.67 8.76338000871e-07 2792 -183928.569319
-0.00184842883549 0.7 8.76338000871e-07 2792 -192165.818205
-0.00184842883549 0.73 8.76338000871e-07 2792 -201362.114689
-0.00184842883549 0.76 8.76338000871e-07 2792 -211683.870526
-0.00184842883549 0.79 8.76338000871e-07 2792 -223354.386774
-0.00184842883549 0.82 8.76338000871e-07 2792 -236682.894956
-0.00184842883549 0.85 8.76338000871e-07 2792 -252117.279001
-0.00184842883549 0.88 8.76338000871e-07 2792 -270346.036232
-0.00181488203267 0.01 2.17954551506e-06 6944 -147538.237177
-0.00181488203267 0.04 1.09730574894e-06 3496 -140827.771208
-0.00181488203267 0.07 9.26244068973e-07 2951 -135211.761621
-0.00181488203267 0.1 8.97053727253e-07 2858 -131952.970885
-0.00181488203267 0.13 8.84812616209e-07 2819 -130008.784529
-0.00181488203267 0.16 8.79790621935e-07 2803 -128940.709885
-0.00181488203267 0.19 8.77279624798e-07 2795 -128534.669611
-0.00181488203267 0.22 8.76338000871e-07 2792 -128672.980091
-0.00181488203267 0.25 8.76338000871e-07 2792 -129287.664583
-0.00181488203267 0.28 8.76338000871e-07 2792 -130336.686148
-0.00181488203267 0.31 8.76338000871e-07 2792 -131794.680395
-0.00181488203267 0.34 8.76338000871e-07 2792 -133649.052967
-0.00181488203267 0.37 8.76338000871e-07 2792 -135894.813567
-0.00181488203267 0.4 8.76338000871e-07 2792 -138534.251962
-0.00181488203267 0.43 8.76338000871e-07 2792 -141575.506642
-0.00181488203267 0.46 8.76338000871e-07 2792 -145032.761774
-0.00181488203267 0.49 8.76338000871e-07 2792 -148925.287839
-0.00181488203267 0.52 8.76338000871e-07 2792 -153278.907731
-0.00181488203267 0.55 8.76338000871e-07 2792 -158126.423916
-0.00181488203267 0.58 8.76338000871e-07 2792 -163508.402048
-0.00181488203267 0.61 8.76338000871e-07 2792 -169474.929525
-0.00181488203267 0.64 8.76338000871e-07 2792 -176088.285356
-0.00181488203267 0.67 8.76338000871e-07 2792 -183425.913613
-0.00181488203267 0.7 8.76338000871e-07 2792 -191585.574939
-0.00181488203267 0.73 8.76338000871e-07 2792 -200692.460894
-0.00181488203267 0.76 8.76338000871e-07 2792 -210909.765374
-0.00181488203267 0.79 8.76338000871e-07 2792 -222456.409111
-0.00181488203267 0.82 8.76338000871e-07 2792 -235635.444227
-0.00181488203267 0.85 8.76338000871e-07 2792 -250884.853278
-0.00181488203267 0.88 8.76338000871e-07 2792 -268876.726345
-0.0017825311943 0.01 2.17546514471e-06 6931 -147567.252991
-0.0017825311943 0.04 1.0969918743e-06 3495 -140879.407946
-0.0017825311943 0.07 9.24988570404e-07 2947 -135257.426371
-0.0017825311943 0.1 8.97053727253e-07 2858 -131992.812075
-0.0017825311943 0.13 8.84184866925e-07 2817 -130041.824646
-0.0017825311943 0.16 8.79476747293e-07 2802 -128965.924039
-0.0017825311943 0.19 8.77279624798e-07 2795 -128550.745689
-0.0017825311943 0.22 8.76338000871e-07 2792 -128678.505641
-0.0017825311943 0.25 8.76338000871e-07 2792 -129280.222686
-0.0017825311943 0.28 8.76338000871e-07 2792 -130314.738149
-0.0017825311943 0.31 8.76338000871e-07 2792 -131755.8442
-0.0017825311943 0.34 8.76338000871e-07 2792 -133591.020879
-0.0017825311943 0.37 8.76338000871e-07 2792 -135815.505313
-0.0017825311943 0.4 8.76338000871e-07 2792 -138430.914521
-0.0017825311943 0.43 8.76338000871e-07 2792 -141445.499098
-0.0017825311943 0.46 8.76338000871e-07 2792 -144872.757407
-0.0017825311943 0.49 8.76338000871e-07 2792 -148732.220592
-0.0017825311943 0.52 8.76338000871e-07 2792 -153048.749628
-0.0017825311943 0.55 8.76338000871e-07 2792 -157854.748128
-0.0017825311943 0.58 8.76338000871e-07 2792 -163190.189815
-0.0017825311943 0.61 8.76338000871e-07 2792 -169104.478392
-0.0017825311943 0.64 8.76338000871e-07 2792 -175658.812645
-0.0017825311943 0.67 8.76338000871e-07 2792 -182929.526532
-0.0017825311943 0.7 8.76338000871e-07 2792 -191012.632192
-0.0017825311943 0.73 8.76338000871e-07 2792 -200031.188071
-0.0017825311943 0.76 8.76338000871e-07 2792 -210145.507209
-0.0017825311943 0.79 8.76338000871e-07 2792 -221570.120343
-0.0017825311943 0.82 8.76338000871e-07 2792 -234601.896362
-0.0017825311943 0.85 8.76338000871e-07 2792 -249669.299465
-0.0017825311943 0.88 8.76338000871e-07 2792 -267428.261488
-0.00175131348511 0.01 2.17326802222e-06 6924 -147596.363951
-0.00175131348511 0.04 1.0969918743e-06 3495 -140931.330887
-0.00175131348511 0.07 9.23733071835e-07 2943 -135303.314239
-0.00175131348511 0.1 8.94856604758e-07 2851 -132032.928508
-0.00175131348511 0.13 8.83870992283e-07 2816 -130075.111321
-0.00175131348511 0.16 8.78848998009e-07 2800 -128991.502422
-0.00175131348511 0.19 8.76965750156e-07 2794 -128567.22579
-0.00175131348511 0.22 8.76338000871e-07 2792 -128684.493643
-0.00175131348511 0.25 8.76338000871e-07 2792 -129273.539732
-0.00175131348511 0.28 8.76338000871e-07 2792 -130293.524715
-0.00175131348511 0.31 8.76338000871e-07 2792 -131718.088874
-0.00175131348511 0.34 8.76338000871e-07 2792 -133534.306886
-0.00175131348511 0.37 8.76338000871e-07 2792 -135737.528194
-0.00175131348511 0.4 8.76338000871e-07 2792 -138329.19723
-0.00175131348511 0.43 8.76338000871e-07 2792 -141317.308209
-0.00175131348511 0.46 8.76338000871e-07 2792 -144715.040207
-0.00175131348511 0.49 8.76338000871e-07 2792 -148541.630493
-0.00175131348511 0.52 8.76338000871e-07 2792 -152821.563483
-0.00175131348511 0.55 8.76338000871e-07 2792 -157586.523226
-0.00175131348511 0.58 8.76338000871e-07 2792 -162876.008632
-0.00175131348511 0.61 8.76338000871e-07 2792 -168738.691706
-0.00175131348511 0.64 8.76338000871e-07 2792 -175234.728701
-0.00175131348511 0.67 8.76338000871e-07 2792 -182439.296502
-0.00175131348511 0.7 8.76338000871e-07 2792 -190446.878899
-0.00175131348511 0.73 8.76338000871e-07 2792 -199378.227204
-0.00175131348511 0.76 8.76338000871e-07 2792 -209390.928882
-0.00175131348511 0.79 8.76338000871e-07 2792 -220695.323746
-0.00175131348511 0.82 8.76338000871e-07 2792 -233582.089632
-0.00175131348511 0.85 8.76338000871e-07 2792 -248470.357221
-0.00175131348511 0.88 8.76338000871e-07 2792 -266000.391474
-0.00172117039587 0.01 2.17107089972e-06 6917 -147625.643274
-0.00172117039587 0.04 1.09636412502e-06 3493 -140983.203564
-0.00172117039587 0.07 9.2153594934e-07 2936 -135349.366716
-0.00172117039587 0.1 8.92973356905e-07 2845 -132073.069473
-0.00172117039587 0.13 8.82929368356e-07 2813 -130108.695845
-0.00172117039587 0.16 8.78848998009e-07 2800 -129017.615057
-0.00172117039587 0.19 8.76651875514e-07 2793 -128584.128077
-0.00172117039587 0.22 8.76338000871e-07 2792 -128690.933592
-0.00172117039587 0.25 8.76338000871e-07 2792 -129267.651592
-0.00172117039587 0.28 8.76338000871e-07 2792 -130272.989103
-0.00172117039587 0.31 8.76338000871e-07 2792 -131681.30229
-0.00172117039587 0.34 8.76338000871e-07 2792 -133478.760218
-0.00172117039587 0.37 8.76338000871e-07 2792 -135660.832289
-0.00172117039587 0.4 8.76338000871e-07 2792 -138229.102973
-0.00172117039587 0.43 8.76338000871e-07 2792 -141190.946684
-0.00172117039587 0.46 8.76338000871e-07 2792 -144559.547639
-0.00172117039587 0.49 8.76338000871e-07 2792 -148353.451707
-0.00172117039587 0.52 8.76338000871e-07 2792 -152597.282087
-0.00172117039587 0.55 8.76338000871e-07 2792 -157321.738166
-0.00172117039587 0.58 8.76338000871e-07 2792 -162565.808712
-0.00172117039587 0.61 8.76338000871e-07 2792 -168377.434394
-0.00172117039587 0.64 8.76338000871e-07 2792 -174815.947262
-0.00172117039587 0.67 8.76338000871e-07 2792 -181955.186545
-0.00172117039587 0.7 8.76338000871e-07 2792 -189888.160576
-0.00172117039587 0.73 8.76338000871e-07 2792 -198733.525342
-0.00172117039587 0.76 8.76338000871e-07 2792 -208645.924142
-0.00172117039587 0.79 8.76338000871e-07 2792 -219831.818475
-0.00172117039587 0.82 8.76338000871e-07 2792 -232575.821142
-0.00172117039587 0.85 8.76338000871e-07 2792 -247287.805464
-0.00172117039587 0.88 8.76338000871e-07 2792 -264592.808041
-0.00169204737733 0.01 2.16981540115e-06 6913 -147655.056199
-0.00169204737733 0.04 1.09730574894e-06 3496 -141035.122092
-0.00169204737733 0.07 9.20280450772e-07 2932 -135395.681449
-0.00169204737733 0.1 8.92659482263e-07 2844 -132113.403544
-0.00169204737733 0.13 8.82615493714e-07 2812 -130142.492656
-0.00169204737733 0.16 8.78221248724e-07 2798 -129043.943149
-0.00169204737733 0.19 8.76338000871e-07 2792 -128601.566642
-0.00169204737733 0.22 8.76338000871e-07 2792 -128697.809687
-0.00169204737733 0.25 8.76338000871e-07 2792 -129262.382769
-0.00169204737733 0.28 8.76338000871e-07 2792 -130253.195771
-0.00169204737733 0.31 8.76338000871e-07 2792 -131645.35664
-0.00169204737733 0.34 8.76338000871e-07 2792 -133424.267756
-0.00169204737733 0.37 8.76338000871e-07 2792 -135585.451047
-0.00169204737733 0.4 8.76338000871e-07 2792 -138130.520426
-0.00169204737733 0.43 8.76338000871e-07 2792 -141066.408828
-0.00169204737733 0.46 8.76338000871e-07 2792 -144406.135524
-0.00169204737733 0.49 8.76338000871e-07 2792 -148167.811956
-0.00169204737733 0.52 8.76338000871e-07 2792 -152375.804707
-0.00169204737733 0.55 8.76338000871e-07 2792 -157060.274288
-0.00169204737733 0.58 8.76338000871e-07 2792 -162259.460656
-0.00169204737733 0.61 8.76338000871e-07 2792 -168020.690737
-0.00169204737733 0.64 8.76338000871e-07 2792 -174402.3736
-0.00169204737733 0.67 8.76338000871e-07 2792 -181477.105347
-0.00169204737733 0.7 8.76338000871e-07 2792 -189336.407745
-0.00169204737733 0.73 8.76338000871e-07 2792 -198096.943229
-0.00169204737733 0.76 8.76338000871e-07 2792 -207910.431606
-0.00169204737733 0.79 8.76338000871e-07 2792 -218979.460383
-0.00169204737733 0.82 8.76338000871e-07 2792 -231582.870438
-0.00169204737733 0.85 8.76338000871e-07 2792 -246121.425374
-0.00169204737733 0.88 8.76338000871e-07 2792 -263205.21655
-0.00166389351082 0.01 2.16636278009e-06 6902 -147684.574539
-0.00166389351082 0.04 1.09730574894e-06 3496 -141087.289802
-0.00166389351082 0.07 9.19024952203e-07 2928 -135442.244954
-0.00166389351082 0.1 8.92031732979e-07 2842 -132153.929226
-0.00166389351082 0.13 8.81673869788e-07 2809 -130176.468284
-0.00166389351082 0.16 8.7759349944e-07 2796 -129070.507705
-0.00166389351082 0.19 8.76338000871e-07 2792 -128619.274978
-0.00166389351082 0.22 8.76338000871e-07 2792 -128705.069457
-0.00166389351082 0.25 8.76338000871e-07 2792 -129257.693491
-0.00166389351082 0.28 8.76338000871e-07 2792 -130234.120319
-0.00166389351082 0.31 8.76338000871e-07 2792 -131610.189757
-0.00166389351082 0.34 8.76338000871e-07 2792 -133370.914978
-0.00166389351082 0.37 8.76338000871e-07 2792 -135511.461271
-0.00166389351082 0.4 8.76338000871e-07 2792 -138033.430914
-0.00166389351082 0.43 8.76338000871e-07 2792 -140943.643936
-0.00166389351082 0.46 8.76338000871e-07 2792 -144254.755483
-0.00166389351082 0.49 8.76338000871e-07 2792 -147984.643811
-0.00166389351082 0.52 8.76338000871e-07 2792 -152157.038776
-0.00166389351082 0.55 8.76338000871e-07 2792 -156802.067357
-0.00166389351082 0.58 8.76338000871e-07 2792 -161956.961219
-0.00166389351082 0.61 8.76338000871e-07 2792 -167668.392843
-0.00166389351082 0.64 8.76338000871e-07 2792 -173993.881483
-0.00166389351082 0.67 8.76338000871e-07 2792 -181004.98082
-0.00166389351082 0.7 8.76338000871e-07 2792 -188791.554034
-0.00166389351082 0.73 8.76338000871e-07 2792 -197468.332983
-0.00166389351082 0.76 8.76338000871e-07 2792 -207184.325026
-0.00166389351082 0.79 8.76338000871e-07 2792 -218138.125082
-0.00166389351082 0.82 8.76338000871e-07 2792 -230603.035827
-0.00166389351082 0.85 8.76338000871e-07 2792 -244970.969511
-0.00166389351082 0.88 8.76338000871e-07 2792 -261837.351272
-0.00163666121113 0.01 2.16385178295e-06 6894 -147714.171839
-0.00163666121113 0.04 1.09793349823e-06 3498 -141139.54726
-0.00163666121113 0.07 9.1714170435e-07 2922 -135488.889182
-0.00163666121113 0.1 8.91090109052e-07 2839 -132194.600661
-0.00163666121113 0.13 8.81673869788e-07 2809 -130210.767385
-0.00163666121113 0.16 8.7759349944e-07 2796 -129097.358364
-0.00163666121113 0.19 8.76338000871e-07 2792 -128637.2315
-0.00163666121113 0.22 8.76338000871e-07 2792 -128712.736766
-0.00163666121113 0.25 8.76338000871e-07 2792 -129253.414229
-0.00163666121113 0.28 8.76338000871e-07 2792 -130215.881668
-0.00163666121113 0.31 8.76338000871e-07 2792 -131575.776139
-0.00163666121113 0.34 8.76338000871e-07 2792 -133318.585749
-0.00163666121113 0.37 8.76338000871e-07 2792 -135438.686707
-0.00163666121113 0.4 8.76338000871e-07 2792 -137937.729188
-0.00163666121113 0.43 8.76338000871e-07 2792 -140822.65234
-0.00163666121113 0.46 8.76338000871e-07 2792 -144105.426079
-0.00163666121113 0.49 8.76338000871e-07 2792 -147803.869644
-0.00163666121113 0.52 8.76338000871e-07 2792 -151941.108179
-0.00163666121113 0.55 8.76338000871e-07 2792 -156547.033779
-0.00163666121113 0.58 8.76338000871e-07 2792 -161658.187466
-0.00163666121113 0.61 8.76338000871e-07 2792 -167320.420411
-0.00163666121113 0.64 8.76338000871e-07 2792 -173590.456413
-0.00163666121113 0.67 8.76338000871e-07 2792 -180538.693388
-0.00163666121113 0.7 8.76338000871e-07 2792 -188253.492777
-0.00163666121113 0.73 8.76338000871e-07 2792 -196847.618376
-0.00163666121113 0.76 8.76338000871e-07 2792 -206467.441803
-0.00163666121113 0.79 8.76338000871e-07 2792 -217307.711062
-0.00163666121113 0.82 8.76338000871e-07 2792 -229636.15363
-0.00163666121113 0.85 8.76338000871e-07 2792 -243836.18609
-0.00163666121113 0.88 8.76338000871e-07 2792 -260488.913912
-0.00161030595813 0.01 2.16102691117e-06 6885 -147743.754111
-0.00161030595813 0.04 1.09918899679e-06 3502 -141192.014986
-0.00161030595813 0.07 9.16513955066e-07 2920 -135535.669577
-0.00161030595813 0.1 8.90462359768e-07 2837 -132235.503658
-0.00161030595813 0.13 8.81673869788e-07 2809 -130245.452531
-0.00161030595813 0.16 8.77279624798e-07 2795 -129124.388752
-0.00161030595813 0.19 8.76338000871e-07 2792 -128655.631057
-0.00161030595813 0.22 8.76338000871e-07 2792 -128720.829269
-0.00161030595813 0.25 8.76338000871e-07 2792 -129249.621769
-0.00161030595813 0.28 8.76338000871e-07 2792 -130198.318372
-0.00161030595813 0.31 8.76338000871e-07 2792 -131542.1528
-0.00161030595813 0.34 8.76338000871e-07 2792 -133267.186464
-0.00161030595813 0.37 8.76338000871e-07 2792 -135367.095255
-0.00161030595813 0.4 8.76338000871e-07 2792 -137843.533122
-0.00161030595813 0.43 8.76338000871e-07 2792 -140703.311484
-0.00161030595813 0.46 8.76338000871e-07 2792 -143958.087857
-0.00161030595813 0.49 8.76338000871e-07 2792 -147625.36142
-0.00161030595813 0.52 8.76338000871e-07 2792 -151727.939483
-0.00161030595813 0.55 8.76338000871e-07 2792 -156295.067752
-0.00161030595813 0.58 8.76338000871e-07 2792 -161363.077877
-0.00161030595813 0.61 8.76338000871e-07 2792 -166976.763734
-0.00161030595813 0.64 8.76338000871e-07 2792 -173192.012884
-0.00161030595813 0.67 8.76338000871e-07 2792 -180078.140172
-0.00161030595813 0.7 8.76338000871e-07 2792 -187722.141133
-0.00161030595813 0.73 8.76338000871e-07 2792 -196234.714606
-0.00161030595813 0.76 8.76338000871e-07 2792 -205759.661456
-0.00161030595813 0.79 8.76338000871e-07 2792 -216488.058055
-0.00161030595813 0.82 8.76338000871e-07 2792 -228682.089653
-0.00161030595813 0.85 8.76338000871e-07 2792 -242716.863835
-0.00161030595813 0.88 8.76338000871e-07 2792 -259159.605255
-0.00158478605388 0.01 2.15757429011e-06 6874 -147773.344835
-0.00158478605388 0.04 1.09918899679e-06 3502 -141244.603881
-0.00158478605388 0.07 9.1557233114e-07 2917 -135582.54642
-0.00158478605388 0.1 8.89520735842e-07 2834 -132276.612825
-0.00158478605388 0.13 8.81046120504e-07 2807 -130280.326047
-0.00158478605388 0.16 8.77279624798e-07 2795 -129151.710716
-0.00158478605388 0.19 8.76338000871e-07 2792 -128674.386634
-0.00158478605388 0.22 8.76338000871e-07 2792 -128729.442051
-0.00158478605388 0.25 8.76338000871e-07 2792 -129246.247075
-0.00158478605388 0.28 8.76338000871e-07 2792 -130181.388678
-0.00158478605388 0.31 8.76338000871e-07 2792 -131509.290681
-0.00158478605388 0.34 8.76338000871e-07 2792 -133216.661777
-0.00158478605388 0.37 8.76338000871e-07 2792 -135296.737583
-0.00158478605388 0.4 8.76338000871e-07 2792 -137750.812838
-0.00158478605388 0.43 8.76338000871e-07 2792 -140585.597244
-0.00158478605388 0.46 8.76338000871e-07 2792 -143812.74898
-0.00158478605388 0.49 8.76338000871e-07 2792 -147449.165653
-0.00158478605388 0.52 8.76338000871e-07 2792 -151517.495339
-0.00158478605388 0.55 8.76338000871e-07 2792 -156046.276077
-0.00158478605388 0.58 8.76338000871e-07 2792 -161071.557795
-0.00158478605388 0.61 8.76338000871e-07 2792 -166637.296514
-0.00158478605388 0.64 8.76338000871e-07 2792 -172798.444969
-0.00158478605388 0.67 8.76338000871e-07 2792 -179623.288587
-0.00158478605388 0.7 8.76338000871e-07 2792 -187197.366775
-0.00158478605388 0.73 8.76338000871e-07 2792 -195629.506641
-0.00158478605388 0.76 8.76338000871e-07 2792 -205060.884694
-0.00158478605388 0.79 8.76338000871e-07 2792 -215678.98492
-0.00158478605388 0.82 8.76338000871e-07 2792 -227740.674158
-0.00158478605388 0.85 8.76338000871e-07 2792 -241612.799061
-0.00158478605388 0.88 8.76338000871e-07 2792 -257849.138215
-0.0015600624025 0.01 2.15537716762e-06 6867 -147802.940116
-0.0015600624025 0.04 1.09918899679e-06 3502 -141297.218923
-0.0015600624025 0.07 9.14630707213e-07 2914 -135629.398273
-0.0015600624025 0.1 8.88579111915e-07 2831 -132317.865829
-0.0015600624025 0.13 8.80418371219e-07 2805 -130315.30277
-0.0015600624025 0.16 8.76965750156e-07 2794 -129179.208377
-0.0015600624025 0.19 8.76338000871e-07 2792 -128693.371977
-0.0015600624025 0.22 8.76338000871e-07 2792 -128738.391221
-0.0015600624025 0.25 8.76338000871e-07 2792 -129243.264318
-0.0015600624025 0.28 8.76338000871e-07 2792 -130164.982029
-0.0015600624025 0.31 8.76338000871e-07 2792 -131477.302283
-0.0015600624025 0.34 8.76338000871e-07 2792 -133167.003776
-0.0015600624025 0.37 8.76338000871e-07 2792 -135227.50822
-0.0015600624025 0.4 8.76338000871e-07 2792 -137659.418124
-0.0015600624025 0.43 8.76338000871e-07 2792 -140469.48931
-0.0015600624025 0.46 8.76338000871e-07 2792 -143669.300582
-0.0015600624025 0.49 8.76338000871e-07 2792 -147275.226885
-0.0015600624025 0.52 8.76338000871e-07 2792 -151309.62049
-0.0015600624025 0.55 8.76338000871e-07 2792 -155800.586493
-0.0015600624025 0.58 8.76338000871e-07 2792 -160783.515148
-0.0015600624025 0.61 8.76338000871e-07 2792 -166301.960203
-0.0015600624025 0.64 8.76338000871e-07 2792 -172409.725609
-0.0015600624025 0.67 8.76338000871e-07 2792 -179174.036194
-0.0015600624025 0.7 8.76338000871e-07 2792 -186679.084804
-0.0015600624025 0.73 8.76338000871e-07 2792 -195031.887731
-0.0015600624025 0.76 8.76338000871e-07 2792 -204370.989674
-0.0015600624025 0.79 8.76338000871e-07 2792 -214880.368561
-0.0015600624025 0.82 8.76338000871e-07 2792 -226811.717526
-0.0015600624025 0.85 8.76338000871e-07 2792 -240523.810894
-0.0015600624025 0.88 8.76338000871e-07 2792 -256557.247706
-0.00153609831029 0.01 2.15318004512e-06 6860 -147832.552215
-0.00153609831029 0.04 1.09856124751e-06 3500 -141349.766433
-0.00153609831029 0.07 9.13689083287e-07 2911 -135676.356261
-0.00153609831029 0.1 8.87951362631e-07 2829 -132359.173658
-0.00153609831029 0.13 8.79476747293e-07 2802 -130350.327491
-0.00153609831029 0.16 8.76651875514e-07 2793 -129206.816162
-0.00153609831029 0.19 8.76338000871e-07 2792 -128712.612087
-0.00153609831029 0.22 8.76338000871e-07 2792 -128747.532376
-0.00153609831029 0.25 8.76338000871e-07 2792 -129240.702246
-0.00153609831029 0.28 8.76338000871e-07 2792 -130149.056156
-0.00153609831029 0.31 8.76338000871e-07 2792 -131446.093947
-0.00153609831029 0.34 8.76338000871e-07 2792 -133118.225508
-0.00153609831029 0.37 8.76338000871e-07 2792 -135159.327036
-0.00153609831029 0.4 8.76338000871e-07 2792 -137569.386877
-0.00153609831029 0.43 8.76338000871e-07 2792 -140355.073576
-0.00153609831029 0.46 8.76338000871e-07 2792 -143527.742673
-0.00153609831029 0.49 8.76338000871e-07 2792 -147103.526229
-0.00153609831029 0.52 8.76338000871e-07 2792 -151104.340971
-0.00153609831029 0.55 8.76338000871e-07 2792 -155557.973386
-0.00153609831029 0.58 8.76338000871e-07 2792 -160499.032267
-0.00153609831029 0.61 8.76338000871e-07 2792 -165970.682162
-0.00153609831029 0.64 8.76338000871e-07 2792 -172025.726896
-0.00153609831029 0.67 8.76338000871e-07 2792 -178730.290674
-0.00153609831029 0.7 8.76338000871e-07 2792 -186167.235872
-0.00153609831029 0.73 8.76338000871e-07 2792 -194441.721985
-0.00153609831029 0.76 8.76338000871e-07 2792 -203689.862292
-0.00153609831029 0.79 8.76338000871e-07 2792 -214092.085319
-0.00153609831029 0.82 8.76338000871e-07 2792 -225895.03017
-0.00153609831029 0.85 8.76338000871e-07 2792 -239449.679382
-0.00153609831029 0.88 8.76338000871e-07 2792 -255283.686324
-0.00151285930408 0.01 2.15035517334e-06 6851 -147862.174773
-0.00151285930408 0.04 1.09981674608e-06 3504 -141402.230606
-0.00151285930408 0.07 9.13689083287e-07 2911 -135723.409635
-0.00151285930408 0.1 8.87637487989e-07 2828 -132400.558869
-0.00151285930408 0.13 8.79162872651e-07 2801 -130385.447446
-0.00151285930408 0.16 8.76338000871e-07 2792 -129234.640286
-0.00151285930408 0.19 8.76338000871e-07 2792 -128732.123964
-0.00151285930408 0.22 8.76338000871e-07 2792 -128757.038206
-0.00151285930408 0.25 8.76338000871e-07 2792 -129238.585337
-0.00151285930408 0.28 8.76338000871e-07 2792 -130133.66028
-0.00151285930408 0.31 8.76338000871e-07 2792 -131415.582489
-0.00151285930408 0.34 8.76338000871e-07 2792 -133070.302563
-0.00151285930408 0.37 8.76338000871e-07 2792 -135092.157802
-0.00151285930408 0.4 8.76338000871e-07 2792 -137480.717849
-0.00151285930408 0.43 8.76338000871e-07 2792 -140242.253338
-0.00151285930408 0.46 8.76338000871e-07 2792 -143387.97936
-0.00151285930408 0.49 8.76338000871e-07 2792 -146934.031924
-0.00151285930408 0.52 8.76338000871e-07 2792 -150901.633287
-0.00151285930408 0.55 8.76338000871e-07 2792 -155318.290283
-0.00151285930408 0.58 8.76338000871e-07 2792 -160218.045356
-0.00151285930408 0.61 8.76338000871e-07 2792 -165643.347354
-0.00151285930408 0.64 8.76338000871e-07 2792 -171646.391258
-0.00151285930408 0.67 8.76338000871e-07 2792 -178292.005482
-0.00151285930408 0.7 8.76338000871e-07 2792 -185661.704151
-0.00151285930408 0.73 8.76338000871e-07 2792 -193858.927174
-0.00151285930408 0.76 8.76338000871e-07 2792 -203017.370881
-0.00151285930408 0.79 8.76338000871e-07 2792 -213313.981561
-0.00151285930408 0.82 8.76338000871e-07 2792 -224990.461454
-0.00151285930408 0.85 8.76338000871e-07 2792 -238390.170536
-0.00151285930408 0.88 8.76338000871e-07 2792 -254028.192551
-0.00149031296572 0.01 2.14941354942e-06 6848 -147891.7945
-0.00149031296572 0.04 1.10107224465e-06 3508 -141454.659257
-0.00149031296572 0.07 9.13689083287e-07 2911 -135770.581633
-0.00149031296572 0.1 8.87009738704e-07 2826 -132442.101597
-0.00149031296572 0.13 8.78848998009e-07 2800 -130420.664655
-0.00149031296572 0.16 8.76338000871e-07 2792 -129262.776979
-0.00149031296572 0.19 8.76338000871e-07 2792 -128751.82694
-0.00149031296572 0.22 8.76338000871e-07 2792 -128766.969231
-0.00149031296572 0.25 8.76338000871e-07 2792 -129236.985864
-0.00149031296572 0.28 8.76338000871e-07 2792 -130118.732684
-0.00149031296572 0.31 8.76338000871e-07 2792 -131385.746612
-0.00149031296572 0.34 8.76338000871e-07 2792 -133023.316737
-0.00149031296572 0.37 8.76338000871e-07 2792 -135025.989113
-0.00149031296572 0.4 8.76338000871e-07 2792 -137393.305598
-0.00149031296572 0.43 8.76338000871e-07 2792 -140130.924764
-0.00149031296572 0.46 8.76338000871e-07 2792 -143250.076424
-0.00149031296572 0.49 8.76338000871e-07 2792 -146766.655953
-0.00149031296572 0.52 8.76338000871e-07 2792 -150701.442939
-0.00149031296572 0.55 8.76338000871e-07 2792 -155081.535476
-0.00149031296572 0.58 8.76338000871e-07 2792 -159940.523537
-0.00149031296572 0.61 8.76338000871e-07 2792 -165320.011121
-0.00149031296572 0.64 8.76338000871e-07 2792 -171271.643114
-0.00149031296572 0.67 8.76338000871e-07 2792 -177859.049273
-0.00149031296572 0.7 8.76338000871e-07 2792 -185162.404407
-0.00149031296572 0.73 8.76338000871e-07 2792 -193283.414948
-0.00149031296572 0.76 8.76338000871e-07 2792 -202353.365497
-0.00149031296572 0.79 8.76338000871e-07 2792 -212545.92882
-0.00149031296572 0.82 8.76338000871e-07 2792 -224097.853487
-0.00149031296572 0.85 8.76338000871e-07 2792 -237345.0849
-0.00149031296572 0.88 8.76338000871e-07 2792 -252790.491961
-0.0014684287812 0.01 2.14721642692e-06 6841 -147921.453232
-0.0014684287812 0.04 1.1029554925e-06 3514 -141507.057359
-0.0014684287812 0.07 9.13061334002e-07 2909 -135817.932583
-0.0014684287812 0.1 8.8638198942e-07 2824 -132483.801
-0.0014684287812 0.13 8.78848998009e-07 2800 -130456.022258
-0.0014684287812 0.16 8.76338000871e-07 2792 -129291.140067
-0.0014684287812 0.19 8.76338000871e-07 2792 -128771.785725
-0.0014684287812 0.22 8.76338000871e-07 2792 -128777.141262
-0.0014684287812 0.25 8.76338000871e-07 2792 -129235.768735
-0.0014684287812 0.28 8.76338000871e-07 2792 -130104.261627
-0.0014684287812 0.31 8.76338000871e-07 2792 -131356.470376
-0.0014684287812 0.34 8.76338000871e-07 2792 -132977.234661
-0.0014684287812 0.37 8.76338000871e-07 2792 -134960.825707
-0.0014684287812 0.4 8.76338000871e-07 2792 -137307.090404
-0.0014684287812 0.43 8.76338000871e-07 2792 -140021.148323
-0.0014684287812 0.46 8.76338000871e-07 2792 -143114.050769
-0.0014684287812 0.49 8.76338000871e-07 2792 -146601.374272
-0.0014684287812 0.52 8.76338000871e-07 2792 -150503.777266
-0.0014684287812 0.55 8.76338000871e-07 2792 -154847.690653
-0.0014684287812 0.58 8.76338000871e-07 2792 -159666.34133
-0.0014684287812 0.61 8.76338000871e-07 2792 -165000.619694
-0.0014684287812 0.64 8.76338000871e-07 2792 -170901.365954
-0.0014684287812 0.67 8.76338000871e-07 2792 -177431.362955
-0.0014684287812 0.7 8.76338000871e-07 2792 -184669.269374
-0.0014684287812 0.73 8.76338000871e-07 2792 -192715.06149
-0.0014684287812 0.76 8.76338000871e-07 2792 -201697.763806
-0.0014684287812 0.79 8.76338000871e-07 2792 -211787.769501
-0.0014684287812 0.82 8.76338000871e-07 2792 -223217.032215
-0.0014684287812 0.85 8.76338000871e-07 2792 -236314.22499
-0.0014684287812 0.88 8.76338000871e-07 2792 -251570.305669
-0.00144717800289 0.01 2.14533317907e-06 6835 -147951.068728
-0.00144717800289 0.04 1.10326936714e-06 3515 -141559.409097
-0.00144717800289 0.07 9.12433584718e-07 2907 -135865.245024
-0.00144717800289 0.1 8.85754240136e-07 2822 -132525.485863
-0.00144717800289 0.13 8.78221248724e-07 2798 -130491.525146
-0.00144717800289 0.16 8.76338000871e-07 2792 -129319.645965
-0.00144717800289 0.19 8.76338000871e-07 2792 -128791.933798
-0.00144717800289 0.22 8.76338000871e-07 2792 -128787.540619
-0.00144717800289 0.25 8.76338000871e-07 2792 -129234.781198
-0.00144717800289 0.28 8.76338000871e-07 2792 -130090.264802
-0.00144717800289 0.31 8.76338000871e-07 2792 -131327.806186
-0.00144717800289 0.34 8.76338000871e-07 2792 -132931.962503
-0.00144717800289 0.37 8.76338000871e-07 2792 -134896.653051
-0.00144717800289 0.4 8.76338000871e-07 2792 -137222.058447
-0.00144717800289 0.43 8.76338000871e-07 2792 -139912.892778
-0.00144717800289 0.46 8.76338000871e-07 2792 -142979.777621
-0.00144717800289 0.49 8.76338000871e-07 2792 -146438.151017
-0.00144717800289 0.52 8.76338000871e-07 2792 -150308.514215
-0.00144717800289 0.55 8.76338000871e-07 2792 -154616.699524
-0.00144717800289 0.58 8.76338000871e-07 2792 -159395.461595
-0.00144717800289 0.61 8.76338000871e-07 2792 -164685.12941
-0.00144717800289 0.64 8.76338000871e-07 2792 -170535.588302
-0.00144717800289 0.67 8.76338000871e-07 2792 -177008.864673
-0.00144717800289 0.7 8.76338000871e-07 2792 -184182.163472
-0.00144717800289 0.73 8.76338000871e-07 2792 -192153.779613
-0.00144717800289 0.76 8.76338000871e-07 2792 -201050.451089
-0.00144717800289 0.79 8.76338000871e-07 2792 -211039.347276
-0.00144717800289 0.82 8.76338000871e-07 2792 -222347.83443
-0.00144717800289 0.85 8.76338000871e-07 2792 -235297.38648
-0.00144717800289 0.88 8.76338000871e-07 2792 -250367.381413
-0.00142653352354 0.01 2.14376380586e-06 6830 -147980.662378
-0.00142653352354 0.04 1.10578036428e-06 3523 -141611.736322
-0.00142653352354 0.07 9.11805835434e-07 2905 -135912.501527
-0.00142653352354 0.1 8.84812616209e-07 2819 -132567.168033
-0.00142653352354 0.13 8.78221248724e-07 2798 -130527.149318
-0.00142653352354 0.16 8.76338000871e-07 2792 -129348.26836
-0.00142653352354 0.19 8.76338000871e-07 2792 -128812.214384
-0.00142653352354 0.22 8.76338000871e-07 2792 -128798.234463
-0.00142653352354 0.25 8.76338000871e-07 2792 -129234.169716
-0.00142653352354 0.28 8.76338000871e-07 2792 -130076.773946
-0.00142653352354 0.31 8.76338000871e-07 2792 -131299.71845
-0.00142653352354 0.34 8.76338000871e-07 2792 -132887.497934
-0.00142653352354 0.37 8.76338000871e-07 2792 -134833.508842
-0.00142653352354 0.4 8.76338000871e-07 2792 -137138.179329
-0.00142653352354 0.43 8.76338000871e-07 2792 -139806.064828
-0.00142653352354 0.46 8.76338000871e-07 2792 -142847.217493
-0.00142653352354 0.49 8.76338000871e-07 2792 -146277.045682
-0.00142653352354 0.52 8.76338000871e-07 2792 -150115.668849
-0.00142653352354 0.55 8.76338000871e-07 2792 -154388.546342
-0.00142653352354 0.58 8.76338000871e-07 2792 -159127.873606
-0.00142653352354 0.61 8.76338000871e-07 2792 -164373.437033
-0.00142653352354 0.64 8.76338000871e-07 2792 -170174.262869
-0.00142653352354 0.67 8.76338000871e-07 2792 -176591.435797
-0.00142653352354 0.7 8.76338000871e-07 2792 -183701.023184
-0.00142653352354 0.73 8.76338000871e-07 2792 -191599.480417
-0.00142653352354 0.76 8.76338000871e-07 2792 -200411.288261
-0.00142653352354 0.79 8.76338000871e-07 2792 -210300.556173
-0.00142653352354 0.82 8.76338000871e-07 2792 -221490.076356
-0.00142653352354 0.85 8.76338000871e-07 2792 -234294.368329
-0.00142653352354 0.88 8.76338000871e-07 2792 -249181.472311
-0.0014064697609 0.01 2.14282218193e-06 6827 -148010.238267
-0.0014064697609 0.04 1.1089191107e-06 3533 -141663.991079
-0.0014064697609 0.07 9.1117808615e-07 2903 -135959.821443
-0.0014064697609 0.1 8.84812616209e-07 2819 -132608.933946
-0.0014064697609 0.13 8.7759349944e-07 2796 -130562.885536
-0.0014064697609 0.16 8.76338000871e-07 2792 -129377.023736
-0.0014064697609 0.19 8.76338000871e-07 2792 -128832.689603
-0.0014064697609 0.22 8.76338000871e-07 2792 -128809.151799
-0.0014064697609 0.25 8.76338000871e-07 2792 -129234.011735
-0.0014064697609 0.28 8.76338000871e-07 2792 -130063.847337
-0.0014064697609 0.31 8.76338000871e-07 2792 -131272.185966
-0.0014064697609 0.34 8.76338000871e-07 2792 -132843.736369
-0.0014064697609 0.37 8.76338000871e-07 2792 -134771.414753
-0.0014064697609 0.4 8.76338000871e-07 2792 -137055.462219
-0.0014064697609 0.43 8.76338000871e-07 2792 -139700.601872
-0.0014064697609 0.46 8.76338000871e-07 2792 -142716.408278
-0.0014064697609 0.49 8.76338000871e-07 2792 -146118.001755
-0.0014064697609 0.52 8.76338000871e-07 2792 -149925.147477
-0.0014064697609 0.55 8.76338000871e-07 2792 -154163.169947
-0.0014064697609 0.58 8.76338000871e-07 2792 -158863.514756
-0.0014064697609 0.61 8.76338000871e-07 2792 -164065.470011
-0.0014064697609 0.64 8.76338000871e-07 2792 -169817.328949
-0.0014064697609 0.67 8.76338000871e-07 2792 -176179.080608
-0.0014064697609 0.7 8.76338000871e-07 2792 -183225.75667
-0.0014064697609 0.73 8.76338000871e-07 2792 -191052.022752
-0.0014064697609 0.76 8.76338000871e-07 2792 -199780.180165
-0.0014064697609 0.79 8.76338000871e-07 2792 -209571.26235
-0.0014064697609 0.82 8.76338000871e-07 2792 -220643.591828
-0.0014064697609 0.85 8.76338000871e-07 2792 -233304.963711
-0.0014064697609 0.88 8.76338000871e-07 2792 -248012.312002
-0.00138696255201 0.01 2.14125280872e-06 6822 -148039.805716
-0.00138696255201 0.04 1.11048848391e-06 3538 -141716.150516
-0.00138696255201 0.07 9.10236462223e-07 2900 -136007.180008
-0.00138696255201 0.1 8.84184866925e-07 2817 -132650.633693
-0.00138696255201 0.13 8.7759349944e-07 2796 -130598.630429
-0.00138696255201 0.16 8.76338000871e-07 2792 -129405.85403
-0.00138696255201 0.19 8.76338000871e-07 2792 -128853.440153
-0.00138696255201 0.22 8.76338000871e-07 2792 -128820.322217
-0.00138696255201 0.25 8.76338000871e-07 2792 -129234.157911
-0.00138696255201 0.28 8.76338000871e-07 2792 -130051.356613
-0.00138696255201 0.31 8.76338000871e-07 2792 -131245.217462
-0.00138696255201 0.34 8.76338000871e-07 2792 -132800.663718
-0.00138696255201 0.37 8.76338000871e-07 2792 -134710.268676
-0.00138696255201 0.4 8.76338000871e-07 2792 -136973.89232
-0.00138696255201 0.43 8.76338000871e-07 2792 -139596.517831
-0.00138696255201 0.46 8.76338000871e-07 2792 -142587.301012
-0.00138696255201 0.49 8.76338000871e-07 2792 -145960.91684
-0.00138696255201 0.52 8.76338000871e-07 2792 -149736.987776
-0.00138696255201 0.55 8.76338000871e-07 2792 -153940.509061
-0.00138696255201 0.58 8.76338000871e-07 2792 -158602.354167
-0.00138696255201 0.61 8.76338000871e-07 2792 -163761.216657
-0.00138696255201 0.64 8.76338000871e-07 2792 -169464.707283
-0.00138696255201 0.67 8.76338000871e-07 2792 -175771.75078
-0.00138696255201 0.7 8.76338000871e-07 2792 -182756.24304
-0.00138696255201 0.73 8.76338000871e-07 2792 -190511.335026
-0.00138696255201 0.76 8.76338000871e-07 2792 -199157.017314
-0.00138696255201 0.79 8.76338000871e-07 2792 -208851.303994
-0.00138696255201 0.82 8.76338000871e-07 2792 -219808.238355
-0.00138696255201 0.85 8.76338000871e-07 2792 -232328.959397
-0.00138696255201 0.88 8.76338000871e-07 2792 -246859.654063
-0.00136798905609 0.01 2.13999731015e-06 6818 -148069.343583
-0.00136798905609 0.04 1.11362723033e-06 3548 -141768.075396
-0.00136798905609 0.07 9.08980963655e-07 2896 -136054.517841
-0.00136798905609 0.1 8.83870992283e-07 2816 -132692.277892
-0.00136798905609 0.13 8.77279624798e-07 2795 -130634.414213
-0.00136798905609 0.16 8.76338000871e-07 2792 -129434.808588
-0.00136798905609 0.19 8.76338000871e-07 2792 -128874.416837
-0.00136798905609 0.22 8.76338000871e-07 2792 -128831.716101
-0.00136798905609 0.25 8.76338000871e-07 2792 -129234.5967
-0.00136798905609 0.28 8.76338000871e-07 2792 -130039.179047
-0.00136798905609 0.31 8.76338000871e-07 2792 -131218.811577
-0.00136798905609 0.34 8.76338000871e-07 2792 -132758.323485
-0.00136798905609 0.37 8.76338000871e-07 2792 -134650.061587
-0.00136798905609 0.4 8.76338000871e-07 2792 -136893.479361
-0.00136798905609 0.43 8.76338000871e-07 2792 -139493.759241
-0.00136798905609 0.46 8.76338000871e-07 2792 -142459.825917
-0.00136798905609 0.49 8.76338000871e-07 2792 -145805.801542
-0.00136798905609 0.52 8.76338000871e-07 2792 -149551.203028
-0.00136798905609 0.55 8.76338000871e-07 2792 -153720.529396
-0.00136798905609 0.58 8.76338000871e-07 2792 -158344.366721
-0.00136798905609 0.61 8.76338000871e-07 2792 -163460.625504
-0.00136798905609 0.64 8.76338000871e-07 2792 -169116.290734
-0.00136798905609 0.67 8.76338000871e-07 2792 -175369.371421
-0.00136798905609 0.7 8.76338000871e-07 2792 -182292.462425
-0.00136798905609 0.73 8.76338000871e-07 2792 -189977.312126
-0.00136798905609 0.76 8.76338000871e-07 2792 -198541.649937
-0.00136798905609 0.79 8.76338000871e-07 2792 -208140.573965
-0.00136798905609 0.82 8.76338000871e-07 2792 -218983.855316
-0.00136798905609 0.85 8.76338000871e-07 2792 -231366.162222
-0.00136798905609 0.88 8.76338000871e-07 2792 -245723.239447
-0.00134952766532 0.01 2.13936956087e-06 6816 -148098.864195
-0.00134952766532 0.04 1.11582435283e-06 3555 -141819.86843
-0.00134952766532 0.07 9.0835321437e-07 2894 -136101.934751
-0.00134952766532 0.1 8.83557117641e-07 2815 -132733.990113
-0.00134952766532 0.13 8.77279624798e-07 2795 -130670.290126
-0.00134952766532 0.16 8.76338000871e-07 2792 -129463.838526
-0.00134952766532 0.19 8.76338000871e-07 2792 -128895.56416
-0.00134952766532 0.22 8.76338000871e-07 2792 -128843.326304
-0.00134952766532 0.25 8.76338000871e-07 2792 -129235.33291
-0.00134952766532 0.28 8.76338000871e-07 2792 -130027.436236
-0.00134952766532 0.31 8.76338000871e-07 2792 -131192.998968
-0.00134952766532 0.34 8.76338000871e-07 2792 -132716.655486
-0.00134952766532 0.37 8.76338000871e-07 2792 -134590.720755
-0.00134952766532 0.4 8.76338000871e-07 2792 -136814.273905
-0.00134952766532 0.43 8.76338000871e-07 2792 -139392.344737
-0.00134952766532 0.46 8.76338000871e-07 2792 -142333.905505
-0.00134952766532 0.49 8.76338000871e-07 2792 -145652.652113
-0.00134952766532 0.52 8.76338000871e-07 2792 -149367.694533
-0.00134952766532 0.55 8.76338000871e-07 2792 -153503.191932
-0.00134952766532 0.58 8.76338000871e-07 2792 -158089.446046
-0.00134952766532 0.61 8.76338000871e-07 2792 -163163.640084
-0.00134952766532 0.64 8.76338000871e-07 2792 -168772.064672
-0.00134952766532 0.67 8.76338000871e-07 2792 -174971.873557
-0.00134952766532 0.7 8.76338000871e-07 2792 -181834.359955
-0.00134952766532 0.73 8.76338000871e-07 2792 -189449.829172
-0.00134952766532 0.76 8.76338000871e-07 2792 -197933.992644
-0.00134952766532 0.79 8.76338000871e-07 2792 -207438.937876
-0.00134952766532 0.82 8.76338000871e-07 2792 -218170.26264
-0.00134952766532 0.85 8.76338000871e-07 2792 -230416.388764
-0.00134952766532 0.88 8.76338000871e-07 2792 -244602.805168
-0.00133155792277 0.01 2.13623081445e-06 6806 -148128.321699
-0.00133155792277 0.04 1.11833534997e-06 3563 -141871.569403
-0.00133155792277 0.07 9.0835321437e-07 2894 -136149.380837
-0.00133155792277 0.1 8.82929368356e-07 2813 -132775.674892
-0.00133155792277 0.13 8.76965750156e-07 2794 -130706.297133
-0.00133155792277 0.16 8.76338000871e-07 2792 -129493.021749
-0.00133155792277 0.19 8.76338000871e-07 2792 -128916.796581
-0.00133155792277 0.22 8.76338000871e-07 2792 -128855.094987
-0.00133155792277 0.25 8.76338000871e-07 2792 -129236.404501
-0.00133155792277 0.28 8.76338000871e-07 2792 -130016.193797
-0.00133155792277 0.31 8.76338000871e-07 2792 -131167.822146
-0.00133155792277 0.34 8.76338000871e-07 2792 -132675.643997
-0.00133155792277 0.37 8.76338000871e-07 2792 -134532.199811
-0.00133155792277 0.4 8.76338000871e-07 2792 -136736.179545
-0.00133155792277 0.43 8.76338000871e-07 2792 -139292.251591
-0.00133155792277 0.46 8.76338000871e-07 2792 -142209.576933
-0.00133155792277 0.49 8.76338000871e-07 2792 -145501.402112
-0.00133155792277 0.52 8.76338000871e-07 2792 -149186.394945
-0.00133155792277 0.55 8.76338000871e-07 2792 -153288.524689
-0.00133155792277 0.58 8.76338000871e-07 2792 -157837.590713
-0.00133155792277 0.61 8.76338000871e-07 2792 -162870.241788
-0.00133155792277 0.64 8.76338000871e-07 2792 -168431.979243
-0.00133155792277 0.67 8.76338000871e-07 2792 -174579.134786
-0.00133155792277 0.7 8.76338000871e-07 2792 -181381.850238
-0.00133155792277 0.73 8.76338000871e-07 2792 -188928.842235
-0.00133155792277 0.76 8.76338000871e-07 2792 -197333.9251
-0.00133155792277 0.79 8.76338000871e-07 2792 -206746.233792
-0.00133155792277 0.82 8.76338000871e-07 2792 -217367.326413
-0.00133155792277 0.85 8.76338000871e-07 2792 -229479.439203
-0.00133155792277 0.88 8.76338000871e-07 2792 -243498.116687
-0.00131406044678 0.01 2.13434756659e-06 6800 -148157.676317
-0.00131406044678 0.04 1.12116022175e-06 3572 -141923.098369
-0.00131406044678 0.07 9.0835321437e-07 2894 -136196.870193
-0.00131406044678 0.1 8.82615493714e-07 2812 -132817.371239
-0.00131406044678 0.13 8.76651875514e-07 2793 -130742.301155
-0.00131406044678 0.16 8.76338000871e-07 2792 -129522.29796
-0.00131406044678 0.19 8.76338000871e-07 2792 -128938.177177
-0.00131406044678 0.22 8.76338000871e-07 2792 -128867.079212
-0.00131406044678 0.25 8.76338000871e-07 2792 -129237.706882
-0.00131406044678 0.28 8.76338000871e-07 2792 -130005.35379
-0.00131406044678 0.31 8.76338000871e-07 2792 -131143.150326
-0.00131406044678 0.34 8.76338000871e-07 2792 -132635.321718
-0.00131406044678 0.37 8.76338000871e-07 2792 -134474.544138
-0.00131406044678 0.4 8.76338000871e-07 2792 -136659.160385
-0.00131406044678 0.43 8.76338000871e-07 2792 -139193.478825
-0.00131406044678 0.46 8.76338000871e-07 2792 -142086.769376
-0.00131406044678 0.49 8.76338000871e-07 2792 -145352.014811
-0.00131406044678 0.52 8.76338000871e-07 2792 -149007.332281
-0.00131406044678 0.55 8.76338000871e-07 2792 -153076.48191
-0.00131406044678 0.58 8.76338000871e-07 2792 -157588.714522
-0.00131406044678 0.61 8.76338000871e-07 2792 -162580.331804
-0.00131406044678 0.64 8.76338000871e-07 2792 -168095.968672
-0.00131406044678 0.67 8.76338000871e-07 2792 -174191.126419
-0.00131406044678 0.7 8.76338000871e-07 2792 -180934.861749
-0.00131406044678 0.73 8.76338000871e-07 2792 -188414.285745
-0.00131406044678 0.76 8.76338000871e-07 2792 -196741.315107
-0.00131406044678 0.79 8.76338000871e-07 2792 -206062.358505
-0.00131406044678 0.82 8.76338000871e-07 2792 -216574.886416
-0.00131406044678 0.85 8.76338000871e-07 2792 -228555.111594
-0.00131406044678 0.88 8.76338000871e-07 2792 -242408.934935
-0.00129701686122 0.01 2.13371981731e-06 6798 -148186.969876
-0.00129701686122 0.04 1.12272959496e-06 3577 -141974.518923
-0.00129701686122 0.07 9.07097715802e-07 2890 -136244.349788
-0.00129701686122 0.1 8.82301619072e-07 2811 -132859.13452
-0.00129701686122 0.13 8.76651875514e-07 2793 -130778.300909
-0.00129701686122 0.16 8.76338000871e-07 2792 -129551.695984
-0.00129701686122 0.19 8.76338000871e-07 2792 -128959.657886
-0.00129701686122 0.22 8.76338000871e-07 2792 -128879.338756
-0.00129701686122 0.25 8.76338000871e-07 2792 -129239.343987
-0.00129701686122 0.28 8.76338000871e-07 2792 -129994.879282
-0.00129701686122 0.31 8.76338000871e-07 2792 -131118.901789
-0.00129701686122 0.34 8.76338000871e-07 2792 -132595.672493
-0.00129701686122 0.37 8.76338000871e-07 2792 -134417.71116
-0.00129701686122 0.4 8.76338000871e-07 2792 -136583.198717
-0.00129701686122 0.43 8.76338000871e-07 2792 -139096.080586
-0.00129701686122 0.46 8.76338000871e-07 2792 -141965.507794
-0.00129701686122 0.49 8.76338000871e-07 2792 -145204.401848
-0.00129701686122 0.52 8.76338000871e-07 2792 -148830.474157
-0.00129701686122 0.55 8.76338000871e-07 2792 -152866.978662
-0.00129701686122 0.58 8.76338000871e-07 2792 -157342.831852
-0.00129701686122 0.61 8.76338000871e-07 2792 -162293.882744
-0.00129701686122 0.64 8.76338000871e-07 2792 -167763.993076
-0.00129701686122 0.67 8.76338000871e-07 2792 -173807.79663
-0.00129701686122 0.7 8.76338000871e-07 2792 -180493.266826
-0.00129701686122 0.73 8.76338000871e-07 2792 -187906.063092
-0.00129701686122 0.76 8.76338000871e-07 2792 -196156.093863
-0.00129701686122 0.79 8.76338000871e-07 2792 -205387.172076
-0.00129701686122 0.82 8.76338000871e-07 2792 -215792.761594
-0.00129701686122 0.85 8.76338000871e-07 2792 -227643.233255
-0.00129701686122 0.88 8.76338000871e-07 2792 -241335.011586
-0.00128040973111 0.01 2.13058107089e-06 6788 -148216.166883
-0.00128040973111 0.04 1.12618221602e-06 3588 -142025.773791
-0.00128040973111 0.07 9.06156091875e-07 2887 -136291.7299
-0.00128040973111 0.1 8.81673869788e-07 2809 -132900.836041
-0.00128040973111 0.13 8.76338000871e-07 2792 -130814.323246
-0.00128040973111 0.16 8.76338000871e-07 2792 -129581.161368
-0.00128040973111 0.19 8.76338000871e-07 2792 -128981.229989
-0.00128040973111 0.22 8.76338000871e-07 2792 -128891.855314
-0.00128040973111 0.25 8.76338000871e-07 2792 -129241.232242
-0.00128040973111 0.28 8.76338000871e-07 2792 -129984.76031
-0.00128040973111 0.31 8.76338000871e-07 2792 -131095.178347
-0.00128040973111 0.34 8.76338000871e-07 2792 -132556.738723
-0.00128040973111 0.37 8.76338000871e-07 2792 -134361.686141
-0.00128040973111 0.4 8.76338000871e-07 2792 -136508.218988
-0.00128040973111 0.43 8.76338000871e-07 2792 -138999.971938
-0.00128040973111 0.46 8.76338000871e-07 2792 -141845.761191
-0.00128040973111 0.49 8.76338000871e-07 2792 -145058.607724
-0.00128040973111 0.52 8.76338000871e-07 2792 -148655.749387
-0.00128040973111 0.55 8.76338000871e-07 2792 -152659.974877
-0.00128040973111 0.58 8.76338000871e-07 2792 -157099.938311
-0.00128040973111 0.61 8.76338000871e-07 2792 -162010.826432
-0.00128040973111 0.64 8.76338000871e-07 2792 -167435.989086
-0.00128040973111 0.67 8.76338000871e-07 2792 -173429.065889
-0.00128040973111 0.7 8.76338000871e-07 2792 -180057.017675
-0.00128040973111 0.73 8.76338000871e-07 2792 -187404.094118
-0.00128040973111 0.76 8.76338000871e-07 2792 -195578.181737
-0.00128040973111 0.79 8.76338000871e-07 2792 -204720.53073
-0.00128040973111 0.82 8.76338000871e-07 2792 -215020.824888
-0.00128040973111 0.85 8.76338000871e-07 2792 -226743.609895
-0.00128040973111 0.88 8.76338000871e-07 2792 -240276.105333
-0.00126422250316 0.01 2.12712844982e-06 6777 -148245.257377
-0.00126422250316 0.04 1.12932096244e-06 3598 -142076.839229
-0.00126422250316 0.07 9.06156091875e-07 2887 -136339.059868
-0.00126422250316 0.1 8.81673869788e-07 2809 -132942.481406
-0.00126422250316 0.13 8.76338000871e-07 2792 -130850.365956
-0.00126422250316 0.16 8.76338000871e-07 2792 -129610.65228
-0.00126422250316 0.19 8.76338000871e-07 2792 -129002.916375
-0.00126422250316 0.22 8.76338000871e-07 2792 -128904.559282
-0.00126422250316 0.25 8.76338000871e-07 2792 -129243.380423
-0.00126422250316 0.28 8.76338000871e-07 2792 -129975.049426
-0.00126422250316 0.31 8.76338000871e-07 2792 -131072.031018
-0.00126422250316 0.34 8.76338000871e-07 2792 -132518.518875
-0.00126422250316 0.37 8.76338000871e-07 2792 -134306.4604
-0.00126422250316 0.4 8.76338000871e-07 2792 -136434.235024
-0.00126422250316 0.43 8.76338000871e-07 2792 -138905.103259
-0.00126422250316 0.46 8.76338000871e-07 2792 -141727.521982
-0.00126422250316 0.49 8.76338000871e-07 2792 -144914.549745
-0.00126422250316 0.52 8.76338000871e-07 2792 -148483.121826
-0.00126422250316 0.55 8.76338000871e-07 2792 -152455.481533
-0.00126422250316 0.58 8.76338000871e-07 2792 -156859.950309
-0.00126422250316 0.61 8.76338000871e-07 2792 -161731.131248
-0.00126422250316 0.64 8.76338000871e-07 2792 -167111.880965
-0.00126422250316 0.67 8.76338000871e-07 2792 -173054.885557
-0.00126422250316 0.7 8.76338000871e-07 2792 -179626.054453
-0.00126422250316 0.73 8.76338000871e-07 2792 -186908.248131
-0.00126422250316 0.76 8.76338000871e-07 2792 -195007.467909
-0.00126422250316 0.79 8.76338000871e-07 2792 -204062.339971
-0.00126422250316 0.82 8.76338000871e-07 2792 -214258.912025
-0.00126422250316 0.85 8.76338000871e-07 2792 -225856.035372
-0.00126422250316 0.88 8.76338000871e-07 2792 -239231.991245
-0.00124843945069 0.01 2.12493132733e-06 6770 -148274.216781
-0.00124843945069 0.04 1.13402908207e-06 3613 -142127.690155
-0.00124843945069 0.07 9.05214467949e-07 2884 -136386.300559
-0.00124843945069 0.1 8.81673869788e-07 2809 -132984.058496
-0.00124843945069 0.13 8.76338000871e-07 2792 -130886.325714
-0.00124843945069 0.16 8.76338000871e-07 2792 -129640.177292
-0.00124843945069 0.19 8.76338000871e-07 2792 -129024.705466
-0.00124843945069 0.22 8.76338000871e-07 2792 -128917.414597
-0.00124843945069 0.25 8.76338000871e-07 2792 -129245.750268
-0.00124843945069 0.28 8.76338000871e-07 2792 -129965.679485
-0.00124843945069 0.31 8.76338000871e-07 2792 -131049.388073
-0.00124843945069 0.34 8.76338000871e-07 2792 -132480.893453
-0.00124843945069 0.37 8.76338000871e-07 2792 -134252.032353
-0.00124843945069 0.4 8.76338000871e-07 2792 -136361.24493
-0.00124843945069 0.43 8.76338000871e-07 2792 -138811.479755
-0.00124843945069 0.46 8.76338000871e-07 2792 -141610.841067
-0.00124843945069 0.49 8.76338000871e-07 2792 -144772.259105
-0.00124843945069 0.52 8.76338000871e-07 2792 -148312.522449
-0.00124843945069 0.55 8.76338000871e-07 2792 -152253.458021
-0.00124843945069 0.58 8.76338000871e-07 2792 -156622.791801
-0.00124843945069 0.61 8.76338000871e-07 2792 -161454.793724
-0.00124843945069 0.64 8.76338000871e-07 2792 -166791.63199
-0.00124843945069 0.67 8.76338000871e-07 2792 -172685.208046
-0.00124843945069 0.7 8.76338000871e-07 2792 -179200.294176
-0.00124843945069 0.73 8.76338000871e-07 2792 -186418.455493
-0.00124843945069 0.76 8.76338000871e-07 2792 -194443.859166
-0.00124843945069 0.79 8.76338000871e-07 2792 -203412.50052
-0.00124843945069 0.82 8.76338000871e-07 2792 -213506.861899
-0.00124843945069 0.85 8.76338000871e-07 2792 -224980.348268
-0.00124843945069 0.88 8.76338000871e-07 2792 -238202.428574
-0.00123304562269 0.01 2.1239897034e-06 6767 -148303.098326
-0.00123304562269 0.04 1.13654007921e-06 3621 -142178.308363
-0.00123304562269 0.07 9.04586718665e-07 2882 -136433.471965
-0.00123304562269 0.1 8.81359995146e-07 2808 -133025.690871
-0.00123304562269 0.13 8.76338000871e-07 2792 -130922.260517
-0.00123304562269 0.16 8.76338000871e-07 2792 -129669.793285
-0.00123304562269 0.19 8.76338000871e-07 2792 -129046.635894
-0.00123304562269 0.22 8.76338000871e-07 2792 -128930.425078
-0.00123304562269 0.25 8.76338000871e-07 2792 -129248.392329
-0.00123304562269 0.28 8.76338000871e-07 2792 -129956.670646
-0.00123304562269 0.31 8.76338000871e-07 2792 -131027.204885
-0.00123304562269 0.34 8.76338000871e-07 2792 -132443.82264
-0.00123304562269 0.37 8.76338000871e-07 2792 -134198.418725
-0.00123304562269 0.4 8.76338000871e-07 2792 -136289.215307
-0.00123304562269 0.43 8.76338000871e-07 2792 -138719.017327
-0.00123304562269 0.46 8.76338000871e-07 2792 -141495.639405
-0.00123304562269 0.49 8.76338000871e-07 2792 -144631.695237
-0.00123304562269 0.52 8.76338000871e-07 2792 -148143.981275
-0.00123304562269 0.55 8.76338000871e-07 2792 -152053.826307
-0.00123304562269 0.58 8.76338000871e-07 2792 -156388.4639
-0.00123304562269 0.61 8.76338000871e-07 2792 -161181.765655
-0.00123304562269 0.64 8.76338000871e-07 2792 -166475.163527
-0.00123304562269 0.67 8.76338000871e-07 2792 -172319.921687
-0.00123304562269 0.7 8.76338000871e-07 2792 -178779.670781
-0.00123304562269 0.73 8.76338000871e-07 2792 -185934.644989
-0.00123304562269 0.76 8.76338000871e-07 2792 -193887.22292
-0.00123304562269 0.79 8.76338000871e-07 2792 -202770.884258
-0.00123304562269 0.82 8.76338000871e-07 2792 -212764.550511
-0.00123304562269 0.85 8.76338000871e-07 2792 -224116.353617
-0.00123304562269 0.88 8.76338000871e-07 2792 -237187.173408
-0.00121802679659 0.01 2.12179258091e-06 6760 -148331.896982
-0.00121802679659 0.04 1.1431314467e-06 3642 -142228.680041
-0.00121802679659 0.07 9.03331220096e-07 2878 -136480.564836
-0.00121802679659 0.1 8.81046120504e-07 2807 -133067.287133
-0.00121802679659 0.13 8.76338000871e-07 2792 -130958.233571
-0.00121802679659 0.16 8.76338000871e-07 2792 -129699.518706
-0.00121802679659 0.19 8.76338000871e-07 2792 -129068.663572
-0.00121802679659 0.22 8.76338000871e-07 2792 -128943.59736
-0.00121802679659 0.25 8.76338000871e-07 2792 -129251.356245
-0.00121802679659 0.28 8.76338000871e-07 2792 -129948.027801
-0.00121802679659 0.31 8.76338000871e-07 2792 -131005.468559
-0.00121802679659 0.34 8.76338000871e-07 2792 -132407.38493
-0.00121802679659 0.37 8.76338000871e-07 2792 -134145.651692
-0.00121802679659 0.4 8.76338000871e-07 2792 -136218.123348
-0.00121802679659 0.43 8.76338000871e-07 2792 -138627.702037
-0.00121802679659 0.46 8.76338000871e-07 2792 -141381.867168
-0.00121802679659 0.49 8.76338000871e-07 2792 -144492.84622
-0.00121802679659 0.52 8.76338000871e-07 2792 -147977.414345
-0.00121802679659 0.55 8.76338000871e-07 2792 -151856.55017
-0.00121802679659 0.58 8.76338000871e-07 2792 -156156.935012
-0.00121802679659 0.61 8.76338000871e-07 2792 -160911.965192
-0.00121802679659 0.64 8.76338000871e-07 2792 -166162.465035
-0.00121802679659 0.67 8.76338000871e-07 2792 -171959.004926
-0.00121802679659 0.7 8.76338000871e-07 2792 -178364.130386
-0.00121802679659 0.73 8.76338000871e-07 2792 -185456.731633
-0.00121802679659 0.76 8.76338000871e-07 2792 -193337.462473
-0.00121802679659 0.79 8.76338000871e-07 2792 -202137.381658
-0.00121802679659 0.82 8.76338000871e-07 2792 -212031.853594
-0.00121802679659 0.85 8.76338000871e-07 2792 -223263.864495
-0.00121802679659 0.88 8.76338000871e-07 2792 -236186.015684
-0.00120336943442 0.01 2.11990933305e-06 6754 -148360.592082
-0.00120336943442 0.04 1.14972281418e-06 3663 -142278.759985
-0.00120336943442 0.07 9.02075721527e-07 2874 -136527.545137
-0.00120336943442 0.1 8.80732245861e-07 2806 -133108.857376
-0.00120336943442 0.13 8.76338000871e-07 2792 -130994.205752
-0.00120336943442 0.16 8.76338000871e-07 2792 -129729.241768
-0.00120336943442 0.19 8.76338000871e-07 2792 -129090.817881
-0.00120336943442 0.22 8.76338000871e-07 2792 -128956.90077
-0.00120336943442 0.25 8.76338000871e-07 2792 -129254.614797
-0.00120336943442 0.28 8.76338000871e-07 2792 -129939.720979
-0.00120336943442 0.31 8.76338000871e-07 2792 -130984.220759
-0.00120336943442 0.34 8.76338000871e-07 2792 -132371.620326
-0.00120336943442 0.37 8.76338000871e-07 2792 -134093.690256
-0.00120336943442 0.4 8.76338000871e-07 2792 -136147.994714
-0.00120336943442 0.43 8.76338000871e-07 2792 -138537.564612
-0.00120336943442 0.46 8.76338000871e-07 2792 -141269.527191
-0.00120336943442 0.49 8.76338000871e-07 2792 -144355.756445
-0.00120336943442 0.52 8.76338000871e-07 2792 -147812.852951
-0.00120336943442 0.55 8.76338000871e-07 2792 -151661.577674
-0.00120336943442 0.58 8.76338000871e-07 2792 -155928.154111
-0.00120336943442 0.61 8.76338000871e-07 2792 -160645.336683
-0.00120336943442 0.64 8.76338000871e-07 2792 -165853.512778
-0.00120336943442 0.67 8.76338000871e-07 2792 -171602.361756
-0.00120336943442 0.7 8.76338000871e-07 2792 -177953.571909
-0.00120336943442 0.73 8.76338000871e-07 2792 -184984.629376
-0.00120336943442 0.76 8.76338000871e-07 2792 -192794.494772
-0.00120336943442 0.79 8.76338000871e-07 2792 -201511.851646
-0.00120336943442 0.82 8.76338000871e-07 2792 -211308.621561
-0.00120336943442 0.85 8.76338000871e-07 2792 -222422.721056
-0.00120336943442 0.88 8.76338000871e-07 2792 -235198.718958
-0.00118906064209 0.01 2.11865383448e-06 6750 -148389.20324
-0.00118906064209 0.04 1.15600030702e-06 3683 -142328.536871
-0.00118906064209 0.07 9.02075721527e-07 2874 -136574.483848
-0.00118906064209 0.1 8.79790621935e-07 2803 -133150.414749
-0.00118906064209 0.13 8.76338000871e-07 2792 -131030.152672
-0.00118906064209 0.16 8.76338000871e-07 2792 -129758.977891
-0.00118906064209 0.19 8.76338000871e-07 2792 -129113.072881
-0.00118906064209 0.22 8.76338000871e-07 2792 -128970.348754
-0.00118906064209 0.25 8.76338000871e-07 2792 -129258.113471
-0.00118906064209 0.28 8.76338000871e-07 2792 -129931.715614
-0.00118906064209 0.31 8.76338000871e-07 2792 -130963.428878
-0.00118906064209 0.34 8.76338000871e-07 2792 -132336.467603
-0.00118906064209 0.37 8.76338000871e-07 2792 -134042.42602
-0.00118906064209 0.4 8.76338000871e-07 2792 -136078.804282
-0.00118906064209 0.43 8.76338000871e-07 2792 -138448.553077
-0.00118906064209 0.46 8.76338000871e-07 2792 -141158.548764
-0.00118906064209 0.49 8.76338000871e-07 2792 -144220.349848
-0.00118906064209 0.52 8.76338000871e-07 2792 -147650.248449
-0.00118906064209 0.55 8.76338000871e-07 2792 -151468.919957
-0.00118906064209 0.58 8.76338000871e-07 2792 -155702.064542
-0.00118906064209 0.61 8.76338000871e-07 2792 -160381.875824
-0.00118906064209 0.64 8.76338000871e-07 2792 -165548.224552
-0.00118906064209 0.67 8.76338000871e-07 2792 -171249.961144
-0.00118906064209 0.7 8.76338000871e-07 2792 -177547.931559
-0.00118906064209 0.73 8.76338000871e-07 2792 -184518.268686
-0.00118906064209 0.76 8.76338000871e-07 2792 -192258.225418
-0.00118906064209 0.79 8.76338000871e-07 2792 -200894.172849
-0.00118906064209 0.82 8.76338000871e-07 2792 -210594.722211
-0.00118906064209 0.85 8.76338000871e-07 2792 -221592.76623
-0.00118906064209 0.88 8.76338000871e-07 2792 -234225.05674
-0.00117508813161 0.01 2.11708446127e-06 6745 -148417.723679
-0.00117508813161 0.04 1.15976680273e-06 3695 -142378.042517
-0.00117508813161 0.07 9.02075721527e-07 2874 -136621.352945
-0.00117508813161 0.1 8.79476747293e-07 2802 -133191.922722
-0.00117508813161 0.13 8.76338000871e-07 2792 -131066.151386
-0.00117508813161 0.16 8.76338000871e-07 2792 -129788.740284
-0.00117508813161 0.19 8.76338000871e-07 2792 -129135.35852
-0.00117508813161 0.22 8.76338000871e-07 2792 -128983.924342
-0.00117508813161 0.25 8.76338000871e-07 2792 -129261.828177
-0.00117508813161 0.28 8.76338000871e-07 2792 -129924.036152
-0.00117508813161 0.31 8.76338000871e-07 2792 -130943.054592
-0.00117508813161 0.34 8.76338000871e-07 2792 -132301.882968
-0.00117508813161 0.37 8.76338000871e-07 2792 -133991.864627
-0.00117508813161 0.4 8.76338000871e-07 2792 -136010.564677
-0.00117508813161 0.43 8.76338000871e-07 2792 -138360.661666
-0.00117508813161 0.46 8.76338000871e-07 2792 -141048.897265
-0.00117508813161 0.49 8.76338000871e-07 2792 -144086.580327
-0.00117508813161 0.52 8.76338000871e-07 2792 -147489.584793
-0.00117508813161 0.55 8.76338000871e-07 2792 -151278.497104
-0.00117508813161 0.58 8.76338000871e-07 2792 -155478.605148
-0.00117508813161 0.61 8.76338000871e-07 2792 -160121.53602
-0.00117508813161 0.64 8.76338000871e-07 2792 -165246.523875
-0.00117508813161 0.67 8.76338000871e-07 2792 -170901.769712
-0.00117508813161 0.7 8.76338000871e-07 2792 -177147.145228
-0.00117508813161 0.73 8.76338000871e-07 2792 -184057.562038
-0.00117508813161 0.76 8.76338000871e-07 2792 -191728.553577
-0.00117508813161 0.79 8.76338000871e-07 2792 -200284.2451
-0.00117508813161 0.82 8.76338000871e-07 2792 -209890.001137
-0.00117508813161 0.85 8.76338000871e-07 2792 -220773.822206
-0.00117508813161 0.88 8.76338000871e-07 2792 -233264.822557
-0.00116144018583 0.01 2.11488733878e-06 6738 -148446.13546
-0.00116144018583 0.04 1.17797153197e-06 3753 -142427.138869
-0.00116144018583 0.07 9.01134097601e-07 2871 -136668.125157
-0.00116144018583 0.1 8.79476747293e-07 2802 -133233.425536
-0.00116144018583 0.13 8.76338000871e-07 2792 -131102.153019
-0.00116144018583 0.16 8.76338000871e-07 2792 -129818.538994
-0.00116144018583 0.19 8.76338000871e-07 2792 -129157.700703
-0.00116144018583 0.22 8.76338000871e-07 2792 -128997.666864
-0.00116144018583 0.25 8.76338000871e-07 2792 -129265.750593
-0.00116144018583 0.28 8.76338000871e-07 2792 -129916.698485
-0.00116144018583 0.31 8.76338000871e-07 2792 -130923.163555
-0.00116144018583 0.34 8.76338000871e-07 2792 -132267.852463
-0.00116144018583 0.37 8.76338000871e-07 2792 -133942.058014
-0.00116144018583 0.4 8.76338000871e-07 2792 -135943.304174
-0.00116144018583 0.43 8.76338000871e-07 2792 -138273.87445
-0.00116144018583 0.46 8.76338000871e-07 2792 -140940.602251
-0.00116144018583 0.49 8.76338000871e-07 2792 -143954.442528
-0.00116144018583 0.52 8.76338000871e-07 2792 -147330.89834
-0.00116144018583 0.55 8.76338000871e-07 2792 -151090.33492
-0.00116144018583 0.58 8.76338000871e-07 2792 -155257.751447
-0.00116144018583 0.61 8.76338000871e-07 2792 -159864.250571
-0.00116144018583 0.64 8.76338000871e-07 2792 -164948.376526
-0.00116144018583 0.67 8.76338000871e-07 2792 -170557.727901
-0.00116144018583 0.7 8.76338000871e-07 2792 -176751.130509
-0.00116144018583 0.73 8.76338000871e-07 2792 -183602.414493
-0.00116144018583 0.76 8.76338000871e-07 2792 -191205.392061
-0.00116144018583 0.79 8.76338000871e-07 2792 -199681.961585
-0.00116144018583 0.82 8.76338000871e-07 2792 -209194.308944
-0.00116144018583 0.85 8.76338000871e-07 2792 -219965.726285
-0.00116144018583 0.88 8.76338000871e-07 2792 -232317.814436
-0.00114810562572 0.01 2.11143471772e-06 6727 -148474.41037
-0.00114810562572 0.04 1.1908403923e-06 3794 -142475.762627
-0.00114810562572 0.07 9.00820222959e-07 2870 -136714.733084
-0.00114810562572 0.1 8.78848998009e-07 2800 -133274.8848
-0.00114810562572 0.13 8.76338000871e-07 2792 -131138.07787
-0.00114810562572 0.16 8.76338000871e-07 2792 -129848.275504
-0.00114810562572 0.19 8.76338000871e-07 2792 -129180.138374
-0.00114810562572 0.22 8.76338000871e-07 2792 -129011.568315
-0.00114810562572 0.25 8.76338000871e-07 2792 -129269.897222
-0.00114810562572 0.28 8.76338000871e-07 2792 -129909.752422
-0.00114810562572 0.31 8.76338000871e-07 2792 -130903.687109
-0.00114810562572 0.34 8.76338000871e-07 2792 -132234.402676
-0.00114810562572 0.37 8.76338000871e-07 2792 -133893.036899
-0.00114810562572 0.4 8.76338000871e-07 2792 -135876.961453
-0.00114810562572 0.43 8.76338000871e-07 2792 -138188.18239
-0.00114810562572 0.46 8.76338000871e-07 2792 -140833.625409
-0.00114810562572 0.49 8.76338000871e-07 2792 -143823.87221
-0.00114810562572 0.52 8.76338000871e-07 2792 -147174.116438
-0.00114810562572 0.55 8.76338000871e-07 2792 -150904.378625
-0.00114810562572 0.58 8.76338000871e-07 2792 -155039.488391
-0.00114810562572 0.61 8.76338000871e-07 2792 -159609.980526
-0.00114810562572 0.64 8.76338000871e-07 2792 -164653.754855
-0.00114810562572 0.67 8.76338000871e-07 2792 -170217.751837
-0.00114810562572 0.7 8.76338000871e-07 2792 -176359.852862
-0.00114810562572 0.73 8.76338000871e-07 2792 -183152.765202
-0.00114810562572 0.76 8.76338000871e-07 2792 -190688.657462
-0.00114810562572 0.79 8.76338000871e-07 2792 -199087.201545
-0.00114810562572 0.82 8.76338000871e-07 2792 -208507.525374
-0.00114810562572 0.85 8.76338000871e-07 2792 -219168.30228
-0.00114810562572 0.88 8.76338000871e-07 2792 -231383.815576
-0.0011350737798 0.01 2.11112084307e-06 6726 -148502.575868
-0.0011350737798 0.04 1.20684799905e-06 3845 -142523.902086
-0.0011350737798 0.07 8.99878599032e-07 2867 -136761.20994
-0.0011350737798 0.1 8.78848998009e-07 2800 -133316.296804
-0.0011350737798 0.13 8.76338000871e-07 2792 -131173.94617
-0.0011350737798 0.16 8.76338000871e-07 2792 -129877.975562
-0.0011350737798 0.19 8.76338000871e-07 2792 -129202.681882
-0.0011350737798 0.22 8.76338000871e-07 2792 -129025.618596
-0.0011350737798 0.25 8.76338000871e-07 2792 -129274.240286
-0.0011350737798 0.28 8.76338000871e-07 2792 -129903.150568
-0.0011350737798 0.31 8.76338000871e-07 2792 -130884.639348
-0.0011350737798 0.34 8.76338000871e-07 2792 -132201.531505
-0.0011350737798 0.37 8.76338000871e-07 2792 -133844.738822
-0.0011350737798 0.4 8.76338000871e-07 2792 -135811.43359
-0.0011350737798 0.43 8.76338000871e-07 2792 -138103.590431
-0.0011350737798 0.46 8.76338000871e-07 2792 -140727.947982
-0.0011350737798 0.49 8.76338000871e-07 2792 -143694.838353
-0.0011350737798 0.52 8.76338000871e-07 2792 -147019.193192
-0.0011350737798 0.55 8.76338000871e-07 2792 -150720.60887
-0.0011350737798 0.58 8.76338000871e-07 2792 -154823.74169
-0.0011350737798 0.61 8.76338000871e-07 2792 -159358.643884
-0.0011350737798 0.64 8.76338000871e-07 2792 -164362.609496
-0.0011350737798 0.67 8.76338000871e-07 2792 -169881.772703
-0.0011350737798 0.7 8.76338000871e-07 2792 -175973.264517
-0.0011350737798 0.73 8.76338000871e-07 2792 -182708.512055
-0.0011350737798 0.76 8.76338000871e-07 2792 -190178.224805
-0.0011350737798 0.79 8.76338000871e-07 2792 -198499.862796
-0.0011350737798 0.82 8.76338000871e-07 2792 -207829.5231
-0.0011350737798 0.85 8.76338000871e-07 2792 -218381.370594
-0.0011350737798 0.88 8.76338000871e-07 2792 -230462.621152
-0.00112233445567 0.01 2.10955146986e-06 6721 -148530.660339
-0.00112233445567 0.04 1.22724985079e-06 3910 -142571.522126
-0.00112233445567 0.07 8.99878599032e-07 2867 -136807.600729
-0.00112233445567 0.1 8.78848998009e-07 2800 -133357.59837
-0.00112233445567 0.13 8.76338000871e-07 2792 -131209.784693
-0.00112233445567 0.16 8.76338000871e-07 2792 -129907.71029
-0.00112233445567 0.19 8.76338000871e-07 2792 -129225.311656
-0.00112233445567 0.22 8.76338000871e-07 2792 -129039.817822
-0.00112233445567 0.25 8.76338000871e-07 2792 -129278.774246
-0.00112233445567 0.28 8.76338000871e-07 2792 -129896.862974
-0.00112233445567 0.31 8.76338000871e-07 2792 -130865.978615
-0.00112233445567 0.34 8.76338000871e-07 2792 -132169.173668
-0.00112233445567 0.37 8.76338000871e-07 2792 -133797.128832
-0.00112233445567 0.4 8.76338000871e-07 2792 -135746.766823
-0.00112233445567 0.43 8.76338000871e-07 2792 -138020.111837
-0.00112233445567 0.46 8.76338000871e-07 2792 -140623.535523
-0.00112233445567 0.49 8.76338000871e-07 2792 -143567.345914
-0.00112233445567 0.52 8.76338000871e-07 2792 -146866.113145
-0.00112233445567 0.55 8.76338000871e-07 2792 -150539.052546
-0.00112233445567 0.58 8.76338000871e-07 2792 -154610.52863
-0.00112233445567 0.61 8.76338000871e-07 2792 -159110.239515
-0.00112233445567 0.64 8.76338000871e-07 2792 -164074.858796
-0.00112233445567 0.67 8.76338000871e-07 2792 -169549.766264
-0.00112233445567 0.7 8.76338000871e-07 2792 -175591.276594
-0.00112233445567 0.73 8.76338000871e-07 2792 -182269.605305
-0.00112233445567 0.76 8.76338000871e-07 2792 -189674.029241
-0.00112233445567 0.79 8.76338000871e-07 2792 -197919.846708
-0.00112233445567 0.82 8.76338000871e-07 2792 -207160.163325
-0.00112233445567 0.85 8.76338000871e-07 2792 -217604.782464
-0.00112233445567 0.88 8.76338000871e-07 2792 -229554.020258
-0.00110987791343 0.01 2.10923759522e-06 6720 -148558.653115
-0.00110987791343 0.04 1.24200195897e-06 3957 -142618.503997
-0.00110987791343 0.07 8.98623100464e-07 2863 -136853.898044
-0.00110987791343 0.1 8.78535123366e-07 2799 -133398.873529
-0.00110987791343 0.13 8.76338000871e-07 2792 -131245.639527
-0.00110987791343 0.16 8.76338000871e-07 2792 -129937.455876
-0.00110987791343 0.19 8.76338000871e-07 2792 -129247.966189
-0.00110987791343 0.22 8.76338000871e-07 2792 -129054.153873
-0.00110987791343 0.25 8.76338000871e-07 2792 -129283.518784
-0.00110987791343 0.28 8.76338000871e-07 2792 -129890.862101
-0.00110987791343 0.31 8.76338000871e-07 2792 -130847.740401
-0.00110987791343 0.34 8.76338000871e-07 2792 -132137.394568
-0.00110987791343 0.37 8.76338000871e-07 2792 -133750.192898
-0.00110987791343 0.4 8.76338000871e-07 2792 -135682.983388
-0.00110987791343 0.43 8.76338000871e-07 2792 -137937.73635
-0.00110987791343 0.46 8.76338000871e-07 2792 -140520.410261
-0.00110987791343 0.49 8.76338000871e-07 2792 -143441.37479
-0.00110987791343 0.52 8.76338000871e-07 2792 -146714.829812
-0.00110987791343 0.55 8.76338000871e-07 2792 -150359.639475
-0.00110987791343 0.58 8.76338000871e-07 2792 -154399.793245
-0.00110987791343 0.61 8.76338000871e-07 2792 -158864.718073
-0.00110987791343 0.64 8.76338000871e-07 2792 -163790.465581
-0.00110987791343 0.67 8.76338000871e-07 2792 -169221.675088
-0.00110987791343 0.7 8.76338000871e-07 2792 -175213.807852
-0.00110987791343 0.73 8.76338000871e-07 2792 -181835.984512
-0.00110987791343 0.76 8.76338000871e-07 2792 -189175.96523
-0.00110987791343 0.79 8.76338000871e-07 2792 -197347.024387
-0.00110987791343 0.82 8.76338000871e-07 2792 -206499.320046
-0.00110987791343 0.85 8.76338000871e-07 2792 -216838.381295
-0.00110987791343 0.88 8.76338000871e-07 2792 -228657.796099
-0.00109769484083 0.01 2.10735434737e-06 6714 -148586.558389
-0.00109769484083 0.04 1.40804164467e-06 4486 -142663.023494
-0.00109769484083 0.07 8.98623100464e-07 2863 -136900.066827
-0.00109769484083 0.1 8.78221248724e-07 2798 -133440.030853
-0.00109769484083 0.13 8.76338000871e-07 2792 -131281.456662
-0.00109769484083 0.16 8.76338000871e-07 2792 -129967.186141
-0.00109769484083 0.19 8.76338000871e-07 2792 -129270.657759
-0.00109769484083 0.22 8.76338000871e-07 2792 -129068.570821
-0.00109769484083 0.25 8.76338000871e-07 2792 -129288.453843
-0.00109769484083 0.28 8.76338000871e-07 2792 -129885.142517
-0.00109769484083 0.31 8.76338000871e-07 2792 -130829.936807
-0.00109769484083 0.34 8.76338000871e-07 2792 -132106.141557
-0.00109769484083 0.37 8.76338000871e-07 2792 -133703.944792
-0.00109769484083 0.4 8.76338000871e-07 2792 -135620.111262
-0.00109769484083 0.43 8.76338000871e-07 2792 -137856.389745
-0.00109769484083 0.46 8.76338000871e-07 2792 -140418.540685
-0.00109769484083 0.49 8.76338000871e-07 2792 -143316.886415
-0.00109769484083 0.52 8.76338000871e-07 2792 -146565.301983
-0.00109769484083 0.55 8.76338000871e-07 2792 -150182.322969
-0.00109769484083 0.58 8.76338000871e-07 2792 -154191.509365
-0.00109769484083 0.61 8.76338000871e-07 2792 -158622.026005
-0.00109769484083 0.64 8.76338000871e-07 2792 -163509.354234
-0.00109769484083 0.67 8.76338000871e-07 2792 -168897.438921
-0.00109769484083 0.7 8.76338000871e-07 2792 -174840.798687
-0.00109769484083 0.73 8.76338000871e-07 2792 -181407.571398
-0.00109769484083 0.76 8.76338000871e-07 2792 -188683.946742
-0.00109769484083 0.79 8.76338000871e-07 2792 -196781.2946
-0.00109769484083 0.82 8.76338000871e-07 2792 -205846.872199
-0.00109769484083 0.85 8.76338000871e-07 2792 -216082.006443
-0.00109769484083 0.88 8.76338000871e-07 2792 -227773.75831
-0.00108577633008 0.01 2.10578497416e-06 6709 -148614.347466
-0.00108577633008 0.04 2.03327993182e-06 6478 -142575.313846
-0.00108577633008 0.07 8.97995351179e-07 2861 -136946.142508
-0.00108577633008 0.1 8.78221248724e-07 2798 -133481.122942
-0.00108577633008 0.13 8.76338000871e-07 2792 -131317.2436
-0.00108577633008 0.16 8.76338000871e-07 2792 -129996.920703
-0.00108577633008 0.19 8.76338000871e-07 2792 -129293.407879
-0.00108577633008 0.22 8.76338000871e-07 2792 -129083.090531
-0.00108577633008 0.25 8.76338000871e-07 2792 -129293.619775
-0.00108577633008 0.28 8.76338000871e-07 2792 -129879.719893
-0.00108577633008 0.31 8.76338000871e-07 2792 -130812.593317
-0.00108577633008 0.34 8.76338000871e-07 2792 -132075.422699
-0.00108577633008 0.37 8.76338000871e-07 2792 -133658.390882
-0.00108577633008 0.4 8.76338000871e-07 2792 -135558.078854
-0.00108577633008 0.43 8.76338000871e-07 2792 -137776.016108
-0.00108577633008 0.46 8.76338000871e-07 2792 -140317.928756
-0.00108577633008 0.49 8.76338000871e-07 2792 -143193.870902
-0.00108577633008 0.52 8.76338000871e-07 2792 -146417.510654
-0.00108577633008 0.55 8.76338000871e-07 2792 -150007.077766
-0.00108577633008 0.58 8.76338000871e-07 2792 -153985.695183
-0.00108577633008 0.61 8.76338000871e-07 2792 -158382.157898
-0.00108577633008 0.64 8.76338000871e-07 2792 -163231.51917
-0.00108577633008 0.67 8.76338000871e-07 2792 -168576.990343
-0.00108577633008 0.7 8.76338000871e-07 2792 -174472.209319
-0.00108577633008 0.73 8.76338000871e-07 2792 -180984.274331
-0.00108577633008 0.76 8.76338000871e-07 2792 -188197.906448
-0.00108577633008 0.79 8.76338000871e-07 2792 -196222.559606
-0.00108577633008 0.82 8.76338000871e-07 2792 -205202.684802
-0.00108577633008 0.85 8.76338000871e-07 2792 -215335.501514
-0.00108577633008 0.88 8.76338000871e-07 2792 -226901.712761
-0.00107411385607 0.01 2.10515722487e-06 6707 -148642.038696
-0.00107411385607 0.04 2.03327993182e-06 6478 -142597.751319
-0.00107411385607 0.07 8.97681476537e-07 2860 -136992.103648
-0.00107411385607 0.1 8.77907374082e-07 2797 -133522.143723
-0.00107411385607 0.13 8.76338000871e-07 2792 -131353.039551
-0.00107411385607 0.16 8.76338000871e-07 2792 -130026.702825
-0.00107411385607 0.19 8.76338000871e-07 2792 -129316.213805
-0.00107411385607 0.22 8.76338000871e-07 2792 -129097.741484
-0.00107411385607 0.25 8.76338000871e-07 2792 -129298.976482
-0.00107411385607 0.28 8.76338000871e-07 2792 -129874.569158
-0.00107411385607 0.31 8.76338000871e-07 2792 -130795.666006
-0.00107411385607 0.34 8.76338000871e-07 2792 -132045.195964
-0.00107411385607 0.37 8.76338000871e-07 2792 -133613.478075
-0.00107411385607 0.4 8.76338000871e-07 2792 -135496.864678
-0.00107411385607 0.43 8.76338000871e-07 2792 -137696.652937
-0.00107411385607 0.46 8.76338000871e-07 2792 -140218.592183
-0.00107411385607 0.49 8.76338000871e-07 2792 -143072.316057
-0.00107411385607 0.52 8.76338000871e-07 2792 -146271.459802
-0.00107411385607 0.55 8.76338000871e-07 2792 -149833.873181
-0.00107411385607 0.58 8.76338000871e-07 2792 -153782.281473
-0.00107411385607 0.61 8.76338000871e-07 2792 -158145.062989
-0.00107411385607 0.64 8.76338000871e-07 2792 -162956.887762
-0.00107411385607 0.67 8.76338000871e-07 2792 -168260.26932
-0.00107411385607 0.7 8.76338000871e-07 2792 -174107.974034
-0.00107411385607 0.73 8.76338000871e-07 2792 -180566.009569
-0.00107411385607 0.76 8.76338000871e-07 2792 -187717.769679
-0.00107411385607 0.79 8.76338000871e-07 2792 -195670.701954
-0.00107411385607 0.82 8.76338000871e-07 2792 -204566.626681
-0.00107411385607 0.85 8.76338000871e-07 2792 -214598.716605
-0.00107411385607 0.88 8.76338000871e-07 2792 -226041.463808
-0.00106269925611 0.01 2.1039017263e-06 6703 -148669.641207
-0.00106269925611 0.04 2.03327993182e-06 6478 -142620.218919
-0.00106269925611 0.07 8.97053727253e-07 2858 -137037.927873
-0.00106269925611 0.1 8.7759349944e-07 2796 -133563.06802
-0.00106269925611 0.13 8.76338000871e-07 2792 -131388.816379
-0.00106269925611 0.16 8.76338000871e-07 2792 -130056.477828
-0.00106269925611 0.19 8.76338000871e-07 2792 -129338.991537
-0.00106269925611 0.22 8.76338000871e-07 2792 -129112.528748
-0.00106269925611 0.25 8.76338000871e-07 2792 -129304.547674
-0.00106269925611 0.28 8.76338000871e-07 2792 -129869.679533
-0.00106269925611 0.31 8.76338000871e-07 2792 -130779.135486
-0.00106269925611 0.34 8.76338000871e-07 2792 -132015.475872
-0.00106269925611 0.37 8.76338000871e-07 2792 -133569.230734
-0.00106269925611 0.4 8.76338000871e-07 2792 -135436.451026
-0.00106269925611 0.43 8.76338000871e-07 2792 -137618.312958
-0.00106269925611 0.46 8.76338000871e-07 2792 -140120.48721
-0.00106269925611 0.49 8.76338000871e-07 2792 -142952.197024
-0.00106269925611 0.52 8.76338000871e-07 2792 -146127.101726
-0.00106269925611 0.55 8.76338000871e-07 2792 -149662.653796
-0.00106269925611 0.58 8.76338000871e-07 2792 -153581.2193
-0.00106269925611 0.61 8.76338000871e-07 2792 -157910.708076
-0.00106269925611 0.64 8.76338000871e-07 2792 -162685.427312
-0.00106269925611 0.67 8.76338000871e-07 2792 -167947.213946
-0.00106269925611 0.7 8.76338000871e-07 2792 -173748.015911
-0.00106269925611 0.73 8.76338000871e-07 2792 -180152.728027
-0.00106269925611 0.76 8.76338000871e-07 2792 -187243.433933
-0.00106269925611 0.79 8.76338000871e-07 2792 -195125.640609
-0.00106269925611 0.82 8.76338000871e-07 2792 -203938.587585
-0.00106269925611 0.85 8.76338000871e-07 2792 -213871.504483
-0.00106269925611 0.88 8.76338000871e-07 2792 -225192.818097
-0.00105152471083 0.01 2.10358785166e-06 6702 -148697.139003
-0.00105152471083 0.04 2.03327993182e-06 6478 -142642.710552
-0.00105152471083 0.07 8.97053727253e-07 2858 -137083.641139
-0.00105152471083 0.1 8.7759349944e-07 2796 -133603.930383
-0.00105152471083 0.13 8.76338000871e-07 2792 -131424.571908
-0.00105152471083 0.16 8.76338000871e-07 2792 -130086.196447
-0.00105152471083 0.19 8.76338000871e-07 2792 -129361.773589
-0.00105152471083 0.22 8.76338000871e-07 2792 -129127.460721
-0.00105152471083 0.25 8.76338000871e-07 2792 -129310.323024
-0.00105152471083 0.28 8.76338000871e-07 2792 -129865.0812
-0.00105152471083 0.31 8.76338000871e-07 2792 -130762.967107
-0.00105152471083 0.34 8.76338000871e-07 2792 -131986.273802
-0.00105152471083 0.37 8.76338000871e-07 2792 -133525.645544
-0.00105152471083 0.4 8.76338000871e-07 2792 -135376.845218
-0.00105152471083 0.43 8.76338000871e-07 2792 -137541.01743
-0.00105152471083 0.46 8.76338000871e-07 2792 -140023.542108
-0.00105152471083 0.49 8.76338000871e-07 2792 -142833.512859
-0.00105152471083 0.52 8.76338000871e-07 2792 -145984.422112
-0.00105152471083 0.55 8.76338000871e-07 2792 -149493.392763
-0.00105152471083 0.58 8.76338000871e-07 2792 -153382.478597
-0.00105152471083 0.61 8.76338000871e-07 2792 -157679.100003
-0.00105152471083 0.64 8.76338000871e-07 2792 -162417.105019
-0.00105152471083 0.67 8.76338000871e-07 2792 -167637.80469
-0.00105152471083 0.7 8.76338000871e-07 2792 -173392.278532
-0.00105152471083 0.73 8.76338000871e-07 2792 -179744.358705
-0.00105152471083 0.76 8.76338000871e-07 2792 -186774.80468
-0.00105152471083 0.79 8.76338000871e-07 2792 -194587.285683
-0.00105152471083 0.82 8.76338000871e-07 2792 -203318.430927
-0.00105152471083 0.85 8.76338000871e-07 2792 -213153.697829
-0.00105152471083 0.88 8.76338000871e-07 2792 -224355.589854
-0.00104058272633 0.01 2.10264622774e-06 6699 -148724.551079
-0.00104058272633 0.04 2.03327993182e-06 6478 -142665.22049
-0.00104058272633 0.07 8.97053727253e-07 2858 -137129.204583
-0.00104058272633 0.1 8.7759349944e-07 2796 -133644.739887
-0.00104058272633 0.13 8.76338000871e-07 2792 -131460.294169
-0.00104058272633 0.16 8.76338000871e-07 2792 -130115.879437
-0.00104058272633 0.19 8.76338000871e-07 2792 -129384.617436
-0.00104058272633 0.22 8.76338000871e-07 2792 -129142.462445
-0.00104058272633 0.25 8.76338000871e-07 2792 -129316.265809
-0.00104058272633 0.28 8.76338000871e-07 2792 -129860.729602
-0.00104058272633 0.31 8.76338000871e-07 2792 -130747.167602
-0.00104058272633 0.34 8.76338000871e-07 2792 -131957.61333
-0.00104058272633 0.37 8.76338000871e-07 2792 -133482.683535
-0.00104058272633 0.4 8.76338000871e-07 2792 -135318.055147
-0.00104058272633 0.43 8.76338000871e-07 2792 -137464.684919
-0.00104058272633 0.46 8.76338000871e-07 2792 -139927.7348
-0.00104058272633 0.49 8.76338000871e-07 2792 -142716.260944
-0.00104058272633 0.52 8.76338000871e-07 2792 -145843.38826
-0.00104058272633 0.55 8.76338000871e-07 2792 -149326.096298
-0.00104058272633 0.58 8.76338000871e-07 2792 -153186.032761
-0.00104058272633 0.61 8.76338000871e-07 2792 -157450.170181
-0.00104058272633 0.64 8.76338000871e-07 2792 -162151.877004
-0.00104058272633 0.67 8.76338000871e-07 2792 -167331.959021
-0.00104058272633 0.7 8.76338000871e-07 2792 -173040.678904
-0.00104058272633 0.73 8.76338000871e-07 2792 -179340.835253
-0.00104058272633 0.76 8.76338000871e-07 2792 -186311.799385
-0.00104058272633 0.79 8.76338000871e-07 2792 -194055.532546
-0.00104058272633 0.82 8.76338000871e-07 2792 -202706.048752
-0.00104058272633 0.85 8.76338000871e-07 2792 -212445.164942
-0.00104058272633 0.88 8.76338000871e-07 2792 -223529.5994
-0.0010298661174 0.01 2.10264622774e-06 6699 -148751.866405
-0.0010298661174 0.04 2.03327993182e-06 6478 -142687.743341
-0.0010298661174 0.07 8.97053727253e-07 2858 -137174.63889
-0.0010298661174 0.1 8.77279624798e-07 2795 -133685.435992
-0.0010298661174 0.13 8.76338000871e-07 2792 -131495.982201
-0.0010298661174 0.16 8.76338000871e-07 2792 -130145.538106
-0.0010298661174 0.19 8.76338000871e-07 2792 -129407.503804
-0.0010298661174 0.22 8.76338000871e-07 2792 -129157.551676
-0.0010298661174 0.25 8.76338000871e-07 2792 -129322.367215
-0.0010298661174 0.28 8.76338000871e-07 2792 -129856.668353
-0.0010298661174 0.31 8.76338000871e-07 2792 -130731.745533
-0.0010298661174 0.34 8.76338000871e-07 2792 -131929.486937
-0.0010298661174 0.37 8.76338000871e-07 2792 -133440.351475
-0.0010298661174 0.4 8.76338000871e-07 2792 -135260.035272
-0.0010298661174 0.43 8.76338000871e-07 2792 -137389.308654
-0.0010298661174 0.46 8.76338000871e-07 2792 -139833.09685
-0.0010298661174 0.49 8.76338000871e-07 2792 -142600.435303
-0.0010298661174 0.52 8.76338000871e-07 2792 -145704.000602
-0.0010298661174 0.55 8.76338000871e-07 2792 -149160.718527
-0.0010298661174 0.58 8.76338000871e-07 2792 -152991.820591
-0.0010298661174 0.61 8.76338000871e-07 2792 -157223.868109
-0.0010298661174 0.64 8.76338000871e-07 2792 -161889.702919
-0.0010298661174 0.67 8.76338000871e-07 2792 -167029.65158
-0.0010298661174 0.7 8.76338000871e-07 2792 -172693.171468
-0.0010298661174 0.73 8.76338000871e-07 2792 -178942.066112
-0.0010298661174 0.76 8.76338000871e-07 2792 -185854.355342
-0.0010298661174 0.79 8.76338000871e-07 2792 -193530.273362
-0.0010298661174 0.82 8.76338000871e-07 2792 -202101.331599
-0.0010298661174 0.85 8.76338000871e-07 2792 -211745.754475
-0.0010298661174 0.88 8.76338000871e-07 2792 -222714.649811
-0.00101936799185 0.01 2.10139072917e-06 6695 -148779.081133
-0.00101936799185 0.04 2.03327993182e-06 6478 -142710.274037
-0.00101936799185 0.07 8.96739852611e-07 2857 -137219.951478
-0.00101936799185 0.1 8.77279624798e-07 2795 -133726.054252
-0.00101936799185 0.13 8.76338000871e-07 2792 -131531.600983
-0.00101936799185 0.16 8.76338000871e-07 2792 -130175.218969
-0.00101936799185 0.19 8.76338000871e-07 2792 -129430.409607
-0.00101936799185 0.22 8.76338000871e-07 2792 -129172.739781
-0.00101936799185 0.25 8.76338000871e-07 2792 -129328.624721
-0.00101936799185 0.28 8.76338000871e-07 2792 -129852.885939
-0.00101936799185 0.31 8.76338000871e-07 2792 -130716.678283
-0.00101936799185 0.34 8.76338000871e-07 2792 -131901.853161
-0.00101936799185 0.37 8.76338000871e-07 2792 -133398.615569
-0.00101936799185 0.4 8.76338000871e-07 2792 -135202.787249
-0.00101936799185 0.43 8.76338000871e-07 2792 -137314.865473
-0.00101936799185 0.46 8.76338000871e-07 2792 -139739.628165
-0.00101936799185 0.49 8.76338000871e-07 2792 -142485.985119
-0.00101936799185 0.52 8.76338000871e-07 2792 -145566.231654
-0.00101936799185 0.55 8.76338000871e-07 2792 -148997.235126
-0.00101936799185 0.58 8.76338000871e-07 2792 -152799.809308
-0.00101936799185 0.61 8.76338000871e-07 2792 -157000.157437
-0.00101936799185 0.64 8.76338000871e-07 2792 -161630.577445
-0.00101936799185 0.67 8.76338000871e-07 2792 -166730.82861
-0.00101936799185 0.7 8.76338000871e-07 2792 -172349.713306
-0.00101936799185 0.73 8.76338000871e-07 2792 -178547.99296
-0.00101936799185 0.76 8.76338000871e-07 2792 -185402.389105
-0.00101936799185 0.79 8.76338000871e-07 2792 -193011.403508
-0.00101936799185 0.82 8.76338000871e-07 2792 -201504.171016
-0.00101936799185 0.85 8.76338000871e-07 2792 -211055.320201
-0.00101936799185 0.88 8.76338000871e-07 2792 -221910.566226
-0.00100908173562 0.01 2.09982135596e-06 6690 -148806.186628
-0.00100908173562 0.04 2.03327993182e-06 6478 -142732.807807
-0.00100908173562 0.07 8.95798228684e-07 2854 -137265.120639
-0.00100908173562 0.1 8.77279624798e-07 2795 -133766.521027
-0.00100908173562 0.13 8.76338000871e-07 2792 -131567.141707
-0.00100908173562 0.16 8.76338000871e-07 2792 -130204.893669
-0.00100908173562 0.19 8.76338000871e-07 2792 -129453.341512
-0.00100908173562 0.22 8.76338000871e-07 2792 -129188.032309
-0.00100908173562 0.25 8.76338000871e-07 2792 -129335.07072
-0.00100908173562 0.28 8.76338000871e-07 2792 -129849.367048
-0.00100908173562 0.31 8.76338000871e-07 2792 -130701.953395
-0.00100908173562 0.34 8.76338000871e-07 2792 -131874.706962
-0.00100908173562 0.37 8.76338000871e-07 2792 -133357.500613
-0.00100908173562 0.4 8.76338000871e-07 2792 -135146.325719
-0.00100908173562 0.43 8.76338000871e-07 2792 -137241.359672
-0.00100908173562 0.46 8.76338000871e-07 2792 -139647.338319
-0.00100908173562 0.49 8.76338000871e-07 2792 -142372.835123
-0.00100908173562 0.52 8.76338000871e-07 2792 -145430.071528
-0.00100908173562 0.55 8.76338000871e-07 2792 -148835.609593
-0.00100908173562 0.58 8.76338000871e-07 2792 -152609.999717
-0.00100908173562 0.61 8.76338000871e-07 2792 -156779.013189
-0.00100908173562 0.64 8.76338000871e-07 2792 -161374.432009
-0.00100908173562 0.67 8.76338000871e-07 2792 -166435.448913
-0.00100908173562 0.7 8.76338000871e-07 2792 -172010.22098
-0.00100908173562 0.73 8.76338000871e-07 2792 -178158.525769
-0.00100908173562 0.76 8.76338000871e-07 2792 -184955.814528
-0.00100908173562 0.79 8.76338000871e-07 2792 -192498.843186
-0.00100908173562 0.82 8.76338000871e-07 2792 -200914.440526
-0.00100908173562 0.85 8.76338000871e-07 2792 -210373.73309
-0.00100908173562 0.88 8.76338000871e-07 2792 -221117.175084
+1.0 0.01 3.82496925296e-05 10927 -123894.745252
+1.0 0.11 3.69615176554e-05 10559 -146433.341002
+1.0 0.21 3.66569763128e-05 10472 -191235.823611
+1.0 0.31 3.64469478007e-05 10412 -260465.254415
+1.0 0.41 3.61669097846e-05 10332 -358572.455236
+1.0 0.51 3.61669097846e-05 10332 -493346.776777
+1.0 0.61 3.5879870818e-05 10250 -678702.795812
+1.0 0.71 3.5879870818e-05 10250 -941793.902677
+1.0 0.81 3.56243361283e-05 10177 -1345861.15169
+0.00990099009901 0.01 3.45181859646e-05 9861 -123434.443377
+0.00990099009901 0.11 1.80484501403e-05 5156 -138449.306153
+0.00990099009901 0.21 1.45689777897e-05 4162 -175475.261761
+0.00990099009901 0.31 1.32527991139e-05 3786 -237994.762027
+0.00990099009901 0.41 1.26192131023e-05 3605 -329318.903778
+0.00990099009901 0.51 1.21921551277e-05 3483 -456389.667272
diff --git a/experiments/plot3d.py b/experiments/plot3d.py
index 64c144d..2158588 100644
--- a/experiments/plot3d.py
+++ b/experiments/plot3d.py
@@ -7,7 +7,7 @@ with open("out.log") as fh:
values = [map(float, line.strip().split()) for line in fh]
#values = [(b, a, l) for (b, a, l) in values if b >= 0.04]
am = max(values, key=lambda x: x[4])
- am[0] = 1./am[0]
+ # am[0] = 1./am[0]
print am
alpha, delta, beta, _ , l = zip(*values)
alpha = 1./np.array(alpha)
diff --git a/experiments/process.py b/experiments/process.py
index ec25d8e..5c4c215 100644
--- a/experiments/process.py
+++ b/experiments/process.py
@@ -6,21 +6,16 @@ from itertools import product
from math import exp
-def print_ll(alpha, delta):
- beta, roots, ll = ml(root_victims, victims, non_victims, alpha, delta)
- print "\t".join(map(str, [alpha, delta, beta, roots, ll, exp(ll)])) + "\n"
-
-
if __name__ == "__main__":
if len(sys.argv) < 2:
sys.exit("usage: {0} <file>".format(sys.argv[0]))
root_victims, victims, non_victims, age = load(open(sys.argv[1]))
- alpha = 1. / np.arange(1., 1000., 10.) # parameter of the time component
- delta = np.arange(0.01, 0.9, 0.03) # parameter of the structural component
- with open("out.log", "a") as fh:
+ alpha = 1. / np.arange(1., 1000., 100.) # parameter of the time component
+ delta = np.arange(0.01, 0.9, 0.1) # parameter of the structural component
+ with open("out.log", "w") as fh:
for a, d in product(alpha, delta):
beta, roots, ll = ml(root_victims, victims, non_victims, age, a, d)
- print beta
+ print "\t".join(map(str, [a, d, beta, roots, ll, exp(ll)]))
fh.write("\t".join(map(str, [a, d, beta, roots, ll])) + "\n")
fh.flush()