diff options
| -rw-r--r-- | experiments/README.txt | 9 | ||||
| -rw-r--r-- | experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o | bin | 304288 -> 308728 bytes | |||
| -rw-r--r-- | experiments/ml.c | 772 | ||||
| -rw-r--r-- | experiments/ml.pyx | 26 | ||||
| -rwxr-xr-x | experiments/ml.so | bin | 109300 -> 109612 bytes | |||
| -rw-r--r-- | experiments/out.log | 3873 | ||||
| -rw-r--r-- | experiments/plot3d.py | 2 | ||||
| -rw-r--r-- | experiments/process.py | 13 |
8 files changed, 468 insertions, 4227 deletions
diff --git a/experiments/README.txt b/experiments/README.txt index a3f2e22..80f6aa0 100644 --- a/experiments/README.txt +++ b/experiments/README.txt @@ -16,7 +16,7 @@ Description of the files (time component) and delta (structural component). The likelihood (and a few other things) for each of the values is printed in the file "out.log". Takes as argument the name of .pickle file computed by build_network.py - Prints columns as alpha, delta, beta, #roots, likelihood + Prints columns as alpha, delta, beta, number of roots, likelihood * plot3d.py: code to obtain a 3d plot of the log likelihood as a function of alpha and delta. Can also be easily modified to obtain 2d plots along @@ -38,3 +38,10 @@ complicated, it is also possible to compile .pyx files using python distutils (which I would assume is more standard on MacOS). This only requires distutils and a simple setup.py file. More details here: http://docs.cython.org/src/reference/compilation.html#configuring-the-c-build + +Running Code +============ +python build_network.py ../../Results/dag_dat_all.csv +python setup.py build_ext --inplace +python process.py ../../Results/dag_dat_all.pickle +python plot3d.py diff --git a/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o b/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o Binary files differindex 0f6640f..5fbcfe9 100644 --- a/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o +++ b/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o diff --git a/experiments/ml.c b/experiments/ml.c index 67e5cd1..1ae9098 100644 --- a/experiments/ml.c +++ b/experiments/ml.c @@ -773,12 +773,12 @@ struct __pyx_obj_2ml___pyx_scope_struct__ml { }; -/* "ml.pyx":71 - * successes = [weight_success(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] +/* "ml.pyx":74 + * for (dist, dt, w1, w2, w3) in parents] + * # find parent that maximizes p/\tilde{p} * probs[i] = max(s - failures[l] for l, s in enumerate(successes)) # <<<<<<<<<<<<<< - * probs_fail[i] = all_failures * + * # loop through non-victims */ struct __pyx_obj_2ml___pyx_scope_struct_1_genexpr { PyObject_HEAD @@ -1284,6 +1284,9 @@ static char __pyx_k_dt[] = "dt"; static char __pyx_k_ll[] = "ll"; static char __pyx_k_ml[] = "ml"; static char __pyx_k_np[] = "np"; +static char __pyx_k_w1[] = "w1"; +static char __pyx_k_w2[] = "w2"; +static char __pyx_k_w3[] = "w3"; static char __pyx_k_age[] = "age"; static char __pyx_k_end[] = "end"; static char __pyx_k_max[] = "max"; @@ -1331,7 +1334,6 @@ static char __pyx_k_itervalues[] = "itervalues"; static char __pyx_k_probs_fail[] = "probs_fail"; static char __pyx_k_non_victims[] = "non_victims"; static char __pyx_k_RuntimeError[] = "RuntimeError"; -static char __pyx_k_all_failures[] = "all_failures"; static char __pyx_k_root_victims[] = "root_victims"; static char __pyx_k_ml_locals_genexpr[] = "ml.<locals>.genexpr"; static char __pyx_k_ndarray_is_not_C_contiguous[] = "ndarray is not C contiguous"; @@ -1350,7 +1352,6 @@ static PyObject *__pyx_n_s_RuntimeError; static PyObject *__pyx_kp_s_Users_ben_Documents_Cascade_Pro; static PyObject *__pyx_n_s_ValueError; static PyObject *__pyx_n_s_age; -static PyObject *__pyx_n_s_all_failures; static PyObject *__pyx_n_s_alpha; static PyObject *__pyx_kp_s_alpha_0_delta_1_Everyone_is_a_ro; static PyObject *__pyx_n_s_args; @@ -1405,6 +1406,9 @@ static PyObject *__pyx_n_s_test; static PyObject *__pyx_n_s_throw; static PyObject *__pyx_kp_u_unknown_dtype_code_in_numpy_pxd; static PyObject *__pyx_n_s_victims; +static PyObject *__pyx_n_s_w1; +static PyObject *__pyx_n_s_w2; +static PyObject *__pyx_n_s_w3; static PyObject *__pyx_n_s_xrange; static PyObject *__pyx_n_s_zeros; static PyObject *__pyx_int_neg_1; @@ -1815,12 +1819,12 @@ static PyObject *__pyx_pw_2ml_1ml(PyObject *__pyx_self, PyObject *__pyx_args, Py } static PyObject *__pyx_gb_2ml_2ml_2generator(__pyx_GeneratorObject *__pyx_generator, PyObject *__pyx_sent_value); /* proto */ -/* "ml.pyx":71 - * successes = [weight_success(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] +/* "ml.pyx":74 + * for (dist, dt, w1, w2, w3) in parents] + * # find parent that maximizes p/\tilde{p} * probs[i] = max(s - failures[l] for l, s in enumerate(successes)) # <<<<<<<<<<<<<< - * probs_fail[i] = all_failures * + * # loop through non-victims */ static PyObject *__pyx_pf_2ml_2ml_genexpr(PyObject *__pyx_self) { @@ -1841,7 +1845,7 @@ static PyObject *__pyx_pf_2ml_2ml_genexpr(PyObject *__pyx_self) { __Pyx_INCREF(((PyObject *)__pyx_cur_scope->__pyx_outer_scope)); __Pyx_GIVEREF(__pyx_cur_scope->__pyx_outer_scope); { - __pyx_GeneratorObject *gen = __Pyx_Generator_New((__pyx_generator_body_t) __pyx_gb_2ml_2ml_2generator, (PyObject *) __pyx_cur_scope, __pyx_n_s_genexpr, __pyx_n_s_ml_locals_genexpr); if (unlikely(!gen)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_GeneratorObject *gen = __Pyx_Generator_New((__pyx_generator_body_t) __pyx_gb_2ml_2ml_2generator, (PyObject *) __pyx_cur_scope, __pyx_n_s_genexpr, __pyx_n_s_ml_locals_genexpr); if (unlikely(!gen)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_cur_scope); __Pyx_RefNannyFinishContext(); return (PyObject *) gen; @@ -1879,16 +1883,16 @@ static PyObject *__pyx_gb_2ml_2ml_2generator(__pyx_GeneratorObject *__pyx_genera return NULL; } __pyx_L3_first_run:; - if (unlikely(!__pyx_sent_value)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (unlikely(!__pyx_sent_value)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_1 = 0; - if (unlikely(!__pyx_cur_scope->__pyx_outer_scope->__pyx_v_successes)) { __Pyx_RaiseClosureNameError("successes"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } + if (unlikely(!__pyx_cur_scope->__pyx_outer_scope->__pyx_v_successes)) { __Pyx_RaiseClosureNameError("successes"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_t_2 = __pyx_cur_scope->__pyx_outer_scope->__pyx_v_successes; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0; for (;;) { if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_4 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_4); __pyx_t_3++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_4); __pyx_t_3++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #else - __pyx_t_4 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif __Pyx_XGOTREF(__pyx_cur_scope->__pyx_v_s); __Pyx_XDECREF_SET(__pyx_cur_scope->__pyx_v_s, __pyx_t_4); @@ -1896,14 +1900,14 @@ static PyObject *__pyx_gb_2ml_2ml_2generator(__pyx_GeneratorObject *__pyx_genera __pyx_t_4 = 0; __pyx_cur_scope->__pyx_v_l = __pyx_t_1; __pyx_t_1 = (__pyx_t_1 + 1); - if (unlikely(!__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures)) { __Pyx_RaiseClosureNameError("failures"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } + if (unlikely(!__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures)) { __Pyx_RaiseClosureNameError("failures"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } if (unlikely(__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __pyx_t_4 = __Pyx_GetItemInt_List(__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures, __pyx_cur_scope->__pyx_v_l, Py_ssize_t, 1, PyInt_FromSsize_t, 1, 1, 0); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; + __pyx_t_4 = __Pyx_GetItemInt_List(__pyx_cur_scope->__pyx_outer_scope->__pyx_v_failures, __pyx_cur_scope->__pyx_v_l, Py_ssize_t, 1, PyInt_FromSsize_t, 1, 1, 0); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = PyNumber_Subtract(__pyx_cur_scope->__pyx_v_s, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyNumber_Subtract(__pyx_cur_scope->__pyx_v_s, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; @@ -1923,7 +1927,7 @@ static PyObject *__pyx_gb_2ml_2ml_2generator(__pyx_GeneratorObject *__pyx_genera __pyx_cur_scope->__pyx_t_1 = 0; __Pyx_XGOTREF(__pyx_t_2); __pyx_t_3 = __pyx_cur_scope->__pyx_t_2; - if (unlikely(!__pyx_sent_value)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (unlikely(!__pyx_sent_value)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; @@ -1961,13 +1965,15 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ int __pyx_v_dist; int __pyx_v_dt; __pyx_t_2ml_DTYPE_t __pyx_v_beta; - __pyx_t_2ml_DTYPE_t __pyx_v_all_failures; __pyx_t_2ml_DTYPE_t __pyx_v_ll; PyObject *__pyx_v_parents = 0; PyArrayObject *__pyx_v_probs = 0; PyArrayObject *__pyx_v_probs_fail = 0; PyArrayObject *__pyx_v_probs_nv = 0; PyArrayObject *__pyx_v_cums = 0; + CYTHON_UNUSED PyObject *__pyx_v_w1 = NULL; + CYTHON_UNUSED PyObject *__pyx_v_w2 = NULL; + CYTHON_UNUSED PyObject *__pyx_v_w3 = NULL; __Pyx_LocalBuf_ND __pyx_pybuffernd_cums; __Pyx_Buffer __pyx_pybuffer_cums; __Pyx_LocalBuf_ND __pyx_pybuffernd_probs; @@ -1994,16 +2000,19 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ PyObject *__pyx_t_14 = NULL; PyObject *__pyx_t_15 = NULL; PyObject *__pyx_t_16 = NULL; - PyObject *(*__pyx_t_17)(PyObject *); - int __pyx_t_18; - __pyx_t_2ml_DTYPE_t __pyx_t_19; - int __pyx_t_20; + PyObject *__pyx_t_17 = NULL; + PyObject *__pyx_t_18 = NULL; + PyObject *__pyx_t_19 = NULL; + PyObject *(*__pyx_t_20)(PyObject *); int __pyx_t_21; - PyObject *__pyx_t_22 = NULL; - PyObject *__pyx_t_23 = NULL; - PyObject *__pyx_t_24 = NULL; - PyArrayObject *__pyx_t_25 = NULL; - int __pyx_t_26; + __pyx_t_2ml_DTYPE_t __pyx_t_22; + int __pyx_t_23; + int __pyx_t_24; + PyObject *__pyx_t_25 = NULL; + PyObject *__pyx_t_26 = NULL; + PyObject *__pyx_t_27 = NULL; + PyArrayObject *__pyx_t_28 = NULL; + int __pyx_t_29; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; @@ -2032,10 +2041,10 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __pyx_pybuffernd_cums.rcbuffer = &__pyx_pybuffer_cums; /* "ml.pyx":56 - * DTYPE_t beta, all_failures, ll, beta2 + * DTYPE_t beta, ll, beta2 * list parents, failures, successes * n_roots, n_victims = len(root_victims), len(victims) # <<<<<<<<<<<<<< - * n_nodes = n_victims + len(non_victims) + n_roots + * n_nodes = n_roots + n_victims + len(non_victims) * cdef: */ if (unlikely(__pyx_v_root_victims == Py_None)) { @@ -2054,7 +2063,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":57 * list parents, failures, successes * n_roots, n_victims = len(root_victims), len(victims) - * n_nodes = n_victims + len(non_victims) + n_roots # <<<<<<<<<<<<<< + * n_nodes = n_roots + n_victims + len(non_victims) # <<<<<<<<<<<<<< * cdef: * np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) */ @@ -2063,10 +2072,10 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 57; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_t_2 = PyDict_Size(__pyx_v_non_victims); if (unlikely(__pyx_t_2 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 57; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_n_nodes = ((__pyx_v_n_victims + __pyx_t_2) + __pyx_v_n_roots); + __pyx_v_n_nodes = ((__pyx_v_n_roots + __pyx_v_n_victims) + __pyx_t_2); /* "ml.pyx":59 - * n_nodes = n_victims + len(non_victims) + n_roots + * n_nodes = n_roots + n_victims + len(non_victims) * cdef: * np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) # <<<<<<<<<<<<<< * np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) @@ -2114,7 +2123,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) * np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) # <<<<<<<<<<<<<< * np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) - * for i, parents in enumerate(victims.itervalues()): + * */ __pyx_t_6 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); @@ -2157,8 +2166,8 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) * np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) * np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) # <<<<<<<<<<<<<< - * for i, parents in enumerate(victims.itervalues()): - * # for each victim node i, compute the probability that all its parents + * + * # loop through victims */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 61; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); @@ -2202,9 +2211,9 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __pyx_v_probs_nv = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; - /* "ml.pyx":62 - * np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) - * np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) + /* "ml.pyx":64 + * + * # loop through victims * for i, parents in enumerate(victims.itervalues()): # <<<<<<<<<<<<<< * # for each victim node i, compute the probability that all its parents * # fail to infect it, also computes the probability that its most @@ -2213,9 +2222,9 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __pyx_t_2 = 0; if (unlikely(__pyx_v_victims == Py_None)) { PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", "itervalues"); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __pyx_t_4 = __Pyx_dict_iterator(__pyx_v_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_1), (&__pyx_t_11)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_dict_iterator(__pyx_v_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_1), (&__pyx_t_11)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = __pyx_t_4; @@ -2223,42 +2232,42 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ while (1) { __pyx_t_12 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_1, &__pyx_t_2, NULL, &__pyx_t_4, NULL, __pyx_t_11); if (unlikely(__pyx_t_12 == 0)) break; - if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - if (!(likely(PyList_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_4)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (!(likely(PyList_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_4)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_XDECREF_SET(__pyx_v_parents, ((PyObject*)__pyx_t_4)); __pyx_t_4 = 0; __pyx_v_i = __pyx_t_10; __pyx_t_10 = (__pyx_t_10 + 1); - /* "ml.pyx":66 + /* "ml.pyx":68 * # fail to infect it, also computes the probability that its most * # likely parent infects it * failures = [weight_failure(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<< - * for (dist, dt) in parents] - * all_failures = sum(failures) + * for (dist, dt, w1, w2, w3) in parents] + * probs_fail[i] = sum(failures) */ - __pyx_t_4 = PyList_New(0); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyList_New(0); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - /* "ml.pyx":67 + /* "ml.pyx":69 * # likely parent infects it * failures = [weight_failure(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] # <<<<<<<<<<<<<< - * all_failures = sum(failures) + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< + * probs_fail[i] = sum(failures) * successes = [weight_success(dist, dt, alpha, delta, gamma) */ if (unlikely(__pyx_v_parents == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_t_5 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_5); __pyx_t_13 = 0; for (;;) { if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_5)) break; #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_6 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #else - __pyx_t_6 = PySequence_ITEM(__pyx_t_5, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PySequence_ITEM(__pyx_t_5, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) { PyObject* sequence = __pyx_t_6; @@ -2267,73 +2276,95 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ #else Py_ssize_t size = PySequence_Size(sequence); #endif - if (unlikely(size != 2)) { - if (size > 2) __Pyx_RaiseTooManyValuesError(2); + if (unlikely(size != 5)) { + if (size > 5) __Pyx_RaiseTooManyValuesError(5); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } #if CYTHON_COMPILING_IN_CPYTHON if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_14 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_15 = PyTuple_GET_ITEM(sequence, 1); + __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2); + __pyx_t_17 = PyTuple_GET_ITEM(sequence, 3); + __pyx_t_18 = PyTuple_GET_ITEM(sequence, 4); } else { __pyx_t_14 = PyList_GET_ITEM(sequence, 0); __pyx_t_15 = PyList_GET_ITEM(sequence, 1); + __pyx_t_16 = PyList_GET_ITEM(sequence, 2); + __pyx_t_17 = PyList_GET_ITEM(sequence, 3); + __pyx_t_18 = PyList_GET_ITEM(sequence, 4); } __Pyx_INCREF(__pyx_t_14); __Pyx_INCREF(__pyx_t_15); + __Pyx_INCREF(__pyx_t_16); + __Pyx_INCREF(__pyx_t_17); + __Pyx_INCREF(__pyx_t_18); #else - __pyx_t_14 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_14); - __pyx_t_15 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_15); + { + Py_ssize_t i; + PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18}; + for (i=0; i < 5; i++) { + PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(item); + *(temps[i]) = item; + } + } #endif __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else { Py_ssize_t index = -1; - __pyx_t_16 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_16); + PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18}; + __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_19); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_t_17 = Py_TYPE(__pyx_t_16)->tp_iternext; - index = 0; __pyx_t_14 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_14)) goto __pyx_L7_unpacking_failed; - __Pyx_GOTREF(__pyx_t_14); - index = 1; __pyx_t_15 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_15)) goto __pyx_L7_unpacking_failed; - __Pyx_GOTREF(__pyx_t_15); - if (__Pyx_IternextUnpackEndCheck(__pyx_t_17(__pyx_t_16), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_17 = NULL; - __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; + __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext; + for (index=0; index < 5; index++) { + PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L7_unpacking_failed; + __Pyx_GOTREF(item); + *(temps[index]) = item; + } + if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_20 = NULL; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; goto __pyx_L8_unpacking_done; __pyx_L7_unpacking_failed:; - __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; - __pyx_t_17 = NULL; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; + __pyx_t_20 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_L8_unpacking_done:; } - __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; - __pyx_t_18 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_18 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 67; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_21 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_21 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; __pyx_v_dist = __pyx_t_12; - __pyx_v_dt = __pyx_t_18; + __pyx_v_dt = __pyx_t_21; + __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16); + __pyx_t_16 = 0; + __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_17); + __pyx_t_17 = 0; + __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_18); + __pyx_t_18 = 0; - /* "ml.pyx":66 + /* "ml.pyx":68 * # fail to infect it, also computes the probability that its most * # likely parent infects it * failures = [weight_failure(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<< - * for (dist, dt) in parents] - * all_failures = sum(failures) + * for (dist, dt, w1, w2, w3) in parents] + * probs_fail[i] = sum(failures) */ - __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_4, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (unlikely(__Pyx_ListComp_Append(__pyx_t_4, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - /* "ml.pyx":67 + /* "ml.pyx":69 * # likely parent infects it * failures = [weight_failure(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] # <<<<<<<<<<<<<< - * all_failures = sum(failures) + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< + * probs_fail[i] = sum(failures) * successes = [weight_success(dist, dt, alpha, delta, gamma) */ } @@ -2343,53 +2374,55 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; - /* "ml.pyx":68 + /* "ml.pyx":70 * failures = [weight_failure(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] - * all_failures = sum(failures) # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] + * probs_fail[i] = sum(failures) # <<<<<<<<<<<<<< * successes = [weight_success(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] + * for (dist, dt, w1, w2, w3) in parents] */ - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_cur_scope->__pyx_v_failures); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_cur_scope->__pyx_v_failures); __Pyx_GIVEREF(__pyx_cur_scope->__pyx_v_failures); - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_v_all_failures = __pyx_t_19; + __pyx_t_21 = __pyx_v_i; + if (__pyx_t_21 < 0) __pyx_t_21 += __pyx_pybuffernd_probs_fail.diminfo[0].shape; + *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_fail.rcbuffer->pybuffer.buf, __pyx_t_21, __pyx_pybuffernd_probs_fail.diminfo[0].strides) = __pyx_t_22; - /* "ml.pyx":69 - * for (dist, dt) in parents] - * all_failures = sum(failures) + /* "ml.pyx":71 + * for (dist, dt, w1, w2, w3) in parents] + * probs_fail[i] = sum(failures) * successes = [weight_success(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<< - * for (dist, dt) in parents] - * probs[i] = max(s - failures[l] for l, s in enumerate(successes)) + * for (dist, dt, w1, w2, w3) in parents] + * # find parent that maximizes p/\tilde{p} */ - __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - /* "ml.pyx":70 - * all_failures = sum(failures) + /* "ml.pyx":72 + * probs_fail[i] = sum(failures) * successes = [weight_success(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< + * # find parent that maximizes p/\tilde{p} * probs[i] = max(s - failures[l] for l, s in enumerate(successes)) - * probs_fail[i] = all_failures */ if (unlikely(__pyx_v_parents == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_t_4 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_4); __pyx_t_13 = 0; for (;;) { if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_4)) break; #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #else - __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) { PyObject* sequence = __pyx_t_6; @@ -2398,74 +2431,96 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ #else Py_ssize_t size = PySequence_Size(sequence); #endif - if (unlikely(size != 2)) { - if (size > 2) __Pyx_RaiseTooManyValuesError(2); + if (unlikely(size != 5)) { + if (size > 5) __Pyx_RaiseTooManyValuesError(5); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } #if CYTHON_COMPILING_IN_CPYTHON if (likely(PyTuple_CheckExact(sequence))) { - __pyx_t_15 = PyTuple_GET_ITEM(sequence, 0); - __pyx_t_14 = PyTuple_GET_ITEM(sequence, 1); + __pyx_t_18 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_17 = PyTuple_GET_ITEM(sequence, 1); + __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2); + __pyx_t_15 = PyTuple_GET_ITEM(sequence, 3); + __pyx_t_14 = PyTuple_GET_ITEM(sequence, 4); } else { - __pyx_t_15 = PyList_GET_ITEM(sequence, 0); - __pyx_t_14 = PyList_GET_ITEM(sequence, 1); + __pyx_t_18 = PyList_GET_ITEM(sequence, 0); + __pyx_t_17 = PyList_GET_ITEM(sequence, 1); + __pyx_t_16 = PyList_GET_ITEM(sequence, 2); + __pyx_t_15 = PyList_GET_ITEM(sequence, 3); + __pyx_t_14 = PyList_GET_ITEM(sequence, 4); } + __Pyx_INCREF(__pyx_t_18); + __Pyx_INCREF(__pyx_t_17); + __Pyx_INCREF(__pyx_t_16); __Pyx_INCREF(__pyx_t_15); __Pyx_INCREF(__pyx_t_14); #else - __pyx_t_15 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_15); - __pyx_t_14 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_14); + { + Py_ssize_t i; + PyObject** temps[5] = {&__pyx_t_18,&__pyx_t_17,&__pyx_t_16,&__pyx_t_15,&__pyx_t_14}; + for (i=0; i < 5; i++) { + PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(item); + *(temps[i]) = item; + } + } #endif __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else { Py_ssize_t index = -1; - __pyx_t_16 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_16); + PyObject** temps[5] = {&__pyx_t_18,&__pyx_t_17,&__pyx_t_16,&__pyx_t_15,&__pyx_t_14}; + __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_19); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_t_17 = Py_TYPE(__pyx_t_16)->tp_iternext; - index = 0; __pyx_t_15 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_15)) goto __pyx_L11_unpacking_failed; - __Pyx_GOTREF(__pyx_t_15); - index = 1; __pyx_t_14 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_14)) goto __pyx_L11_unpacking_failed; - __Pyx_GOTREF(__pyx_t_14); - if (__Pyx_IternextUnpackEndCheck(__pyx_t_17(__pyx_t_16), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_17 = NULL; - __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; + __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext; + for (index=0; index < 5; index++) { + PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L11_unpacking_failed; + __Pyx_GOTREF(item); + *(temps[index]) = item; + } + if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_20 = NULL; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; goto __pyx_L12_unpacking_done; __pyx_L11_unpacking_failed:; - __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; - __pyx_t_17 = NULL; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; + __pyx_t_20 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_L12_unpacking_done:; } - __pyx_t_18 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_18 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; - __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; - __pyx_v_dist = __pyx_t_18; - __pyx_v_dt = __pyx_t_12; + __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_18); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_18); __pyx_t_18 = 0; + __pyx_t_23 = __Pyx_PyInt_As_int(__pyx_t_17); if (unlikely((__pyx_t_23 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_17); __pyx_t_17 = 0; + __pyx_v_dist = __pyx_t_12; + __pyx_v_dt = __pyx_t_23; + __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16); + __pyx_t_16 = 0; + __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_15); + __pyx_t_15 = 0; + __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_14); + __pyx_t_14 = 0; - /* "ml.pyx":69 - * for (dist, dt) in parents] - * all_failures = sum(failures) + /* "ml.pyx":71 + * for (dist, dt, w1, w2, w3) in parents] + * probs_fail[i] = sum(failures) * successes = [weight_success(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<< - * for (dist, dt) in parents] - * probs[i] = max(s - failures[l] for l, s in enumerate(successes)) + * for (dist, dt, w1, w2, w3) in parents] + * # find parent that maximizes p/\tilde{p} */ - __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_success(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_success(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - /* "ml.pyx":70 - * all_failures = sum(failures) + /* "ml.pyx":72 + * probs_fail[i] = sum(failures) * successes = [weight_success(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< + * # find parent that maximizes p/\tilde{p} * probs[i] = max(s - failures[l] for l, s in enumerate(successes)) - * probs_fail[i] = all_failures */ } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; @@ -2474,45 +2529,34 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; - /* "ml.pyx":71 - * successes = [weight_success(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] + /* "ml.pyx":74 + * for (dist, dt, w1, w2, w3) in parents] + * # find parent that maximizes p/\tilde{p} * probs[i] = max(s - failures[l] for l, s in enumerate(successes)) # <<<<<<<<<<<<<< - * probs_fail[i] = all_failures * + * # loop through non-victims */ - __pyx_t_5 = __pyx_pf_2ml_2ml_genexpr(((PyObject*)__pyx_cur_scope)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __pyx_pf_2ml_2ml_genexpr(((PyObject*)__pyx_cur_scope)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_max, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_max, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_12 = __pyx_v_i; - if (__pyx_t_12 < 0) __pyx_t_12 += __pyx_pybuffernd_probs.diminfo[0].shape; - *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_12, __pyx_pybuffernd_probs.diminfo[0].strides) = __pyx_t_19; - - /* "ml.pyx":72 - * for (dist, dt) in parents] - * probs[i] = max(s - failures[l] for l, s in enumerate(successes)) - * probs_fail[i] = all_failures # <<<<<<<<<<<<<< - * - * for i, parents in enumerate(non_victims.itervalues()): - */ - __pyx_t_18 = __pyx_v_i; - if (__pyx_t_18 < 0) __pyx_t_18 += __pyx_pybuffernd_probs_fail.diminfo[0].shape; - *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_fail.rcbuffer->pybuffer.buf, __pyx_t_18, __pyx_pybuffernd_probs_fail.diminfo[0].strides) = __pyx_v_all_failures; + __pyx_t_23 = __pyx_v_i; + if (__pyx_t_23 < 0) __pyx_t_23 += __pyx_pybuffernd_probs.diminfo[0].shape; + *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_23, __pyx_pybuffernd_probs.diminfo[0].strides) = __pyx_t_22; } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - /* "ml.pyx":74 - * probs_fail[i] = all_failures + /* "ml.pyx":77 * + * # loop through non-victims * for i, parents in enumerate(non_victims.itervalues()): # <<<<<<<<<<<<<< * # for each non victim node, compute the probability that all its * # parents fail to infect it @@ -2521,52 +2565,52 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __pyx_t_1 = 0; if (unlikely(__pyx_v_non_victims == Py_None)) { PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", "itervalues"); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __pyx_t_5 = __Pyx_dict_iterator(__pyx_v_non_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_2), (&__pyx_t_11)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_dict_iterator(__pyx_v_non_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_2), (&__pyx_t_11)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = __pyx_t_5; __pyx_t_5 = 0; while (1) { - __pyx_t_20 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_2, &__pyx_t_1, NULL, &__pyx_t_5, NULL, __pyx_t_11); - if (unlikely(__pyx_t_20 == 0)) break; - if (unlikely(__pyx_t_20 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_12 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_2, &__pyx_t_1, NULL, &__pyx_t_5, NULL, __pyx_t_11); + if (unlikely(__pyx_t_12 == 0)) break; + if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - if (!(likely(PyList_CheckExact(__pyx_t_5))||((__pyx_t_5) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_5)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (!(likely(PyList_CheckExact(__pyx_t_5))||((__pyx_t_5) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_5)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_XDECREF_SET(__pyx_v_parents, ((PyObject*)__pyx_t_5)); __pyx_t_5 = 0; __pyx_v_i = __pyx_t_10; __pyx_t_10 = (__pyx_t_10 + 1); - /* "ml.pyx":77 + /* "ml.pyx":80 * # for each non victim node, compute the probability that all its * # parents fail to infect it * failures = [weight_failure(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<< - * for (dist, dt) in parents] + * for (dist, dt, w1, w2, w3) in parents] * probs_nv[i] = sum(failures) */ - __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - /* "ml.pyx":78 + /* "ml.pyx":81 * # parents fail to infect it * failures = [weight_failure(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< * probs_nv[i] = sum(failures) - * probs.sort() + * */ if (unlikely(__pyx_v_parents == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_t_4 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_4); __pyx_t_13 = 0; for (;;) { if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_4)) break; #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #else - __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) { PyObject* sequence = __pyx_t_6; @@ -2575,74 +2619,96 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ #else Py_ssize_t size = PySequence_Size(sequence); #endif - if (unlikely(size != 2)) { - if (size > 2) __Pyx_RaiseTooManyValuesError(2); + if (unlikely(size != 5)) { + if (size > 5) __Pyx_RaiseTooManyValuesError(5); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } #if CYTHON_COMPILING_IN_CPYTHON if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_14 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_15 = PyTuple_GET_ITEM(sequence, 1); + __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2); + __pyx_t_17 = PyTuple_GET_ITEM(sequence, 3); + __pyx_t_18 = PyTuple_GET_ITEM(sequence, 4); } else { __pyx_t_14 = PyList_GET_ITEM(sequence, 0); __pyx_t_15 = PyList_GET_ITEM(sequence, 1); + __pyx_t_16 = PyList_GET_ITEM(sequence, 2); + __pyx_t_17 = PyList_GET_ITEM(sequence, 3); + __pyx_t_18 = PyList_GET_ITEM(sequence, 4); } __Pyx_INCREF(__pyx_t_14); __Pyx_INCREF(__pyx_t_15); + __Pyx_INCREF(__pyx_t_16); + __Pyx_INCREF(__pyx_t_17); + __Pyx_INCREF(__pyx_t_18); #else - __pyx_t_14 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_14); - __pyx_t_15 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_15); + { + Py_ssize_t i; + PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18}; + for (i=0; i < 5; i++) { + PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(item); + *(temps[i]) = item; + } + } #endif __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else { Py_ssize_t index = -1; - __pyx_t_16 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_16); + PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18}; + __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_19); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_t_17 = Py_TYPE(__pyx_t_16)->tp_iternext; - index = 0; __pyx_t_14 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_14)) goto __pyx_L17_unpacking_failed; - __Pyx_GOTREF(__pyx_t_14); - index = 1; __pyx_t_15 = __pyx_t_17(__pyx_t_16); if (unlikely(!__pyx_t_15)) goto __pyx_L17_unpacking_failed; - __Pyx_GOTREF(__pyx_t_15); - if (__Pyx_IternextUnpackEndCheck(__pyx_t_17(__pyx_t_16), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_17 = NULL; - __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; + __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext; + for (index=0; index < 5; index++) { + PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L17_unpacking_failed; + __Pyx_GOTREF(item); + *(temps[index]) = item; + } + if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_20 = NULL; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; goto __pyx_L18_unpacking_done; __pyx_L17_unpacking_failed:; - __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; - __pyx_t_17 = NULL; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; + __pyx_t_20 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_L18_unpacking_done:; } - __pyx_t_20 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_20 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; - __pyx_t_21 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_21 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_24 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_24 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; - __pyx_v_dist = __pyx_t_20; - __pyx_v_dt = __pyx_t_21; + __pyx_v_dist = __pyx_t_12; + __pyx_v_dt = __pyx_t_24; + __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16); + __pyx_t_16 = 0; + __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_17); + __pyx_t_17 = 0; + __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_18); + __pyx_t_18 = 0; - /* "ml.pyx":77 + /* "ml.pyx":80 * # for each non victim node, compute the probability that all its * # parents fail to infect it * failures = [weight_failure(dist, dt, alpha, delta, gamma) # <<<<<<<<<<<<<< - * for (dist, dt) in parents] + * for (dist, dt, w1, w2, w3) in parents] * probs_nv[i] = sum(failures) */ - __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_v_gamma)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - /* "ml.pyx":78 + /* "ml.pyx":81 * # parents fail to infect it * failures = [weight_failure(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< * probs_nv[i] = sum(failures) - * probs.sort() + * */ } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; @@ -2651,37 +2717,37 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; - /* "ml.pyx":79 + /* "ml.pyx":82 * failures = [weight_failure(dist, dt, alpha, delta, gamma) - * for (dist, dt) in parents] + * for (dist, dt, w1, w2, w3) in parents] * probs_nv[i] = sum(failures) # <<<<<<<<<<<<<< - * probs.sort() - * probs = probs[::-1] + * + * # calculate log likelihood */ - __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 79; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_cur_scope->__pyx_v_failures); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_cur_scope->__pyx_v_failures); __Pyx_GIVEREF(__pyx_cur_scope->__pyx_v_failures); - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 79; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 79; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_21 = __pyx_v_i; - if (__pyx_t_21 < 0) __pyx_t_21 += __pyx_pybuffernd_probs_nv.diminfo[0].shape; - *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf, __pyx_t_21, __pyx_pybuffernd_probs_nv.diminfo[0].strides) = __pyx_t_19; + __pyx_t_24 = __pyx_v_i; + if (__pyx_t_24 < 0) __pyx_t_24 += __pyx_pybuffernd_probs_nv.diminfo[0].shape; + *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf, __pyx_t_24, __pyx_pybuffernd_probs_nv.diminfo[0].strides) = __pyx_t_22; } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - /* "ml.pyx":80 - * for (dist, dt) in parents] - * probs_nv[i] = sum(failures) - * probs.sort() # <<<<<<<<<<<<<< - * probs = probs[::-1] + /* "ml.pyx":85 + * + * # calculate log likelihood + * probs.sort(); probs = probs[::-1] # sort probs in descending order # <<<<<<<<<<<<<< * cdef: + * np.ndarray[DTYPE_t] cums = probs.cumsum() */ - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs), __pyx_n_s_sort); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs), __pyx_n_s_sort); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) { @@ -2694,54 +2760,46 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } } if (__pyx_t_5) { - __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } else { - __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - - /* "ml.pyx":81 - * probs_nv[i] = sum(failures) - * probs.sort() - * probs = probs[::-1] # <<<<<<<<<<<<<< - * cdef: - * np.ndarray[DTYPE_t] cums = probs.cumsum() - */ - __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_slice_); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; + __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_slice_); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_7 = ((PyArrayObject *)__pyx_t_3); { __Pyx_BufFmt_StackElem __pyx_stack[1]; __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_probs.rcbuffer->pybuffer); __pyx_t_10 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs.rcbuffer->pybuffer, (PyObject*)__pyx_t_7, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack); if (unlikely(__pyx_t_10 < 0)) { - PyErr_Fetch(&__pyx_t_22, &__pyx_t_23, &__pyx_t_24); + PyErr_Fetch(&__pyx_t_25, &__pyx_t_26, &__pyx_t_27); if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs.rcbuffer->pybuffer, (PyObject*)__pyx_v_probs, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) { - Py_XDECREF(__pyx_t_22); Py_XDECREF(__pyx_t_23); Py_XDECREF(__pyx_t_24); + Py_XDECREF(__pyx_t_25); Py_XDECREF(__pyx_t_26); Py_XDECREF(__pyx_t_27); __Pyx_RaiseBufferFallbackError(); } else { - PyErr_Restore(__pyx_t_22, __pyx_t_23, __pyx_t_24); + PyErr_Restore(__pyx_t_25, __pyx_t_26, __pyx_t_27); } } __pyx_pybuffernd_probs.diminfo[0].strides = __pyx_pybuffernd_probs.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_probs.diminfo[0].shape = __pyx_pybuffernd_probs.rcbuffer->pybuffer.shape[0]; - if (unlikely(__pyx_t_10 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (unlikely(__pyx_t_10 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_t_7 = 0; __Pyx_DECREF_SET(__pyx_v_probs, ((PyArrayObject *)__pyx_t_3)); __pyx_t_3 = 0; - /* "ml.pyx":83 - * probs = probs[::-1] + /* "ml.pyx":87 + * probs.sort(); probs = probs[::-1] # sort probs in descending order * cdef: * np.ndarray[DTYPE_t] cums = probs.cumsum() # <<<<<<<<<<<<<< * ll = probs_fail.sum() * ll += probs_nv.sum() */ - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs), __pyx_n_s_cumsum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs), __pyx_n_s_cumsum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) { @@ -2754,35 +2812,35 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } } if (__pyx_t_5) { - __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } else { - __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_25 = ((PyArrayObject *)__pyx_t_3); + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_28 = ((PyArrayObject *)__pyx_t_3); { __Pyx_BufFmt_StackElem __pyx_stack[1]; - if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_cums.rcbuffer->pybuffer, (PyObject*)__pyx_t_25, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_cums.rcbuffer->pybuffer, (PyObject*)__pyx_t_28, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { __pyx_v_cums = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_cums.rcbuffer->pybuffer.buf = NULL; - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } else {__pyx_pybuffernd_cums.diminfo[0].strides = __pyx_pybuffernd_cums.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_cums.diminfo[0].shape = __pyx_pybuffernd_cums.rcbuffer->pybuffer.shape[0]; } } - __pyx_t_25 = 0; + __pyx_t_28 = 0; __pyx_v_cums = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; - /* "ml.pyx":84 + /* "ml.pyx":88 * cdef: * np.ndarray[DTYPE_t] cums = probs.cumsum() * ll = probs_fail.sum() # <<<<<<<<<<<<<< * ll += probs_nv.sum() * */ - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) { @@ -2795,27 +2853,27 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } } if (__pyx_t_5) { - __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } else { - __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_ll = __pyx_t_19; + __pyx_v_ll = __pyx_t_22; - /* "ml.pyx":85 + /* "ml.pyx":89 * np.ndarray[DTYPE_t] cums = probs.cumsum() * ll = probs_fail.sum() * ll += probs_nv.sum() # <<<<<<<<<<<<<< * * for i in xrange(n_victims - 1, 0, -1): */ - __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) { @@ -2828,22 +2886,22 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } } if (__pyx_t_6) { - __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else { - __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_19 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_19 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_v_ll = __pyx_t_19; + __pyx_v_ll = __pyx_t_22; - /* "ml.pyx":87 + /* "ml.pyx":91 * ll += probs_nv.sum() * * for i in xrange(n_victims - 1, 0, -1): # <<<<<<<<<<<<<< @@ -2853,38 +2911,50 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ for (__pyx_t_10 = (__pyx_v_n_victims - 1); __pyx_t_10 > 0; __pyx_t_10-=1) { __pyx_v_i = __pyx_t_10; - /* "ml.pyx":89 + /* "ml.pyx":93 * for i in xrange(n_victims - 1, 0, -1): * # iterate over all victim nodes to find the optimal threshold * roots = n_roots + n_victims - 1 - i # <<<<<<<<<<<<<< - * beta = 1. / (1. + exp(-probs[i])) - * if beta > float(roots) / age: + * beta = exp(probs[i])#1. / (1. + exp(-probs[i])) + * print beta */ __pyx_v_roots = (((__pyx_v_n_roots + __pyx_v_n_victims) - 1) - __pyx_v_i); - /* "ml.pyx":90 + /* "ml.pyx":94 * # iterate over all victim nodes to find the optimal threshold * roots = n_roots + n_victims - 1 - i - * beta = 1. / (1. + exp(-probs[i])) # <<<<<<<<<<<<<< + * beta = exp(probs[i])#1. / (1. + exp(-probs[i])) # <<<<<<<<<<<<<< + * print beta * if beta > float(roots) / age: - * break */ __pyx_t_11 = __pyx_v_i; if (__pyx_t_11 < 0) __pyx_t_11 += __pyx_pybuffernd_probs.diminfo[0].shape; - __pyx_v_beta = (1. / (1. + exp((-(*__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_11, __pyx_pybuffernd_probs.diminfo[0].strides)))))); + __pyx_v_beta = exp((*__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_11, __pyx_pybuffernd_probs.diminfo[0].strides))); - /* "ml.pyx":91 + /* "ml.pyx":95 * roots = n_roots + n_victims - 1 - i - * beta = 1. / (1. + exp(-probs[i])) + * beta = exp(probs[i])#1. / (1. + exp(-probs[i])) + * print beta # <<<<<<<<<<<<<< + * if beta > float(roots) / age: + * break + */ + __pyx_t_5 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + if (__Pyx_PrintOne(0, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + + /* "ml.pyx":96 + * beta = exp(probs[i])#1. / (1. + exp(-probs[i])) + * print beta * if beta > float(roots) / age: # <<<<<<<<<<<<<< * break * else: */ - __pyx_t_26 = ((__pyx_v_beta > (((double)__pyx_v_roots) / __pyx_v_age)) != 0); - if (__pyx_t_26) { + __pyx_t_29 = ((__pyx_v_beta > (((double)__pyx_v_roots) / __pyx_v_age)) != 0); + if (__pyx_t_29) { - /* "ml.pyx":92 - * beta = 1. / (1. + exp(-probs[i])) + /* "ml.pyx":97 + * print beta * if beta > float(roots) / age: * break # <<<<<<<<<<<<<< * else: @@ -2895,50 +2965,50 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } /*else*/ { - /* "ml.pyx":94 + /* "ml.pyx":99 * break * else: * print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta) # <<<<<<<<<<<<<< * roots = n_victims + n_roots * i = -1 */ - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_kp_s_alpha_0_delta_1_Everyone_is_a_ro, __pyx_n_s_format); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_kp_s_alpha_0_delta_1_Everyone_is_a_ro, __pyx_n_s_format); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyFloat_FromDouble(__pyx_v_alpha); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyFloat_FromDouble(__pyx_v_alpha); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); - __pyx_t_6 = PyFloat_FromDouble(__pyx_v_delta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_v_delta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); - __pyx_t_15 = NULL; + __pyx_t_18 = NULL; __pyx_t_2 = 0; if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) { - __pyx_t_15 = PyMethod_GET_SELF(__pyx_t_4); - if (likely(__pyx_t_15)) { + __pyx_t_18 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_18)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); - __Pyx_INCREF(__pyx_t_15); + __Pyx_INCREF(__pyx_t_18); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); __pyx_t_2 = 1; } } - __pyx_t_14 = PyTuple_New(2+__pyx_t_2); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_14); - if (__pyx_t_15) { - PyTuple_SET_ITEM(__pyx_t_14, 0, __pyx_t_15); __Pyx_GIVEREF(__pyx_t_15); __pyx_t_15 = NULL; + __pyx_t_17 = PyTuple_New(2+__pyx_t_2); if (unlikely(!__pyx_t_17)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_17); + if (__pyx_t_18) { + PyTuple_SET_ITEM(__pyx_t_17, 0, __pyx_t_18); __Pyx_GIVEREF(__pyx_t_18); __pyx_t_18 = NULL; } - PyTuple_SET_ITEM(__pyx_t_14, 0+__pyx_t_2, __pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_17, 0+__pyx_t_2, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_14, 1+__pyx_t_2, __pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_17, 1+__pyx_t_2, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_6); __pyx_t_3 = 0; __pyx_t_6 = 0; - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_14, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_17, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; + __Pyx_DECREF(__pyx_t_17); __pyx_t_17 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__Pyx_PrintOne(0, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (__Pyx_PrintOne(0, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - /* "ml.pyx":95 + /* "ml.pyx":100 * else: * print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta) * roots = n_victims + n_roots # <<<<<<<<<<<<<< @@ -2947,7 +3017,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __pyx_v_roots = (__pyx_v_n_victims + __pyx_v_n_roots); - /* "ml.pyx":96 + /* "ml.pyx":101 * print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta) * roots = n_victims + n_roots * i = -1 # <<<<<<<<<<<<<< @@ -2958,7 +3028,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } __pyx_L20_break:; - /* "ml.pyx":97 + /* "ml.pyx":102 * roots = n_victims + n_roots * i = -1 * beta = float(roots) / age # <<<<<<<<<<<<<< @@ -2967,7 +3037,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __pyx_v_beta = (((double)__pyx_v_roots) / __pyx_v_age); - /* "ml.pyx":98 + /* "ml.pyx":103 * i = -1 * beta = float(roots) / age * for i in xrange(n_victims - 1, 0, -1): # <<<<<<<<<<<<<< @@ -2977,19 +3047,19 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ for (__pyx_t_10 = (__pyx_v_n_victims - 1); __pyx_t_10 > 0; __pyx_t_10-=1) { __pyx_v_i = __pyx_t_10; - /* "ml.pyx":99 + /* "ml.pyx":104 * beta = float(roots) / age * for i in xrange(n_victims - 1, 0, -1): * if probs[i] >= log(beta/(1.- beta)): # <<<<<<<<<<<<<< * break * ll += age * log(1 - beta) */ - __pyx_t_20 = __pyx_v_i; - if (__pyx_t_20 < 0) __pyx_t_20 += __pyx_pybuffernd_probs.diminfo[0].shape; - __pyx_t_26 = (((*__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_20, __pyx_pybuffernd_probs.diminfo[0].strides)) >= log((__pyx_v_beta / (1. - __pyx_v_beta)))) != 0); - if (__pyx_t_26) { + __pyx_t_12 = __pyx_v_i; + if (__pyx_t_12 < 0) __pyx_t_12 += __pyx_pybuffernd_probs.diminfo[0].shape; + __pyx_t_29 = (((*__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs.rcbuffer->pybuffer.buf, __pyx_t_12, __pyx_pybuffernd_probs.diminfo[0].strides)) >= log((__pyx_v_beta / (1. - __pyx_v_beta)))) != 0); + if (__pyx_t_29) { - /* "ml.pyx":100 + /* "ml.pyx":105 * for i in xrange(n_victims - 1, 0, -1): * if probs[i] >= log(beta/(1.- beta)): * break # <<<<<<<<<<<<<< @@ -3001,7 +3071,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } __pyx_L23_break:; - /* "ml.pyx":101 + /* "ml.pyx":106 * if probs[i] >= log(beta/(1.- beta)): * break * ll += age * log(1 - beta) # <<<<<<<<<<<<<< @@ -3010,17 +3080,17 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __pyx_v_ll = (__pyx_v_ll + (__pyx_v_age * log((1.0 - __pyx_v_beta)))); - /* "ml.pyx":102 + /* "ml.pyx":107 * break * ll += age * log(1 - beta) * if i >= 0: # <<<<<<<<<<<<<< * ll += cums[i] * if roots > 0: */ - __pyx_t_26 = ((__pyx_v_i >= 0) != 0); - if (__pyx_t_26) { + __pyx_t_29 = ((__pyx_v_i >= 0) != 0); + if (__pyx_t_29) { - /* "ml.pyx":103 + /* "ml.pyx":108 * ll += age * log(1 - beta) * if i >= 0: * ll += cums[i] # <<<<<<<<<<<<<< @@ -3034,17 +3104,17 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } __pyx_L25:; - /* "ml.pyx":104 + /* "ml.pyx":109 * if i >= 0: * ll += cums[i] * if roots > 0: # <<<<<<<<<<<<<< * ll += roots * log(beta) - roots * log(1 - beta) * return (beta, roots, ll) */ - __pyx_t_26 = ((__pyx_v_roots > 0) != 0); - if (__pyx_t_26) { + __pyx_t_29 = ((__pyx_v_roots > 0) != 0); + if (__pyx_t_29) { - /* "ml.pyx":105 + /* "ml.pyx":110 * ll += cums[i] * if roots > 0: * ll += roots * log(beta) - roots * log(1 - beta) # <<<<<<<<<<<<<< @@ -3055,29 +3125,29 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } __pyx_L26:; - /* "ml.pyx":106 + /* "ml.pyx":111 * if roots > 0: * ll += roots * log(beta) - roots * log(1 - beta) * return (beta, roots, ll) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); - __pyx_t_5 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __pyx_t_14 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_14); - __pyx_t_6 = PyTuple_New(3); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_17 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_17)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_17); + __pyx_t_6 = PyTuple_New(3); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_6, 2, __pyx_t_14); - __Pyx_GIVEREF(__pyx_t_14); + PyTuple_SET_ITEM(__pyx_t_6, 2, __pyx_t_17); + __Pyx_GIVEREF(__pyx_t_17); __pyx_t_5 = 0; __pyx_t_4 = 0; - __pyx_t_14 = 0; + __pyx_t_17 = 0; __pyx_r = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L0; @@ -3099,6 +3169,9 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_XDECREF(__pyx_t_14); __Pyx_XDECREF(__pyx_t_15); __Pyx_XDECREF(__pyx_t_16); + __Pyx_XDECREF(__pyx_t_17); + __Pyx_XDECREF(__pyx_t_18); + __Pyx_XDECREF(__pyx_t_19); { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_cums.rcbuffer->pybuffer); @@ -3120,6 +3193,9 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_XDECREF((PyObject *)__pyx_v_probs_fail); __Pyx_XDECREF((PyObject *)__pyx_v_probs_nv); __Pyx_XDECREF((PyObject *)__pyx_v_cums); + __Pyx_XDECREF(__pyx_v_w1); + __Pyx_XDECREF(__pyx_v_w2); + __Pyx_XDECREF(__pyx_v_w3); __Pyx_DECREF(((PyObject *)__pyx_cur_scope)); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); @@ -5386,7 +5462,6 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_kp_s_Users_ben_Documents_Cascade_Pro, __pyx_k_Users_ben_Documents_Cascade_Pro, sizeof(__pyx_k_Users_ben_Documents_Cascade_Pro), 0, 0, 1, 0}, {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, {&__pyx_n_s_age, __pyx_k_age, sizeof(__pyx_k_age), 0, 0, 1, 1}, - {&__pyx_n_s_all_failures, __pyx_k_all_failures, sizeof(__pyx_k_all_failures), 0, 0, 1, 1}, {&__pyx_n_s_alpha, __pyx_k_alpha, sizeof(__pyx_k_alpha), 0, 0, 1, 1}, {&__pyx_kp_s_alpha_0_delta_1_Everyone_is_a_ro, __pyx_k_alpha_0_delta_1_Everyone_is_a_ro, sizeof(__pyx_k_alpha_0_delta_1_Everyone_is_a_ro), 0, 0, 1, 0}, {&__pyx_n_s_args, __pyx_k_args, sizeof(__pyx_k_args), 0, 0, 1, 1}, @@ -5441,18 +5516,21 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_throw, __pyx_k_throw, sizeof(__pyx_k_throw), 0, 0, 1, 1}, {&__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_k_unknown_dtype_code_in_numpy_pxd, sizeof(__pyx_k_unknown_dtype_code_in_numpy_pxd), 0, 1, 0, 0}, {&__pyx_n_s_victims, __pyx_k_victims, sizeof(__pyx_k_victims), 0, 0, 1, 1}, + {&__pyx_n_s_w1, __pyx_k_w1, sizeof(__pyx_k_w1), 0, 0, 1, 1}, + {&__pyx_n_s_w2, __pyx_k_w2, sizeof(__pyx_k_w2), 0, 0, 1, 1}, + {&__pyx_n_s_w3, __pyx_k_w3, sizeof(__pyx_k_w3), 0, 0, 1, 1}, {&__pyx_n_s_xrange, __pyx_k_xrange, sizeof(__pyx_k_xrange), 0, 0, 1, 1}, {&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0} }; static int __Pyx_InitCachedBuiltins(void) { - __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_sum = __Pyx_GetBuiltinName(__pyx_n_s_sum); if (!__pyx_builtin_sum) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_max = __Pyx_GetBuiltinName(__pyx_n_s_max); if (!__pyx_builtin_max) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_builtin_sum = __Pyx_GetBuiltinName(__pyx_n_s_sum); if (!__pyx_builtin_sum) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_builtin_max = __Pyx_GetBuiltinName(__pyx_n_s_max); if (!__pyx_builtin_max) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #if PY_MAJOR_VERSION >= 3 - __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #else - __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_xrange); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_xrange); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 218; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 231; __pyx_clineno = __LINE__; goto __pyx_L1_error;} @@ -5466,14 +5544,14 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); - /* "ml.pyx":81 - * probs_nv[i] = sum(failures) - * probs.sort() - * probs = probs[::-1] # <<<<<<<<<<<<<< + /* "ml.pyx":85 + * + * # calculate log likelihood + * probs.sort(); probs = probs[::-1] # sort probs in descending order # <<<<<<<<<<<<<< * cdef: * np.ndarray[DTYPE_t] cums = probs.cumsum() */ - __pyx_slice_ = PySlice_New(Py_None, Py_None, __pyx_int_neg_1); if (unlikely(!__pyx_slice_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_slice_ = PySlice_New(Py_None, Py_None, __pyx_int_neg_1); if (unlikely(!__pyx_slice_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_slice_); __Pyx_GIVEREF(__pyx_slice_); @@ -5550,10 +5628,10 @@ static int __Pyx_InitCachedConstants(void) { * DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma=10): * cdef: */ - __pyx_tuple__8 = PyTuple_Pack(29, __pyx_n_s_root_victims, __pyx_n_s_victims, __pyx_n_s_non_victims, __pyx_n_s_age, __pyx_n_s_alpha, __pyx_n_s_delta, __pyx_n_s_gamma, __pyx_n_s_n_roots, __pyx_n_s_n_victims, __pyx_n_s_n_nodes, __pyx_n_s_roots, __pyx_n_s_i, __pyx_n_s_dist, __pyx_n_s_dt, __pyx_n_s_t, __pyx_n_s_l, __pyx_n_s_beta, __pyx_n_s_all_failures, __pyx_n_s_ll, __pyx_n_s_beta2, __pyx_n_s_parents, __pyx_n_s_failures, __pyx_n_s_successes, __pyx_n_s_probs, __pyx_n_s_probs_fail, __pyx_n_s_probs_nv, __pyx_n_s_cums, __pyx_n_s_genexpr, __pyx_n_s_genexpr); if (unlikely(!__pyx_tuple__8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_tuple__8 = PyTuple_Pack(31, __pyx_n_s_root_victims, __pyx_n_s_victims, __pyx_n_s_non_victims, __pyx_n_s_age, __pyx_n_s_alpha, __pyx_n_s_delta, __pyx_n_s_gamma, __pyx_n_s_n_roots, __pyx_n_s_n_victims, __pyx_n_s_n_nodes, __pyx_n_s_roots, __pyx_n_s_i, __pyx_n_s_dist, __pyx_n_s_dt, __pyx_n_s_t, __pyx_n_s_l, __pyx_n_s_beta, __pyx_n_s_ll, __pyx_n_s_beta2, __pyx_n_s_parents, __pyx_n_s_failures, __pyx_n_s_successes, __pyx_n_s_probs, __pyx_n_s_probs_fail, __pyx_n_s_probs_nv, __pyx_n_s_cums, __pyx_n_s_w1, __pyx_n_s_w2, __pyx_n_s_w3, __pyx_n_s_genexpr, __pyx_n_s_genexpr); if (unlikely(!__pyx_tuple__8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__8); __Pyx_GIVEREF(__pyx_tuple__8); - __pyx_codeobj__9 = (PyObject*)__Pyx_PyCode_New(7, 0, 29, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__8, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Users_ben_Documents_Cascade_Pro, __pyx_n_s_ml, 50, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_codeobj__9 = (PyObject*)__Pyx_PyCode_New(7, 0, 31, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__8, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Users_ben_Documents_Cascade_Pro, __pyx_n_s_ml, 50, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; @@ -5653,7 +5731,7 @@ PyMODINIT_FUNC PyInit_ml(void) if (PyType_Ready(&__pyx_type_2ml___pyx_scope_struct__ml) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_type_2ml___pyx_scope_struct__ml.tp_print = 0; __pyx_ptype_2ml___pyx_scope_struct__ml = &__pyx_type_2ml___pyx_scope_struct__ml; - if (PyType_Ready(&__pyx_type_2ml___pyx_scope_struct_1_genexpr) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (PyType_Ready(&__pyx_type_2ml___pyx_scope_struct_1_genexpr) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 74; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_type_2ml___pyx_scope_struct_1_genexpr.tp_print = 0; __pyx_ptype_2ml___pyx_scope_struct_1_genexpr = &__pyx_type_2ml___pyx_scope_struct_1_genexpr; /*--- Type import code ---*/ diff --git a/experiments/ml.pyx b/experiments/ml.pyx index 74e5be3..c1a5616 100644 --- a/experiments/ml.pyx +++ b/experiments/ml.pyx @@ -51,34 +51,38 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age, DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma=10): cdef: int n_roots, n_victims, n_nodes, roots, i, dist, dt, t, l - DTYPE_t beta, all_failures, ll, beta2 + DTYPE_t beta, ll, beta2 list parents, failures, successes n_roots, n_victims = len(root_victims), len(victims) - n_nodes = n_victims + len(non_victims) + n_roots + n_nodes = n_roots + n_victims + len(non_victims) cdef: np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) + + # loop through victims for i, parents in enumerate(victims.itervalues()): # for each victim node i, compute the probability that all its parents # fail to infect it, also computes the probability that its most # likely parent infects it failures = [weight_failure(dist, dt, alpha, delta, gamma) - for (dist, dt) in parents] - all_failures = sum(failures) + for (dist, dt, w1, w2, w3) in parents] + probs_fail[i] = sum(failures) successes = [weight_success(dist, dt, alpha, delta, gamma) - for (dist, dt) in parents] - probs[i] = max(s - failures[l] for l, s in enumerate(successes)) - probs_fail[i] = all_failures + for (dist, dt, w1, w2, w3) in parents] + # find parent that maximizes p/\tilde{p} + probs[i] = max(s - failures[l] for l, s in enumerate(successes)) + # loop through non-victims for i, parents in enumerate(non_victims.itervalues()): # for each non victim node, compute the probability that all its # parents fail to infect it failures = [weight_failure(dist, dt, alpha, delta, gamma) - for (dist, dt) in parents] + for (dist, dt, w1, w2, w3) in parents] probs_nv[i] = sum(failures) - probs.sort() - probs = probs[::-1] + + # calculate log likelihood + probs.sort(); probs = probs[::-1] # sort probs in descending order cdef: np.ndarray[DTYPE_t] cums = probs.cumsum() ll = probs_fail.sum() @@ -87,7 +91,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age, for i in xrange(n_victims - 1, 0, -1): # iterate over all victim nodes to find the optimal threshold roots = n_roots + n_victims - 1 - i - beta = 1. / (1. + exp(-probs[i])) + beta = 1. / (1. + exp(-probs[i]))#exp(probs[i])# if beta > float(roots) / age: break else: diff --git a/experiments/ml.so b/experiments/ml.so Binary files differindex 571865b..6dcab82 100755 --- a/experiments/ml.so +++ b/experiments/ml.so diff --git a/experiments/out.log b/experiments/out.log index 407eefe..f6caa9b 100644 --- a/experiments/out.log +++ b/experiments/out.log @@ -1,3858 +1,15 @@ -1.0 0.01 3.45324881289e-06 11002 -152373.756762 -1.0 0.04 3.38262701841e-06 10777 -152405.770449 -1.0 0.07 3.35406442597e-06 10686 -153164.537314 -1.0 0.1 3.33429032352e-06 10623 -154401.200111 -1.0 0.13 3.30698322965e-06 10536 -156056.750373 -1.0 0.16 3.30698322965e-06 10536 -158092.563181 -1.0 0.19 3.30698322965e-06 10536 -160524.168077 -1.0 0.22 3.28595362863e-06 10469 -163338.491856 -1.0 0.25 3.28407038077e-06 10463 -166548.430599 -1.0 0.28 3.28407038077e-06 10463 -170173.765055 -1.0 0.31 3.28407038077e-06 10463 -174231.987109 -1.0 0.34 3.26147140654e-06 10391 -178735.091444 -1.0 0.37 3.26147140654e-06 10391 -183715.722798 -1.0 0.4 3.26147140654e-06 10391 -189211.308601 -1.0 0.43 3.26147140654e-06 10391 -195260.710977 -1.0 0.46 3.25739103619e-06 10378 -201910.210955 -1.0 0.49 3.23322268875e-06 10301 -209212.13195 -1.0 0.52 3.23322268875e-06 10301 -217226.599833 -1.0 0.55 3.23322268875e-06 10301 -226044.689665 -1.0 0.58 3.23322268875e-06 10301 -235764.690988 -1.0 0.61 3.23322268875e-06 10301 -246507.568015 -1.0 0.64 3.23322268875e-06 10301 -258424.514499 -1.0 0.67 3.23322268875e-06 10301 -271706.978841 -1.0 0.7 3.21407633557e-06 10240 -286594.302167 -1.0 0.73 3.21407633557e-06 10240 -303418.139175 -1.0 0.76 3.21407633557e-06 10240 -322623.131242 -1.0 0.79 3.21407633557e-06 10240 -344830.756962 -1.0 0.82 3.21407633557e-06 10240 -370952.165726 -1.0 0.85 3.19775485418e-06 10188 -402393.216523 -1.0 0.88 3.19241898527e-06 10171 -441521.055457 -0.0909090909091 0.01 3.0750298691e-06 9797 -150463.291574 -0.0909090909091 0.04 2.64376611079e-06 8423 -146426.454929 -0.0909090909091 0.07 2.52198274964e-06 8035 -144774.783776 -0.0909090909091 0.1 2.44288633982e-06 7783 -144284.276633 -0.0909090909091 0.13 2.39643289278e-06 7635 -144559.509024 -0.0909090909091 0.16 2.36190668215e-06 7525 -145459.762822 -0.0909090909091 0.19 2.32894984472e-06 7420 -146895.533962 -0.0909090909091 0.22 2.29567913266e-06 7314 -148827.173822 -0.0909090909091 0.25 2.27496340627e-06 7248 -151237.723392 -0.0909090909091 0.28 2.25487542918e-06 7184 -154121.451004 -0.0909090909091 0.31 2.24169269421e-06 7142 -157484.470574 -0.0909090909091 0.34 2.22819608459e-06 7099 -161337.94231 -0.0909090909091 0.37 2.20653873429e-06 7030 -165698.258589 -0.0909090909091 0.4 2.1917866261e-06 6983 -170594.028285 -0.0909090909091 0.43 2.18362588541e-06 6957 -176058.93665 -0.0909090909091 0.46 2.17295414758e-06 6923 -182135.66092 -0.0909090909091 0.49 2.16824602794e-06 6908 -188874.899404 -0.0909090909091 0.52 2.15882978868e-06 6878 -196339.502374 -0.0909090909091 0.55 2.14941354942e-06 6848 -204605.31655 -0.0909090909091 0.58 2.14031118479e-06 6819 -213766.700883 -0.0909090909091 0.61 2.12775619911e-06 6779 -223938.297053 -0.0909090909091 0.64 2.12242033019e-06 6762 -235265.93441 -0.0909090909091 0.67 2.11394571485e-06 6735 -247935.42533 -0.0909090909091 0.7 2.10296010238e-06 6700 -262185.724641 -0.0909090909091 0.73 2.09322998847e-06 6669 -278332.096551 -0.0909090909091 0.76 2.08130275207e-06 6631 -296803.170057 -0.0909090909091 0.79 2.07125876352e-06 6599 -318201.827345 -0.0909090909091 0.82 2.05336790892e-06 6542 -343410.417577 -0.0909090909091 0.85 2.04395166965e-06 6512 -373799.089191 -0.0909090909091 0.88 2.03076893468e-06 6470 -411665.87129 -0.047619047619 0.01 2.99938608035e-06 9556 -149763.532956 -0.047619047619 0.04 2.33114696722e-06 7427 -144303.444655 -0.047619047619 0.07 2.15192454655e-06 6856 -141652.327419 -0.047619047619 0.1 2.0800472535e-06 6627 -140455.986397 -0.047619047619 0.13 2.01946944757e-06 6434 -140194.999096 -0.047619047619 0.16 1.98494323693e-06 6324 -140646.765177 -0.047619047619 0.19 1.95606676985e-06 6232 -141704.232879 -0.047619047619 0.22 1.93001517456e-06 6149 -143307.788155 -0.047619047619 0.25 1.90051095819e-06 6055 -145420.471085 -0.047619047619 0.28 1.88105073038e-06 5993 -148029.74579 -0.047619047619 0.31 1.86190437721e-06 5932 -151134.210114 -0.047619047619 0.34 1.8424441494e-06 5870 -154741.974156 -0.047619047619 0.37 1.82737816657e-06 5822 -158867.786416 -0.047619047619 0.4 1.81607867946e-06 5786 -163537.222704 -0.047619047619 0.43 1.80258206984e-06 5743 -168781.553811 -0.047619047619 0.46 1.79096870808e-06 5706 -174639.297024 -0.047619047619 0.49 1.77935534633e-06 5669 -181160.048266 -0.047619047619 0.52 1.76805585921e-06 5633 -188404.097365 -0.047619047619 0.55 1.75644249745e-06 5596 -196445.989484 -0.047619047619 0.58 1.74765400747e-06 5568 -205377.678182 -0.047619047619 0.61 1.73478514714e-06 5527 -215312.601697 -0.047619047619 0.64 1.7263105318e-06 5500 -226393.784294 -0.047619047619 0.67 1.7165804179e-06 5469 -238803.804134 -0.047619047619 0.7 1.70873355184e-06 5444 -252777.747868 -0.047619047619 0.73 1.69743406473e-06 5408 -268625.6512 -0.047619047619 0.76 1.68613457761e-06 5372 -286768.996828 -0.047619047619 0.79 1.67514896513e-06 5337 -307800.090952 -0.047619047619 0.82 1.66416335266e-06 5302 -332588.345345 -0.047619047619 0.85 1.64941124448e-06 5255 -362477.935405 -0.047619047619 0.88 1.63120651523e-06 5197 -399721.32613 -0.0322580645161 0.01 3.0571390145e-06 9740 -149252.337596 -0.0322580645161 0.04 2.11677058663e-06 6744 -143085.434954 -0.0322580645161 0.07 1.95230027415e-06 6220 -139856.709526 -0.0322580645161 0.1 1.86096275328e-06 5929 -138270.729159 -0.0322580645161 0.13 1.79975719806e-06 5734 -137696.24859 -0.0322580645161 0.16 1.75581474816e-06 5594 -137887.862672 -0.0322580645161 0.19 1.72317178538e-06 5490 -138716.003824 -0.0322580645161 0.22 1.69806181401e-06 5410 -140112.438269 -0.0322580645161 0.25 1.67201021871e-06 5327 -142039.406609 -0.0322580645161 0.28 1.65286386554e-06 5266 -144475.892389 -0.0322580645161 0.31 1.63403138701e-06 5206 -147418.470661 -0.0322580645161 0.34 1.61111853813e-06 5133 -150870.399022 -0.0322580645161 0.37 1.59354155817e-06 5077 -154843.715403 -0.0322580645161 0.4 1.57910332464e-06 5031 -159362.889403 -0.0322580645161 0.43 1.56497896574e-06 4986 -164458.053537 -0.0322580645161 0.46 1.55367947862e-06 4950 -170167.915189 -0.0322580645161 0.49 1.53955511973e-06 4905 -176539.352396 -0.0322580645161 0.52 1.52794175797e-06 4868 -183631.216215 -0.0322580645161 0.55 1.51695614549e-06 4833 -191516.291085 -0.0322580645161 0.58 1.50408728516e-06 4792 -200285.038784 -0.0322580645161 0.61 1.49718204304e-06 4770 -210050.477772 -0.0322580645161 0.64 1.4865103052e-06 4736 -220953.481602 -0.0322580645161 0.67 1.47113044774e-06 4687 -233170.874575 -0.0322580645161 0.7 1.46202808312e-06 4658 -246934.474791 -0.0322580645161 0.73 1.45323959314e-06 4630 -262551.130327 -0.0322580645161 0.76 1.43817361031e-06 4582 -280435.91002 -0.0322580645161 0.79 1.42373537677e-06 4536 -301168.584331 -0.0322580645161 0.82 1.41369138823e-06 4504 -325605.866758 -0.0322580645161 0.85 1.39893928004e-06 4457 -355069.585014 -0.0322580645161 0.88 1.38355942258e-06 4408 -391769.852111 -0.0243902439024 0.01 3.00158320284e-06 9563 -148823.142 -0.0243902439024 0.04 1.98117674122e-06 6312 -142295.808377 -0.0243902439024 0.07 1.7925380813e-06 5711 -138673.442888 -0.0243902439024 0.1 1.69868956329e-06 5412 -136794.449231 -0.0243902439024 0.13 1.64313375163e-06 5235 -136004.086469 -0.0243902439024 0.16 1.5885195639e-06 5061 -136013.507055 -0.0243902439024 0.19 1.54959910827e-06 4937 -136672.239708 -0.0243902439024 0.22 1.51978101727e-06 4842 -137914.769668 -0.0243902439024 0.25 1.4924739234e-06 4755 -139695.720461 -0.0243902439024 0.28 1.47364144488e-06 4695 -141997.294447 -0.0243902439024 0.31 1.45292571849e-06 4629 -144810.730107 -0.0243902439024 0.34 1.4388013596e-06 4584 -148140.214587 -0.0243902439024 0.37 1.41808563322e-06 4518 -151995.978095 -0.0243902439024 0.4 1.40647227146e-06 4481 -156398.99106 -0.0243902439024 0.43 1.39517278434e-06 4445 -161379.729886 -0.0243902439024 0.46 1.38199004937e-06 4403 -166972.801242 -0.0243902439024 0.49 1.37069056225e-06 4367 -173225.941393 -0.0243902439024 0.52 1.3606465737e-06 4335 -180196.722942 -0.0243902439024 0.55 1.35248583301e-06 4309 -187957.793598 -0.0243902439024 0.58 1.34150022053e-06 4274 -196597.605228 -0.0243902439024 0.61 1.33239785591e-06 4245 -206225.259286 -0.0243902439024 0.64 1.32203999272e-06 4212 -216980.475554 -0.0243902439024 0.67 1.31419312666e-06 4187 -229039.175135 -0.0243902439024 0.7 1.30257976491e-06 4150 -242629.232668 -0.0243902439024 0.73 1.29504677349e-06 4126 -258051.500565 -0.0243902439024 0.76 1.28343341173e-06 4089 -275714.769655 -0.0243902439024 0.79 1.27715591889e-06 4069 -296193.760237 -0.0243902439024 0.82 1.26868130355e-06 4042 -320329.123752 -0.0243902439024 0.85 1.25800956572e-06 4008 -349419.694714 -0.0243902439024 0.88 1.24827945181e-06 3977 -385635.396338 -0.0196078431373 0.01 2.93410015478e-06 9348 -148498.466954 -0.0196078431373 0.04 1.86975124326e-06 5957 -141741.668613 -0.0196078431373 0.07 1.66887147229e-06 5317 -137797.607539 -0.0196078431373 0.1 1.56654833895e-06 4991 -135703.702967 -0.0196078431373 0.13 1.50157628803e-06 4784 -134726.60019 -0.0196078431373 0.16 1.45731996348e-06 4643 -134577.515808 -0.0196078431373 0.19 1.41683013465e-06 4514 -135106.887459 -0.0196078431373 0.22 1.39172016327e-06 4434 -136231.471965 -0.0196078431373 0.25 1.36755181583e-06 4357 -137909.165628 -0.0196078431373 0.28 1.35123033444e-06 4305 -140113.087181 -0.0196078431373 0.31 1.33208398127e-06 4244 -142835.314044 -0.0196078431373 0.34 1.31952899558e-06 4204 -146075.610904 -0.0196078431373 0.37 1.30603238597e-06 4161 -149845.477111 -0.0196078431373 0.4 1.29536064814e-06 4127 -154163.371633 -0.0196078431373 0.43 1.2809224146e-06 4081 -159056.348347 -0.0196078431373 0.46 1.27244779926e-06 4054 -164561.036785 -0.0196078431373 0.49 1.26522868249e-06 4031 -170724.096266 -0.0196078431373 0.52 1.25581244323e-06 4001 -177601.95894 -0.0196078431373 0.55 1.24733782789e-06 3974 -185264.61658 -0.0196078431373 0.58 1.24357133218e-06 3962 -193800.573442 -0.0196078431373 0.61 1.23572446613e-06 3937 -203318.009157 -0.0196078431373 0.64 1.23038859721e-06 3920 -213953.627589 -0.0196078431373 0.67 1.22599435222e-06 3906 -225881.765073 -0.0196078431373 0.7 1.21814748617e-06 3881 -239326.076937 -0.0196078431373 0.73 1.21061449476e-06 3857 -254583.887996 -0.0196078431373 0.76 1.20025663157e-06 3824 -272057.258962 -0.0196078431373 0.79 1.19366526408e-06 3803 -292310.40304 -0.0196078431373 0.82 1.18738777124e-06 3783 -316171.012162 -0.0196078431373 0.85 1.17828540662e-06 3754 -344915.833831 -0.0196078431373 0.88 1.16949691664e-06 3726 -380676.137333 -0.016393442623 0.01 2.88074146562e-06 9178 -148238.951955 -0.016393442623 0.04 1.76334773958e-06 5618 -141320.153976 -0.016393442623 0.07 1.57094258394e-06 5005 -137124.470779 -0.016393442623 0.1 1.46202808312e-06 4658 -134838.515361 -0.016393442623 0.13 1.39674215755e-06 4450 -133720.919166 -0.016393442623 0.16 1.35939107513e-06 4331 -133457.703056 -0.016393442623 0.19 1.32831748556e-06 4232 -133893.294598 -0.016393442623 0.22 1.30289363955e-06 4151 -134937.013968 -0.016393442623 0.25 1.2787252921e-06 4074 -136537.370778 -0.016393442623 0.28 1.26554255713e-06 4032 -138668.696809 -0.016393442623 0.31 1.25141819824e-06 3987 -141321.315854 -0.016393442623 0.34 1.24106033504e-06 3954 -144494.482684 -0.016393442623 0.37 1.23038859721e-06 3920 -148199.166995 -0.016393442623 0.4 1.22191398187e-06 3893 -152451.568181 -0.016393442623 0.43 1.21343936654e-06 3866 -157278.86005 -0.016393442623 0.46 1.20527862584e-06 3840 -162715.929842 -0.016393442623 0.49 1.1968040105e-06 3813 -168807.113089 -0.016393442623 0.52 1.19021264302e-06 3792 -175608.216447 -0.016393442623 0.55 1.18550452339e-06 3777 -183189.303582 -0.016393442623 0.58 1.17702990805e-06 3750 -191635.99382 -0.016393442623 0.61 1.17263566306e-06 3736 -201055.874861 -0.016393442623 0.64 1.16604429557e-06 3715 -211583.312365 -0.016393442623 0.67 1.15819742952e-06 3690 -223389.018938 -0.016393442623 0.7 1.1528615606e-06 3673 -236694.706709 -0.016393442623 0.73 1.14627019312e-06 3652 -251792.803141 -0.016393442623 0.76 1.1409343242e-06 3635 -269080.336351 -0.016393442623 0.79 1.13183195958e-06 3606 -289112.329 -0.016393442623 0.82 1.12272959496e-06 3577 -312700.133592 -0.016393442623 0.85 1.11362723033e-06 3548 -341096.487136 -0.016393442623 0.88 1.10640811356e-06 3525 -376393.803972 -0.0140845070423 0.01 2.82895214966e-06 9013 -148029.711632 -0.0140845070423 0.04 1.68613457761e-06 5372 -140973.63127 -0.0140845070423 0.07 1.48556868128e-06 4733 -136589.140351 -0.0140845070423 0.1 1.38230392401e-06 4404 -134158.87826 -0.0140845070423 0.13 1.32988685877e-06 4237 -132934.942574 -0.0140845070423 0.16 1.28563053423e-06 4096 -132589.314568 -0.0140845070423 0.19 1.25518469394e-06 3999 -132948.641969 -0.0140845070423 0.22 1.23509671684e-06 3935 -133924.243252 -0.0140845070423 0.25 1.21971685938e-06 3886 -135466.431375 -0.0140845070423 0.28 1.20810349762e-06 3849 -137545.277942 -0.0140845070423 0.31 1.19554851193e-06 3809 -140145.972683 -0.0140845070423 0.34 1.18393515017e-06 3772 -143266.16501 -0.0140845070423 0.37 1.17546053484e-06 3745 -146916.188241 -0.0140845070423 0.4 1.16886916735e-06 3724 -151113.14498 -0.0140845070423 0.43 1.16008067737e-06 3696 -155882.44839 -0.0140845070423 0.46 1.15254768596e-06 3672 -161257.484374 -0.0140845070423 0.49 1.14438694526e-06 3646 -167282.033339 -0.0140845070423 0.52 1.13905107635e-06 3629 -174011.783344 -0.0140845070423 0.55 1.13245970886e-06 3608 -181515.327979 -0.0140845070423 0.58 1.1268099653e-06 3590 -189876.867145 -0.0140845070423 0.61 1.11833534997e-06 3563 -199201.497637 -0.0140845070423 0.64 1.11143010784e-06 3541 -209621.860489 -0.0140845070423 0.67 1.10829136142e-06 3531 -221308.141517 -0.0140845070423 0.7 1.09981674608e-06 3504 -234477.667424 -0.0140845070423 0.73 1.09291150395e-06 3482 -249417.619486 -0.0140845070423 0.76 1.08632013647e-06 3461 -266518.941512 -0.0140845070423 0.79 1.07941489434e-06 3439 -286328.249506 -0.0140845070423 0.82 1.07345127614e-06 3420 -309642.402001 -0.0140845070423 0.85 1.06748765794e-06 3401 -337693.600303 -0.0140845070423 0.88 1.0590130426e-06 3374 -372530.298364 -0.0123456790123 0.01 2.77779058299e-06 8850 -147851.138646 -0.0123456790123 0.04 1.62712614488e-06 5184 -140694.481585 -0.0123456790123 0.07 1.41494688679e-06 4508 -136160.801015 -0.0123456790123 0.1 1.32329549129e-06 4216 -133620.289476 -0.0123456790123 0.13 1.26208993607e-06 4021 -132309.90306 -0.0123456790123 0.16 1.22693597615e-06 3909 -131890.375247 -0.0123456790123 0.19 1.20841737226e-06 3850 -132195.55712 -0.0123456790123 0.22 1.18832939516e-06 3786 -133126.31055 -0.0123456790123 0.25 1.17389116163e-06 3740 -134622.549188 -0.0123456790123 0.28 1.16290554915e-06 3705 -136654.925463 -0.0123456790123 0.31 1.15097831275e-06 3667 -139209.841103 -0.0123456790123 0.34 1.14124819884e-06 3636 -142283.951765 -0.0123456790123 0.37 1.134970706e-06 3616 -145886.056462 -0.0123456790123 0.4 1.12524059209e-06 3585 -150031.968853 -0.0123456790123 0.43 1.11519660354e-06 3553 -154745.123921 -0.0123456790123 0.46 1.10829136142e-06 3531 -160059.795513 -0.0123456790123 0.49 1.10232774322e-06 3512 -166021.016094 -0.0123456790123 0.52 1.09353925324e-06 3484 -172681.298157 -0.0123456790123 0.55 1.08663401111e-06 3462 -180107.569468 -0.0123456790123 0.58 1.08192589148e-06 3447 -188384.658662 -0.0123456790123 0.61 1.07564839863e-06 3427 -197616.421133 -0.0123456790123 0.64 1.07062640436e-06 3411 -207933.365089 -0.0123456790123 0.67 1.06623215937e-06 3397 -219502.485 -0.0123456790123 0.7 1.06183791438e-06 3383 -232538.671407 -0.0123456790123 0.73 1.05556042154e-06 3363 -247325.153847 -0.0123456790123 0.76 1.04551643299e-06 3331 -264244.316856 -0.0123456790123 0.79 1.03955281479e-06 3312 -283832.864484 -0.0123456790123 0.82 1.03421694587e-06 3295 -306876.425881 -0.0123456790123 0.85 1.0291949516e-06 3279 -334581.940521 -0.0123456790123 0.88 1.02197583483e-06 3256 -368957.856898 -0.010989010989 0.01 2.72662901632e-06 8687 -147693.31049 -0.010989010989 0.04 1.58067269785e-06 5036 -140472.316549 -0.010989010989 0.07 1.3546829555e-06 4316 -135805.749177 -0.010989010989 0.1 1.26365930928e-06 4026 -133177.464331 -0.010989010989 0.13 1.21657811296e-06 3876 -131799.574207 -0.010989010989 0.16 1.18738777124e-06 3783 -131334.878044 -0.010989010989 0.19 1.1669859195e-06 3718 -131596.671712 -0.010989010989 0.22 1.15129218739e-06 3668 -132486.626052 -0.010989010989 0.25 1.13716782849e-06 3623 -133944.039208 -0.010989010989 0.28 1.12618221602e-06 3588 -135938.033856 -0.010989010989 0.31 1.11268560641e-06 3545 -138451.189282 -0.010989010989 0.34 1.10452486571e-06 3519 -141479.836593 -0.010989010989 0.37 1.09510862645e-06 3489 -145034.563558 -0.010989010989 0.4 1.08569238718e-06 3459 -149128.878036 -0.010989010989 0.43 1.07878714506e-06 3437 -153788.500503 -0.010989010989 0.46 1.07156802829e-06 3414 -159046.320523 -0.010989010989 0.49 1.06685990865e-06 3399 -164945.201756 -0.010989010989 0.52 1.06183791438e-06 3383 -171538.91575 -0.010989010989 0.55 1.05461879761e-06 3360 -178893.444648 -0.010989010989 0.58 1.04614418227e-06 3333 -187089.817325 -0.010989010989 0.61 1.03955281479e-06 3312 -196230.218933 -0.010989010989 0.64 1.03704181765e-06 3304 -206445.354015 -0.010989010989 0.67 1.03233369802e-06 3289 -217899.413824 -0.010989010989 0.7 1.02731170374e-06 3273 -230803.059378 -0.010989010989 0.73 1.02354520804e-06 3261 -245436.160112 -0.010989010989 0.76 1.01726771519e-06 3241 -262175.423418 -0.010989010989 0.79 1.0128734702e-06 3227 -281548.878857 -0.010989010989 0.82 1.00785147593e-06 3211 -304326.295793 -0.010989010989 0.85 1.00282948166e-06 3195 -331692.241487 -0.010989010989 0.88 9.9906298595e-07 3183 -365613.419073 -0.00990099009901 0.01 2.68645306213e-06 8559 -147555.25669 -0.00990099009901 0.04 1.53610249866e-06 4894 -140287.720573 -0.00990099009901 0.07 1.30917113239e-06 4171 -135509.817938 -0.00990099009901 0.1 1.22034460866e-06 3888 -132807.52639 -0.00990099009901 0.13 1.18267965161e-06 3768 -131389.650464 -0.00990099009901 0.16 1.15694193095e-06 3686 -130887.044265 -0.00990099009901 0.19 1.13559845528e-06 3618 -131115.815203 -0.00990099009901 0.22 1.1208463471e-06 3571 -131970.808628 -0.00990099009901 0.25 1.10389711643e-06 3517 -133390.352673 -0.00990099009901 0.28 1.09259762931e-06 3481 -135344.517739 -0.00990099009901 0.31 1.08067039291e-06 3443 -137815.876501 -0.00990099009901 0.34 1.07125415364e-06 3413 -140803.172502 -0.00990099009901 0.37 1.06403503687e-06 3390 -144312.935474 -0.00990099009901 0.4 1.05807141867e-06 3371 -148361.094259 -0.00990099009901 0.43 1.04928292869e-06 3343 -152971.076082 -0.00990099009901 0.46 1.03986668943e-06 3313 -158173.821204 -0.00990099009901 0.49 1.03610019372e-06 3301 -164012.363667 -0.00990099009901 0.52 1.03107819945e-06 3285 -170540.249349 -0.00990099009901 0.55 1.02574233053e-06 3268 -177821.926267 -0.00990099009901 0.58 1.02197583483e-06 3256 -185939.244178 -0.00990099009901 0.61 1.01632609127e-06 3238 -194993.053383 -0.00990099009901 0.64 1.01224572092e-06 3225 -205110.183476 -0.00990099009901 0.67 1.00753760129e-06 3210 -216452.034634 -0.00990099009901 0.7 1.00282948166e-06 3195 -229227.239054 -0.00990099009901 0.73 1.00031848452e-06 3187 -243710.052163 -0.00990099009901 0.76 9.98121362024e-07 3180 -260273.025126 -0.00990099009901 0.79 9.95924239529e-07 3173 -279435.158033 -0.00990099009901 0.82 9.89018997402e-07 3151 -301950.022349 -0.00990099009901 0.85 9.80544382064e-07 3124 -328978.068445 -0.00990099009901 0.88 9.76464011716e-07 3111 -362445.659844 -0.00900900900901 0.01 2.64847423043e-06 8438 -147437.394265 -0.00900900900901 0.04 1.48211606021e-06 4722 -140131.375048 -0.00900900900901 0.07 1.26554255713e-06 4032 -135259.083305 -0.00900900900901 0.1 1.19366526408e-06 3803 -132506.419616 -0.00900900900901 0.13 1.15600030702e-06 3683 -131054.673847 -0.00900900900901 0.16 1.12932096244e-06 3598 -130525.021048 -0.00900900900901 0.19 1.10734973749e-06 3528 -130722.598595 -0.00900900900901 0.22 1.09134213074e-06 3477 -131543.000903 -0.00900900900901 0.25 1.07564839863e-06 3427 -132927.065507 -0.00900900900901 0.28 1.06560441009e-06 3395 -134843.955463 -0.00900900900901 0.31 1.05744366939e-06 3369 -137279.261396 -0.00900900900901 0.34 1.0448886837e-06 3329 -140227.934595 -0.00900900900901 0.37 1.03484469516e-06 3297 -143694.047498 -0.00900900900901 0.4 1.02982270088e-06 3281 -147695.895555 -0.00900900900901 0.43 1.02480070661e-06 3265 -152256.230472 -0.00900900900901 0.46 1.01883708841e-06 3246 -157407.301216 -0.00900900900901 0.49 1.01381509413e-06 3230 -163189.429805 -0.00900900900901 0.52 1.00847922521e-06 3213 -169654.901873 -0.00900900900901 0.55 1.00534047879e-06 3203 -176868.008594 -0.00900900900901 0.58 1.00126010845e-06 3190 -184908.932224 -0.00900900900901 0.61 9.98749111308e-07 3182 -193877.541927 -0.00900900900901 0.64 9.95924239529e-07 3173 -203899.360573 -0.00900900900901 0.67 9.91216119897e-07 3158 -215132.65308 -0.00900900900901 0.7 9.86821874907e-07 3144 -227781.500816 -0.00900900900901 0.73 9.80230507422e-07 3123 -242115.731542 -0.00900900900901 0.76 9.77405635642e-07 3114 -258501.167286 -0.00900900900901 0.79 9.7269751601e-07 3099 -277448.318336 -0.00900900900901 0.82 9.67675521736e-07 3083 -299697.203223 -0.00900900900901 0.85 9.62653527462e-07 3067 -326386.690291 -0.00900900900901 0.88 9.54492786766e-07 3041 -359400.548583 -0.00826446280992 0.01 2.61363414515e-06 8327 -147334.710644 -0.00826446280992 0.04 1.44507885244e-06 4604 -139996.803203 -0.00826446280992 0.07 1.22913309864e-06 3916 -135044.800818 -0.00826446280992 0.1 1.16541654629e-06 3713 -132261.403483 -0.00826446280992 0.13 1.13057646101e-06 3602 -130783.358263 -0.00826446280992 0.16 1.10264161786e-06 3513 -130224.787931 -0.00826446280992 0.19 1.08192589148e-06 3447 -130392.918578 -0.00826446280992 0.22 1.06591828473e-06 3396 -131182.356639 -0.00826446280992 0.25 1.05493267225e-06 3361 -132536.174963 -0.00826446280992 0.28 1.0389250655e-06 3310 -134420.17659 -0.00826446280992 0.31 1.03045045017e-06 3283 -136817.813604 -0.00826446280992 0.34 1.02385908268e-06 3262 -139727.057504 -0.00826446280992 0.37 1.01663996591e-06 3239 -143154.547809 -0.00826446280992 0.4 1.01161797164e-06 3223 -147114.17848 -0.00826446280992 0.43 1.00596822808e-06 3205 -151628.818775 -0.00826446280992 0.46 1.0009462338e-06 3189 -156729.952421 -0.00826446280992 0.49 9.9749361274e-07 3178 -162457.626339 -0.00826446280992 0.52 9.9466874096e-07 3169 -168863.735914 -0.00826446280992 0.55 9.89646746686e-07 3153 -176010.816105 -0.00826446280992 0.58 9.83997003127e-07 3135 -183977.077798 -0.00826446280992 0.61 9.78347259569e-07 3117 -192860.147817 -0.00826446280992 0.64 9.76777886358e-07 3112 -202784.286039 -0.00826446280992 0.67 9.7269751601e-07 3099 -213906.546095 -0.00826446280992 0.7 9.67989396378e-07 3084 -226427.413545 -0.00826446280992 0.73 9.64222900672e-07 3072 -240613.266994 -0.00826446280992 0.76 9.57317658545e-07 3050 -256822.193344 -0.00826446280992 0.79 9.53865037481e-07 3039 -275554.637798 -0.00826446280992 0.82 9.52295664271e-07 3034 -297539.787295 -0.00826446280992 0.85 9.47587544639e-07 3019 -323894.120996 -0.00826446280992 0.88 9.41310051796e-07 2999 -356460.738163 -0.00763358778626 0.01 2.58224668093e-06 8227 -147246.918164 -0.00763358778626 0.04 1.40772777002e-06 4485 -139885.172929 -0.00763358778626 0.07 1.20308150335e-06 3833 -134868.305177 -0.00763358778626 0.1 1.14501469455e-06 3648 -132057.116982 -0.00763358778626 0.13 1.10954685999e-06 3535 -130559.17433 -0.00763358778626 0.16 1.07972876898e-06 3440 -129973.793412 -0.00763358778626 0.19 1.06152403974e-06 3382 -130113.054358 -0.00763358778626 0.22 1.04457480906e-06 3328 -130876.80811 -0.00763358778626 0.25 1.03139207409e-06 3286 -132199.688903 -0.00763358778626 0.28 1.02260358411e-06 3258 -134051.760643 -0.00763358778626 0.31 1.01350121949e-06 3229 -136418.26085 -0.00763358778626 0.34 1.00596822808e-06 3205 -139293.403058 -0.00763358778626 0.37 1.00000460988e-06 3186 -142683.139354 -0.00763358778626 0.4 9.95924239529e-07 3173 -146601.852523 -0.00763358778626 0.43 9.92785493108e-07 3163 -151073.058439 -0.00763358778626 0.46 9.86821874907e-07 3144 -156126.044258 -0.00763358778626 0.49 9.7991663278e-07 3122 -161799.551408 -0.00763358778626 0.52 9.76150137074e-07 3110 -168144.256812 -0.00763358778626 0.55 9.73325265294e-07 3101 -175223.536436 -0.00763358778626 0.58 9.68617145662e-07 3086 -183114.314927 -0.00763358778626 0.61 9.63595151388e-07 3070 -191913.047633 -0.00763358778626 0.64 9.58259282471e-07 3053 -201741.134334 -0.00763358778626 0.67 9.54806661408e-07 3042 -212752.196972 -0.00763358778626 0.7 9.52295664271e-07 3034 -225145.894609 -0.00763358778626 0.73 9.50098541776e-07 3027 -239184.192726 -0.00763358778626 0.76 9.4633204607e-07 3015 -255219.483084 -0.00763358778626 0.79 9.42251675722e-07 3002 -273742.318324 -0.00763358778626 0.82 9.38171305374e-07 2989 -295466.627625 -0.00763358778626 0.85 9.32521561815e-07 2971 -321486.006431 -0.00763358778626 0.88 9.2875506611e-07 2959 -353605.49287 -0.00709219858156 0.01 2.56121707991e-06 8160 -147173.783528 -0.00709219858156 0.04 1.37634030581e-06 4385 -139793.528954 -0.00709219858156 0.07 1.18456289946e-06 3774 -134722.804442 -0.00709219858156 0.1 1.12555446674e-06 3586 -131889.626902 -0.00709219858156 0.13 1.08851725896e-06 3468 -130368.472474 -0.00709219858156 0.16 1.06058241581e-06 3379 -129759.867447 -0.00709219858156 0.19 1.03923894015e-06 3311 -129876.59913 -0.00709219858156 0.22 1.02574233053e-06 3268 -130611.453504 -0.00709219858156 0.25 1.01475671806e-06 3233 -131909.139404 -0.00709219858156 0.28 1.00439885487e-06 3200 -133734.359361 -0.00709219858156 0.31 9.97179738098e-07 3177 -136069.261231 -0.00709219858156 0.34 9.93413242392e-07 3165 -138911.608554 -0.00709219858156 0.37 9.87763498833e-07 3147 -142266.945321 -0.00709219858156 0.4 9.7991663278e-07 3122 -146146.463108 -0.00709219858156 0.43 9.75208513147e-07 3107 -150572.097738 -0.00709219858156 0.46 9.70814268157e-07 3093 -155575.618666 -0.00709219858156 0.49 9.66733897809e-07 3080 -161195.069719 -0.00709219858156 0.52 9.61398028893e-07 3063 -167480.303464 -0.00709219858156 0.55 9.56062159976e-07 3046 -174492.082013 -0.00709219858156 0.58 9.51981789629e-07 3033 -182307.121801 -0.00709219858156 0.61 9.51040165702e-07 3030 -191021.627679 -0.00709219858156 0.64 9.48529168565e-07 3022 -200755.7751 -0.00709219858156 0.67 9.44762672859e-07 3010 -211659.975819 -0.00709219858156 0.7 9.40368427869e-07 2996 -223929.348866 -0.00709219858156 0.73 9.37229681448e-07 2986 -237821.040046 -0.00709219858156 0.76 9.32521561815e-07 2971 -253681.873935 -0.00709219858156 0.79 9.2875506611e-07 2959 -271994.110828 -0.00709219858156 0.82 9.26244068973e-07 2951 -293458.508406 -0.00709219858156 0.85 9.23105322551e-07 2941 -319146.801181 -0.00709219858156 0.88 9.20594325414e-07 2933 -350826.020314 -0.00662251655629 0.01 2.53736260711e-06 8084 -147113.539847 -0.00662251655629 0.04 1.35279970765e-06 4310 -139716.616462 -0.00662251655629 0.07 1.16604429557e-06 3715 -134604.641544 -0.00662251655629 0.1 1.1089191107e-06 3533 -131751.334196 -0.00662251655629 0.13 1.06905703115e-06 3406 -130206.37311 -0.00662251655629 0.16 1.04363318514e-06 3325 -129578.866057 -0.00662251655629 0.19 1.02228970947e-06 3257 -129671.230544 -0.00662251655629 0.22 1.00942084914e-06 3216 -130383.712248 -0.00662251655629 0.25 1.00000460988e-06 3186 -131655.574854 -0.00662251655629 0.28 9.9309936775e-07 3164 -133454.259986 -0.00662251655629 0.31 9.86194125622e-07 3142 -135763.116949 -0.00662251655629 0.34 9.77719510285e-07 3115 -138573.588198 -0.00662251655629 0.37 9.73639139937e-07 3102 -141891.442321 -0.00662251655629 0.4 9.67989396378e-07 3084 -145731.664391 -0.00662251655629 0.43 9.62025778177e-07 3065 -150114.519799 -0.00662251655629 0.46 9.54806661408e-07 3042 -155069.069227 -0.00662251655629 0.49 9.51667914986e-07 3032 -160634.096083 -0.00662251655629 0.52 9.5072629106e-07 3029 -166859.887852 -0.00662251655629 0.55 9.47901419281e-07 3020 -173807.300895 -0.00662251655629 0.58 9.42565550364e-07 3003 -181550.380414 -0.00662251655629 0.61 9.39112929301e-07 2992 -190182.569776 -0.00662251655629 0.64 9.35032558953e-07 2979 -199822.138694 -0.00662251655629 0.67 9.31893812531e-07 2969 -210617.922889 -0.00662251655629 0.7 9.28127316825e-07 2957 -222762.426004 -0.00662251655629 0.73 9.26244068973e-07 2951 -236508.654403 -0.00662251655629 0.76 9.23733071835e-07 2943 -252197.110352 -0.00662251655629 0.79 9.2153594934e-07 2936 -270302.37539 -0.00662251655629 0.82 9.18397202919e-07 2926 -291510.795897 -0.00662251655629 0.85 9.16200080424e-07 2919 -316871.916787 -0.00662251655629 0.88 9.1274745936e-07 2908 -348114.16212 -0.00621118012422 0.01 2.51256651038e-06 8005 -147062.827388 -0.00621118012422 0.04 1.32329549129e-06 4216 -139654.614993 -0.00621118012422 0.07 1.1490950649e-06 3661 -134508.52775 -0.00621118012422 0.1 1.09040050681e-06 3474 -131635.255529 -0.00621118012422 0.13 1.05367717368e-06 3357 -130070.575274 -0.00621118012422 0.16 1.02574233053e-06 3268 -129420.114441 -0.00621118012422 0.19 1.00879309986e-06 3214 -129493.697127 -0.00621118012422 0.22 9.95610364887e-07 3172 -130184.635266 -0.00621118012422 0.25 9.89646746686e-07 3153 -131434.89357 -0.00621118012422 0.28 9.7991663278e-07 3122 -133209.133622 -0.00621118012422 0.31 9.73639139937e-07 3102 -135488.095785 -0.00621118012422 0.34 9.65792273883e-07 3077 -138267.618736 -0.00621118012422 0.37 9.5951478104e-07 3057 -141551.31874 -0.00621118012422 0.4 9.52923413555e-07 3036 -145351.222599 -0.00621118012422 0.43 9.5072629106e-07 3029 -149690.374031 -0.00621118012422 0.46 9.47587544639e-07 3019 -154599.043681 -0.00621118012422 0.49 9.43507174291e-07 3006 -160113.784905 -0.00621118012422 0.52 9.38485180016e-07 2990 -166281.873747 -0.00621118012422 0.55 9.35660308237e-07 2981 -173163.580913 -0.00621118012422 0.58 9.30952188605e-07 2966 -180832.983336 -0.00621118012422 0.61 9.27813442183e-07 2956 -189382.411756 -0.00621118012422 0.64 9.25302445046e-07 2948 -198928.322036 -0.00621118012422 0.67 9.23419197193e-07 2942 -209617.389377 -0.00621118012422 0.7 9.2153594934e-07 2936 -221639.657211 -0.00621118012422 0.73 9.19338826845e-07 2929 -235243.045506 -0.00621118012422 0.76 9.1714170435e-07 2922 -250762.090723 -0.00621118012422 0.79 9.15258456497e-07 2916 -268662.29078 -0.00621118012422 0.82 9.1117808615e-07 2903 -289616.414852 -0.00621118012422 0.85 9.0835321437e-07 2894 -314651.987073 -0.00621118012422 0.88 9.04586718665e-07 2882 -345459.60508 -0.00584795321637 0.01 2.49436178113e-06 7947 -147021.414708 -0.00584795321637 0.04 1.30948500703e-06 4172 -139608.013556 -0.00584795321637 0.07 1.13654007921e-06 3621 -134432.664852 -0.00584795321637 0.1 1.07219577757e-06 3416 -131538.83501 -0.00584795321637 0.13 1.03421694587e-06 3295 -129954.688956 -0.00584795321637 0.16 1.01224572092e-06 3225 -129283.765111 -0.00584795321637 0.19 9.95924239529e-07 3173 -129338.05022 -0.00584795321637 0.22 9.88391248117e-07 3149 -130012.048814 -0.00584795321637 0.25 9.75522387789e-07 3108 -131241.246608 -0.00584795321637 0.28 9.69558769589e-07 3089 -132989.93868 -0.00584795321637 0.31 9.61084154251e-07 3062 -135240.824972 -0.00584795321637 0.34 9.53865037481e-07 3039 -137988.641135 -0.00584795321637 0.37 9.49784667134e-07 3026 -141237.288103 -0.00584795321637 0.4 9.46959795354e-07 3017 -145001.800777 -0.00584795321637 0.43 9.41310051796e-07 2999 -149300.288351 -0.00584795321637 0.46 9.36288057521e-07 2983 -154161.831592 -0.00584795321637 0.49 9.32521561815e-07 2971 -159624.240696 -0.00584795321637 0.52 9.27499567541e-07 2955 -165734.24661 -0.00584795321637 0.55 9.25302445046e-07 2948 -172551.103693 -0.00584795321637 0.58 9.22791447909e-07 2940 -180148.422694 -0.00584795321637 0.61 9.21222074698e-07 2935 -188617.42674 -0.00584795321637 0.64 9.19652701488e-07 2930 -198072.097957 -0.00584795321637 0.67 9.1714170435e-07 2922 -208656.926983 -0.00584795321637 0.7 9.15886205782e-07 2918 -220557.897406 -0.00584795321637 0.73 9.1274745936e-07 2908 -234019.391704 -0.00584795321637 0.76 9.09608712939e-07 2898 -249369.641496 -0.00584795321637 0.79 9.07725465086e-07 2892 -267065.052589 -0.00584795321637 0.82 9.04586718665e-07 2882 -287766.026065 -0.00584795321637 0.85 9.01447972243e-07 2872 -312479.025712 -0.00584795321637 0.88 8.97995351179e-07 2861 -342856.581136 -0.00552486187845 0.01 2.47333218011e-06 7880 -146987.307339 -0.00552486187845 0.04 1.28845540601e-06 4105 -139574.567771 -0.00552486187845 0.07 1.12241572031e-06 3576 -134370.127581 -0.00552486187845 0.1 1.05775754403e-06 3370 -131457.783008 -0.00552486187845 0.13 1.02040646162e-06 3251 -129853.189414 -0.00552486187845 0.16 9.99690735235e-07 3185 -129166.454666 -0.00552486187845 0.19 9.88077373475e-07 3148 -129204.269698 -0.00552486187845 0.22 9.75208513147e-07 3107 -129860.055077 -0.00552486187845 0.25 9.66733897809e-07 3080 -131068.415706 -0.00552486187845 0.28 9.58259282471e-07 3053 -132792.969135 -0.00552486187845 0.31 9.49784667134e-07 3026 -135015.77001 -0.00552486187845 0.34 9.47587544639e-07 3019 -137733.619238 -0.00552486187845 0.37 9.40368427869e-07 2996 -140950.513289 -0.00552486187845 0.4 9.35660308237e-07 2981 -144677.112686 -0.00552486187845 0.43 9.3032443932e-07 2964 -148934.072047 -0.00552486187845 0.46 9.2593019433e-07 2950 -153749.187172 -0.00552486187845 0.49 9.23733071835e-07 2943 -159160.039299 -0.00552486187845 0.52 9.21849823983e-07 2937 -165213.727551 -0.00552486187845 0.55 9.20280450772e-07 2932 -171968.560584 -0.00552486187845 0.58 9.18083328277e-07 2925 -179496.09284 -0.00552486187845 0.61 9.15886205782e-07 2918 -187885.674836 -0.00552486187845 0.64 9.13689083287e-07 2911 -197249.778978 -0.00552486187845 0.67 9.1117808615e-07 2903 -207730.425702 -0.00552486187845 0.7 9.0835321437e-07 2894 -219510.390122 -0.00552486187845 0.73 9.05842217233e-07 2886 -232830.099205 -0.00552486187845 0.76 9.03331220096e-07 2878 -248012.169014 -0.00552486187845 0.79 9.01134097601e-07 2871 -265504.678765 -0.00552486187845 0.82 8.98309225822e-07 2862 -285955.405396 -0.00552486187845 0.85 8.95484354042e-07 2853 -310348.78938 -0.00552486187845 0.88 8.92659482263e-07 2844 -340300.515839 -0.00523560209424 0.01 2.45606907479e-06 7825 -146959.675732 -0.00523560209424 0.04 1.27307554854e-06 4056 -139551.463334 -0.00523560209424 0.07 1.10923298534e-06 3534 -134320.575056 -0.00523560209424 0.1 1.04614418227e-06 3333 -131390.585425 -0.00523560209424 0.13 1.01099022235e-06 3221 -129767.690315 -0.00523560209424 0.16 9.89960621328e-07 3154 -129065.59405 -0.00523560209424 0.19 9.77719510285e-07 3115 -129089.817711 -0.00523560209424 0.22 9.66106148525e-07 3078 -129725.907129 -0.00523560209424 0.25 9.55434410692e-07 3044 -130912.854959 -0.00523560209424 0.28 9.48529168565e-07 3022 -132613.377788 -0.00523560209424 0.31 9.44134923575e-07 3008 -134811.586339 -0.00523560209424 0.34 9.36288057521e-07 2983 -137500.218326 -0.00523560209424 0.37 9.30638313963e-07 2965 -140682.626846 -0.00523560209424 0.4 9.25302445046e-07 2948 -144371.725126 -0.00523560209424 0.43 9.22791447909e-07 2940 -148587.869824 -0.00523560209424 0.46 9.2153594934e-07 2936 -153359.163917 -0.00523560209424 0.49 9.19652701488e-07 2930 -158721.83259 -0.00523560209424 0.52 9.16200080424e-07 2919 -164720.737133 -0.00523560209424 0.55 9.15258456497e-07 2916 -171413.381371 -0.00523560209424 0.58 9.1274745936e-07 2908 -178871.068798 -0.00523560209424 0.61 9.09294838297e-07 2897 -187181.433837 -0.00523560209424 0.64 9.0678384116e-07 2889 -196454.623319 -0.00523560209424 0.67 9.04272844022e-07 2881 -206831.26572 -0.00523560209424 0.7 9.01761846885e-07 2873 -218491.119585 -0.00523560209424 0.73 9.01134097601e-07 2871 -231670.622638 -0.00523560209424 0.76 8.97053727253e-07 2858 -246686.826467 -0.00523560209424 0.79 8.95484354042e-07 2853 -263978.329416 -0.00523560209424 0.82 8.92973356905e-07 2845 -284180.554655 -0.00523560209424 0.85 8.9077623441e-07 2838 -308258.285703 -0.00523560209424 0.88 8.89520735842e-07 2834 -337790.339454 -0.00497512437811 0.01 2.43911984412e-06 7771 -146938.363496 -0.00497512437811 0.04 1.25738181644e-06 4006 -139536.522959 -0.00497512437811 0.07 1.09448087716e-06 3487 -134282.337887 -0.00497512437811 0.1 1.03107819945e-06 3285 -131334.302491 -0.00497512437811 0.13 1.00000460988e-06 3186 -129696.268821 -0.00497512437811 0.16 9.85252501696e-07 3139 -128981.349117 -0.00497512437811 0.19 9.68931020304e-07 3087 -128988.795345 -0.00497512437811 0.22 9.57003783903e-07 3049 -129607.217958 -0.00497512437811 0.25 9.47587544639e-07 3019 -130771.6065 -0.00497512437811 0.28 9.40682302511e-07 2997 -132450.727506 -0.00497512437811 0.31 9.33463185742e-07 2974 -134622.892774 -0.00497512437811 0.34 9.28127316825e-07 2957 -137281.596492 -0.00497512437811 0.37 9.2436082112e-07 2945 -140431.928151 -0.00497512437811 0.4 9.2153594934e-07 2936 -144085.750254 -0.00497512437811 0.43 9.19024952203e-07 2928 -148263.475342 -0.00497512437811 0.46 9.16200080424e-07 2919 -152991.446223 -0.00497512437811 0.49 9.14944581855e-07 2915 -158305.292746 -0.00497512437811 0.52 9.1117808615e-07 2903 -164249.938022 -0.00497512437811 0.55 9.07097715802e-07 2890 -170880.672456 -0.00497512437811 0.58 9.05842217233e-07 2886 -178267.922471 -0.00497512437811 0.61 9.02703470812e-07 2876 -186498.931954 -0.00497512437811 0.64 9.01134097601e-07 2871 -195682.53313 -0.00497512437811 0.67 9.00506348317e-07 2869 -205956.929457 -0.00497512437811 0.7 8.96112103327e-07 2855 -217498.132125 -0.00497512437811 0.73 8.951704794e-07 2852 -230538.59953 -0.00497512437811 0.76 8.92659482263e-07 2844 -245389.709563 -0.00497512437811 0.79 8.91090109052e-07 2839 -262482.984735 -0.00497512437811 0.82 8.89834610484e-07 2835 -282440.229303 -0.00497512437811 0.85 8.88265237273e-07 2830 -306206.540277 -0.00497512437811 0.88 8.8638198942e-07 2824 -335324.21331 -0.00473933649289 0.01 2.42530935986e-06 7727 -146921.930947 -0.00473933649289 0.04 1.24451295611e-06 3965 -139528.904992 -0.00473933649289 0.07 1.08129814219e-06 3445 -134253.469202 -0.00473933649289 0.1 1.02040646162e-06 3251 -131286.280753 -0.00473933649289 0.13 9.90902245255e-07 3157 -129637.414412 -0.00473933649289 0.16 9.73639139937e-07 3102 -128909.445338 -0.00473933649289 0.19 9.59828655682e-07 3058 -128900.849887 -0.00473933649289 0.22 9.46645920712e-07 3016 -129499.329382 -0.00473933649289 0.25 9.39740678585e-07 2994 -130645.345846 -0.00473933649289 0.28 9.32835436458e-07 2972 -132300.52574 -0.00473933649289 0.31 9.25616319688e-07 2949 -134446.84482 -0.00473933649289 0.34 9.2153594934e-07 2936 -137078.386025 -0.00473933649289 0.37 9.19652701488e-07 2930 -140198.25561 -0.00473933649289 0.4 9.1714170435e-07 2922 -143818.661018 -0.00473933649289 0.43 9.14316832571e-07 2913 -147957.491823 -0.00473933649289 0.46 9.10864211507e-07 2902 -152641.976676 -0.00473933649289 0.49 9.0678384116e-07 2889 -157906.638664 -0.00473933649289 0.52 9.05214467949e-07 2884 -163795.943485 -0.00473933649289 0.55 9.02703470812e-07 2876 -170365.530082 -0.00473933649289 0.58 9.00820222959e-07 2870 -177684.264667 -0.00473933649289 0.61 8.98936975106e-07 2864 -185837.66307 -0.00473933649289 0.64 8.96112103327e-07 2855 -194932.285085 -0.00473933649289 0.67 8.94228855474e-07 2849 -205104.54319 -0.00473933649289 0.7 8.92659482263e-07 2844 -216528.211911 -0.00473933649289 0.73 8.91090109052e-07 2839 -229431.479485 -0.00473933649289 0.76 8.89834610484e-07 2835 -244120.126548 -0.00473933649289 0.79 8.88265237273e-07 2830 -261017.550775 -0.00473933649289 0.82 8.86695864062e-07 2825 -280732.699102 -0.00473933649289 0.85 8.85126490851e-07 2820 -304190.835947 -0.00473933649289 0.88 8.83557117641e-07 2815 -332899.471879 -0.00452488687783 0.01 2.40647688133e-06 7667 -146910.094233 -0.00452488687783 0.04 1.23038859721e-06 3920 -139527.85159 -0.00452488687783 0.07 1.07188190293e-06 3415 -134234.447172 -0.00452488687783 0.1 1.01224572092e-06 3225 -131248.837418 -0.00452488687783 0.13 9.85566376338e-07 3140 -129588.806326 -0.00452488687783 0.16 9.65792273883e-07 3077 -128847.553548 -0.00452488687783 0.19 9.47901419281e-07 3020 -128822.03236 -0.00452488687783 0.22 9.41623926438e-07 3000 -129403.871166 -0.00452488687783 0.25 9.32835436458e-07 2972 -130529.83343 -0.00452488687783 0.28 9.2436082112e-07 2945 -132162.391738 -0.00452488687783 0.31 9.2153594934e-07 2936 -134284.170943 -0.00452488687783 0.34 9.19024952203e-07 2928 -136889.511307 -0.00452488687783 0.37 9.14630707213e-07 2914 -139979.993091 -0.00452488687783 0.4 9.1117808615e-07 2903 -143565.874344 -0.00452488687783 0.43 9.07725465086e-07 2892 -147666.191863 -0.00452488687783 0.46 9.05528342591e-07 2885 -152306.819895 -0.00452488687783 0.49 9.02703470812e-07 2876 -157522.995481 -0.00452488687783 0.52 9.00506348317e-07 2869 -163358.347833 -0.00452488687783 0.55 8.98936975106e-07 2864 -169867.800602 -0.00452488687783 0.58 8.95798228684e-07 2854 -177118.010813 -0.00452488687783 0.61 8.94228855474e-07 2849 -185194.161899 -0.00452488687783 0.64 8.92659482263e-07 2844 -194201.247774 -0.00452488687783 0.67 8.9077623441e-07 2838 -204272.964496 -0.00452488687783 0.7 8.89834610484e-07 2835 -215580.653565 -0.00452488687783 0.73 8.88265237273e-07 2830 -228348.413361 -0.00452488687783 0.76 8.86695864062e-07 2825 -242876.210071 -0.00452488687783 0.79 8.85126490851e-07 2820 -259579.484224 -0.00452488687783 0.82 8.84184866925e-07 2817 -279055.451194 -0.00452488687783 0.85 8.82615493714e-07 2812 -302209.212815 -0.00452488687783 0.88 8.81673869788e-07 2809 -330514.562288 -0.004329004329 0.01 2.39392189565e-06 7627 -146902.005174 -0.004329004329 0.04 1.21312549189e-06 3865 -139532.532669 -0.004329004329 0.07 1.06058241581e-06 3379 -134222.522239 -0.004329004329 0.1 1.00282948166e-06 3195 -131221.094733 -0.004329004329 0.13 9.76777886358e-07 3112 -129548.415203 -0.004329004329 0.16 9.56689909261e-07 3048 -128794.442697 -0.004329004329 0.19 9.45390422143e-07 3012 -128752.422661 -0.004329004329 0.22 9.33777060384e-07 2975 -129317.975025 -0.004329004329 0.25 9.24988570404e-07 2947 -130424.293114 -0.004329004329 0.28 9.2153594934e-07 2936 -132035.923299 -0.004329004329 0.31 9.17455578992e-07 2923 -134134.553053 -0.004329004329 0.34 9.13375208645e-07 2910 -136712.837444 -0.004329004329 0.37 9.10236462223e-07 2900 -139773.032314 -0.004329004329 0.4 9.06469966517e-07 2888 -143325.022151 -0.004329004329 0.43 9.03331220096e-07 2878 -147386.926646 -0.004329004329 0.46 9.00820222959e-07 2870 -151985.160426 -0.004329004329 0.49 8.9956472439e-07 2866 -157153.992073 -0.004329004329 0.52 8.95798228684e-07 2854 -162935.565699 -0.004329004329 0.55 8.94228855474e-07 2849 -169384.687355 -0.004329004329 0.58 8.92659482263e-07 2844 -176567.633263 -0.004329004329 0.61 8.9077623441e-07 2838 -184567.58659 -0.004329004329 0.64 8.89520735842e-07 2834 -193488.260841 -0.004329004329 0.67 8.88265237273e-07 2830 -203460.973902 -0.004329004329 0.7 8.8638198942e-07 2824 -214653.752692 -0.004329004329 0.73 8.85440365494e-07 2821 -227286.999522 -0.004329004329 0.76 8.83870992283e-07 2816 -241655.805776 -0.004329004329 0.79 8.83243242999e-07 2814 -258167.304918 -0.004329004329 0.82 8.82301619072e-07 2811 -277406.889832 -0.004329004329 0.85 8.81359995146e-07 2808 -300260.731598 -0.004329004329 0.88 8.79162872651e-07 2801 -328167.722745 -0.00414937759336 0.01 2.38011141139e-06 7583 -146897.710399 -0.00414937759336 0.04 1.20151213013e-06 3828 -139541.934017 -0.00414937759336 0.07 1.05210780047e-06 3352 -134216.317437 -0.00414937759336 0.1 9.9309936775e-07 3164 -131200.73167 -0.00414937759336 0.13 9.67361647094e-07 3082 -129514.859693 -0.00414937759336 0.16 9.48529168565e-07 3022 -128748.17688 -0.00414937759336 0.19 9.37229681448e-07 2986 -128692.736358 -0.00414937759336 0.22 9.27499567541e-07 2955 -129240.691832 -0.00414937759336 0.25 9.20594325414e-07 2933 -130328.146655 -0.00414937759336 0.28 9.16827829708e-07 2921 -131919.761021 -0.00414937759336 0.31 9.13375208645e-07 2910 -133995.235862 -0.00414937759336 0.34 9.09294838297e-07 2897 -136546.83057 -0.00414937759336 0.37 9.05214467949e-07 2884 -139576.333623 -0.00414937759336 0.4 9.02075721527e-07 2874 -143094.574228 -0.00414937759336 0.43 9.00192473674e-07 2868 -147119.341148 -0.00414937759336 0.46 8.96112103327e-07 2855 -151675.75189 -0.00414937759336 0.49 8.951704794e-07 2852 -156797.009176 -0.00414937759336 0.52 8.92973356905e-07 2845 -162526.178934 -0.00414937759336 0.55 8.91090109052e-07 2839 -168915.892183 -0.00414937759336 0.58 8.89834610484e-07 2835 -176032.197668 -0.00414937759336 0.61 8.88579111915e-07 2831 -183956.897513 -0.00414937759336 0.64 8.86068114778e-07 2823 -192791.762804 -0.00414937759336 0.67 8.85440365494e-07 2821 -202666.041157 -0.00414937759336 0.7 8.84498741567e-07 2818 -213745.479962 -0.00414937759336 0.73 8.83557117641e-07 2815 -226246.078356 -0.00414937759336 0.76 8.82301619072e-07 2811 -240457.545945 -0.00414937759336 0.79 8.81673869788e-07 2809 -256779.782032 -0.00414937759336 0.82 8.80104496577e-07 2804 -275786.023428 -0.00414937759336 0.85 8.79162872651e-07 2801 -298342.90977 -0.00414937759336 0.88 8.78535123366e-07 2799 -325857.838742 -0.00398406374502 0.01 2.36630092714e-06 7539 -146896.546338 -0.00398406374502 0.04 1.19460688801e-06 3806 -139556.88352 -0.00398406374502 0.07 1.04363318514e-06 3325 -134216.089308 -0.00398406374502 0.1 9.85566376338e-07 3140 -131186.774449 -0.00398406374502 0.13 9.61711903535e-07 3064 -129488.791203 -0.00398406374502 0.16 9.43821048933e-07 3007 -128707.714367 -0.00398406374502 0.19 9.31893812531e-07 2969 -128640.128272 -0.00398406374502 0.22 9.21849823983e-07 2937 -129170.828086 -0.00398406374502 0.25 9.17455578992e-07 2923 -130240.74617 -0.00398406374502 0.28 9.13375208645e-07 2910 -131812.516984 -0.00398406374502 0.31 9.0835321437e-07 2894 -133864.925842 -0.00398406374502 0.34 9.04900593307e-07 2883 -136389.688266 -0.00398406374502 0.37 9.01134097601e-07 2871 -139389.180671 -0.00398406374502 0.4 8.99250849748e-07 2865 -142874.307236 -0.00398406374502 0.43 8.95798228684e-07 2854 -146861.75702 -0.00398406374502 0.46 8.93914980832e-07 2848 -151376.839706 -0.00398406374502 0.49 8.91717858337e-07 2841 -156451.745349 -0.00398406374502 0.52 8.89834610484e-07 2835 -162128.636273 -0.00398406374502 0.55 8.88579111915e-07 2831 -168460.160255 -0.00398406374502 0.58 8.86695864062e-07 2825 -175510.398175 -0.00398406374502 0.61 8.86068114778e-07 2823 -183360.230347 -0.00398406374502 0.64 8.84812616209e-07 2819 -192110.311274 -0.00398406374502 0.67 8.83870992283e-07 2816 -201887.530965 -0.00398406374502 0.7 8.82301619072e-07 2811 -212854.603394 -0.00398406374502 0.73 8.8198774443e-07 2810 -225224.302567 -0.00398406374502 0.76 8.80418371219e-07 2805 -239280.81813 -0.00398406374502 0.79 8.79476747293e-07 2802 -255415.429487 -0.00398406374502 0.82 8.78848998009e-07 2800 -274190.879727 -0.00398406374502 0.85 8.77907374082e-07 2797 -296455.638918 -0.00398406374502 0.88 8.7759349944e-07 2796 -323584.155146 -0.00383141762452 0.01 2.35594306395e-06 7506 -146898.326001 -0.00383141762452 0.04 1.18832939516e-06 3786 -139577.142287 -0.00383141762452 0.07 1.0351585698e-06 3298 -134220.334849 -0.00383141762452 0.1 9.81799880632e-07 3128 -131178.749423 -0.00383141762452 0.13 9.5512053605e-07 3043 -129469.423497 -0.00383141762452 0.16 9.38799054658e-07 2991 -128675.260149 -0.00383141762452 0.19 9.24988570404e-07 2947 -128592.957638 -0.00383141762452 0.22 9.19024952203e-07 2928 -129108.393194 -0.00383141762452 0.25 9.13689083287e-07 2911 -130161.552182 -0.00383141762452 0.28 9.08980963655e-07 2896 -131713.000872 -0.00383141762452 0.31 9.04586718665e-07 2882 -133741.912421 -0.00383141762452 0.34 9.00506348317e-07 2869 -136240.572764 -0.00383141762452 0.37 8.98309225822e-07 2862 -139211.215136 -0.00383141762452 0.4 8.94856604758e-07 2851 -142662.893233 -0.00383141762452 0.43 8.92659482263e-07 2844 -146613.523056 -0.00383141762452 0.46 8.90462359768e-07 2837 -151087.361865 -0.00383141762452 0.49 8.88892986557e-07 2832 -156116.676967 -0.00383141762452 0.52 8.87323613346e-07 2827 -161742.230631 -0.00383141762452 0.55 8.85754240136e-07 2822 -168015.550269 -0.00383141762452 0.58 8.84812616209e-07 2819 -175000.917134 -0.00383141762452 0.61 8.83870992283e-07 2816 -182777.061108 -0.00383141762452 0.64 8.82301619072e-07 2811 -191443.210303 -0.00383141762452 0.67 8.82301619072e-07 2811 -201124.42789 -0.00383141762452 0.7 8.81673869788e-07 2809 -211980.754529 -0.00383141762452 0.73 8.79790621935e-07 2803 -224220.491908 -0.00383141762452 0.76 8.79162872651e-07 2801 -238123.036483 -0.00383141762452 0.79 8.78535123366e-07 2799 -254073.153247 -0.00383141762452 0.82 8.77907374082e-07 2797 -272621.221463 -0.00383141762452 0.85 8.76965750156e-07 2794 -294597.728551 -0.00383141762452 0.88 8.76338000871e-07 2792 -321345.419757 -0.00369003690037 0.01 2.3458990754e-06 7474 -146902.911264 -0.00369003690037 0.04 1.18016865447e-06 3760 -139600.453545 -0.00369003690037 0.07 1.02260358411e-06 3258 -134228.494701 -0.00369003690037 0.1 9.76777886358e-07 3112 -131175.95533 -0.00369003690037 0.13 9.47587544639e-07 3019 -129455.461522 -0.00369003690037 0.16 9.31266063247e-07 2967 -128647.718701 -0.00369003690037 0.19 9.21222074698e-07 2935 -128550.685643 -0.00369003690037 0.22 9.15258456497e-07 2916 -129053.558567 -0.00369003690037 0.25 9.09608712939e-07 2898 -130088.926144 -0.00369003690037 0.28 9.04586718665e-07 2882 -131619.841103 -0.00369003690037 0.31 9.00820222959e-07 2870 -133625.806346 -1.0 0.01 3.45324881289e-06 11002 -152373.756762 -1.0 0.04 3.38262701841e-06 10777 -152405.770449 -1.0 0.07 3.35406442597e-06 10686 -153164.537314 -1.0 0.1 3.33429032352e-06 10623 -154401.200111 -1.0 0.13 3.30698322965e-06 10536 -156056.750373 -1.0 0.16 3.30698322965e-06 10536 -158092.563181 -1.0 0.19 3.30698322965e-06 10536 -160524.168077 -1.0 0.22 3.28595362863e-06 10469 -163338.491856 -1.0 0.25 3.28407038077e-06 10463 -166548.430599 -1.0 0.28 3.28407038077e-06 10463 -170173.765055 -1.0 0.31 3.28407038077e-06 10463 -174231.987109 -1.0 0.34 3.26147140654e-06 10391 -178735.091444 -1.0 0.37 3.26147140654e-06 10391 -183715.722798 -1.0 0.4 3.26147140654e-06 10391 -189211.308601 -1.0 0.43 3.26147140654e-06 10391 -195260.710977 -1.0 0.46 3.25739103619e-06 10378 -201910.210955 -1.0 0.49 3.23322268875e-06 10301 -209212.13195 -1.0 0.52 3.23322268875e-06 10301 -217226.599833 -1.0 0.55 3.23322268875e-06 10301 -226044.689665 -1.0 0.58 3.23322268875e-06 10301 -235764.690988 -1.0 0.61 3.23322268875e-06 10301 -246507.568015 -1.0 0.64 3.23322268875e-06 10301 -258424.514499 -1.0 0.67 3.23322268875e-06 10301 -271706.978841 -1.0 0.7 3.21407633557e-06 10240 -286594.302167 -1.0 0.73 3.21407633557e-06 10240 -303418.139175 -1.0 0.76 3.21407633557e-06 10240 -322623.131242 -1.0 0.79 3.21407633557e-06 10240 -344830.756962 -1.0 0.82 3.21407633557e-06 10240 -370952.165726 -1.0 0.85 3.19775485418e-06 10188 -402393.216523 -1.0 0.88 3.19241898527e-06 10171 -441521.055457 -0.0909090909091 0.01 3.0750298691e-06 9797 -150463.291574 -0.0909090909091 0.04 2.64376611079e-06 8423 -146426.454929 -0.0909090909091 0.07 2.52198274964e-06 8035 -144774.783776 -0.0909090909091 0.1 2.44288633982e-06 7783 -144284.276633 -0.0909090909091 0.13 2.39643289278e-06 7635 -144559.509024 -0.0909090909091 0.16 2.36190668215e-06 7525 -145459.762822 -0.0909090909091 0.19 2.32894984472e-06 7420 -146895.533962 -1.0 0.01 3.45324881289e-06 11002 -152373.756762 -1.0 0.04 3.38262701841e-06 10777 -152405.770449 -1.0 0.07 3.35406442597e-06 10686 -153164.537314 -1.0 0.1 3.33429032352e-06 10623 -154401.200111 -1.0 0.13 3.30698322965e-06 10536 -156056.750373 -1.0 0.16 3.30698322965e-06 10536 -158092.563181 -1.0 0.19 3.30698322965e-06 10536 -160524.168077 -1.0 0.22 3.28595362863e-06 10469 -163338.491856 -1.0 0.25 3.28407038077e-06 10463 -166548.430599 -1.0 0.28 3.28407038077e-06 10463 -170173.765055 -1.0 0.31 3.28407038077e-06 10463 -174231.987109 -1.0 0.34 3.26147140654e-06 10391 -178735.091444 -1.0 0.37 3.26147140654e-06 10391 -183715.722798 -1.0 0.4 3.26147140654e-06 10391 -189211.308601 -1.0 0.43 3.26147140654e-06 10391 -195260.710977 -1.0 0.46 3.25739103619e-06 10378 -201910.210955 -1.0 0.49 3.23322268875e-06 10301 -209212.13195 -1.0 0.52 3.23322268875e-06 10301 -217226.599833 -1.0 0.55 3.23322268875e-06 10301 -226044.689665 -1.0 0.58 3.23322268875e-06 10301 -235764.690988 -1.0 0.61 3.23322268875e-06 10301 -246507.568015 -1.0 0.64 3.23322268875e-06 10301 -258424.514499 -1.0 0.67 3.23322268875e-06 10301 -271706.978841 -1.0 0.7 3.21407633557e-06 10240 -286594.302167 -1.0 0.73 3.21407633557e-06 10240 -303418.139175 -1.0 0.76 3.21407633557e-06 10240 -322623.131242 -1.0 0.79 3.21407633557e-06 10240 -344830.756962 -1.0 0.82 3.21407633557e-06 10240 -370952.165726 -1.0 0.85 3.19775485418e-06 10188 -402393.216523 -1.0 0.88 3.19241898527e-06 10171 -441521.055457 -0.0909090909091 0.01 3.0750298691e-06 9797 -150463.291574 -0.0909090909091 0.04 2.64376611079e-06 8423 -146426.454929 -0.0909090909091 0.07 2.52198274964e-06 8035 -144774.783776 -0.0909090909091 0.1 2.44288633982e-06 7783 -144284.276633 -0.0909090909091 0.13 2.39643289278e-06 7635 -144559.509024 -0.0909090909091 0.16 2.36190668215e-06 7525 -145459.762822 -0.0909090909091 0.19 2.32894984472e-06 7420 -146895.533962 -0.0909090909091 0.22 2.29567913266e-06 7314 -148827.173822 -0.0909090909091 0.25 2.27496340627e-06 7248 -151237.723392 -0.0909090909091 0.28 2.25487542918e-06 7184 -154121.451004 -0.0909090909091 0.31 2.24169269421e-06 7142 -157484.470574 -0.0909090909091 0.34 2.22819608459e-06 7099 -161337.94231 -0.0909090909091 0.37 2.20653873429e-06 7030 -165698.258589 -0.0909090909091 0.4 2.1917866261e-06 6983 -170594.028285 -0.0909090909091 0.43 2.18362588541e-06 6957 -176058.93665 -0.0909090909091 0.46 2.17295414758e-06 6923 -182135.66092 -0.0909090909091 0.49 2.16824602794e-06 6908 -188874.899404 -0.0909090909091 0.52 2.15882978868e-06 6878 -196339.502374 -0.0909090909091 0.55 2.14941354942e-06 6848 -204605.31655 -0.0909090909091 0.58 2.14031118479e-06 6819 -213766.700883 -0.0909090909091 0.61 2.12775619911e-06 6779 -223938.297053 -0.0909090909091 0.64 2.12242033019e-06 6762 -235265.93441 -0.0909090909091 0.67 2.11394571485e-06 6735 -247935.42533 -0.0909090909091 0.7 2.10296010238e-06 6700 -262185.724641 -0.0909090909091 0.73 2.09322998847e-06 6669 -278332.096551 -0.0909090909091 0.76 2.08130275207e-06 6631 -296803.170057 -0.0909090909091 0.79 2.07125876352e-06 6599 -318201.827345 -0.0909090909091 0.82 2.05336790892e-06 6542 -343410.417577 -0.0909090909091 0.85 2.04395166965e-06 6512 -373799.089191 -0.0909090909091 0.88 2.03076893468e-06 6470 -411665.87129 -0.047619047619 0.01 2.99938608035e-06 9556 -149763.532956 -0.047619047619 0.04 2.33114696722e-06 7427 -144303.444655 -0.047619047619 0.07 2.15192454655e-06 6856 -141652.327419 -0.047619047619 0.1 2.0800472535e-06 6627 -140455.986397 -0.047619047619 0.13 2.01946944757e-06 6434 -140194.999096 -0.047619047619 0.16 1.98494323693e-06 6324 -140646.765177 -0.047619047619 0.19 1.95606676985e-06 6232 -141704.232879 -0.047619047619 0.22 1.93001517456e-06 6149 -143307.788155 -0.047619047619 0.25 1.90051095819e-06 6055 -145420.471085 -0.047619047619 0.28 1.88105073038e-06 5993 -148029.74579 -0.047619047619 0.31 1.86190437721e-06 5932 -151134.210114 -0.047619047619 0.34 1.8424441494e-06 5870 -154741.974156 -0.047619047619 0.37 1.82737816657e-06 5822 -158867.786416 -0.047619047619 0.4 1.81607867946e-06 5786 -163537.222704 -0.047619047619 0.43 1.80258206984e-06 5743 -168781.553811 -0.047619047619 0.46 1.79096870808e-06 5706 -174639.297024 -0.047619047619 0.49 1.77935534633e-06 5669 -181160.048266 -0.047619047619 0.52 1.76805585921e-06 5633 -188404.097365 -0.047619047619 0.55 1.75644249745e-06 5596 -196445.989484 -0.047619047619 0.58 1.74765400747e-06 5568 -205377.678182 -0.047619047619 0.61 1.73478514714e-06 5527 -215312.601697 -0.047619047619 0.64 1.7263105318e-06 5500 -226393.784294 -0.047619047619 0.67 1.7165804179e-06 5469 -238803.804134 -0.047619047619 0.7 1.70873355184e-06 5444 -252777.747868 -0.047619047619 0.73 1.69743406473e-06 5408 -268625.6512 -0.047619047619 0.76 1.68613457761e-06 5372 -286768.996828 -0.047619047619 0.79 1.67514896513e-06 5337 -307800.090952 -0.047619047619 0.82 1.66416335266e-06 5302 -332588.345345 -0.047619047619 0.85 1.64941124448e-06 5255 -362477.935405 -0.047619047619 0.88 1.63120651523e-06 5197 -399721.32613 -0.0322580645161 0.01 3.0571390145e-06 9740 -149252.337596 -0.0322580645161 0.04 2.11677058663e-06 6744 -143085.434954 -0.0322580645161 0.07 1.95230027415e-06 6220 -139856.709526 -0.0322580645161 0.1 1.86096275328e-06 5929 -138270.729159 -0.0322580645161 0.13 1.79975719806e-06 5734 -137696.24859 -0.0322580645161 0.16 1.75581474816e-06 5594 -137887.862672 -0.0322580645161 0.19 1.72317178538e-06 5490 -138716.003824 -0.0322580645161 0.22 1.69806181401e-06 5410 -140112.438269 -0.0322580645161 0.25 1.67201021871e-06 5327 -142039.406609 -0.0322580645161 0.28 1.65286386554e-06 5266 -144475.892389 -0.0322580645161 0.31 1.63403138701e-06 5206 -147418.470661 -0.0322580645161 0.34 1.61111853813e-06 5133 -150870.399022 -0.0322580645161 0.37 1.59354155817e-06 5077 -154843.715403 -0.0322580645161 0.4 1.57910332464e-06 5031 -159362.889403 -0.0322580645161 0.43 1.56497896574e-06 4986 -164458.053537 -0.0322580645161 0.46 1.55367947862e-06 4950 -170167.915189 -0.0322580645161 0.49 1.53955511973e-06 4905 -176539.352396 -0.0322580645161 0.52 1.52794175797e-06 4868 -183631.216215 -0.0322580645161 0.55 1.51695614549e-06 4833 -191516.291085 -0.0322580645161 0.58 1.50408728516e-06 4792 -200285.038784 -0.0322580645161 0.61 1.49718204304e-06 4770 -210050.477772 -0.0322580645161 0.64 1.4865103052e-06 4736 -220953.481602 -0.0322580645161 0.67 1.47113044774e-06 4687 -233170.874575 -0.0322580645161 0.7 1.46202808312e-06 4658 -246934.474791 -0.0322580645161 0.73 1.45323959314e-06 4630 -262551.130327 -0.0322580645161 0.76 1.43817361031e-06 4582 -280435.91002 -0.0322580645161 0.79 1.42373537677e-06 4536 -301168.584331 -0.0322580645161 0.82 1.41369138823e-06 4504 -325605.866758 -0.0322580645161 0.85 1.39893928004e-06 4457 -355069.585014 -0.0322580645161 0.88 1.38355942258e-06 4408 -391769.852111 -0.0243902439024 0.01 3.00158320284e-06 9563 -148823.142 -0.0243902439024 0.04 1.98117674122e-06 6312 -142295.808377 -0.0243902439024 0.07 1.7925380813e-06 5711 -138673.442888 -0.0243902439024 0.1 1.69868956329e-06 5412 -136794.449231 -0.0243902439024 0.13 1.64313375163e-06 5235 -136004.086469 -0.0243902439024 0.16 1.5885195639e-06 5061 -136013.507055 -0.0243902439024 0.19 1.54959910827e-06 4937 -136672.239708 -0.0243902439024 0.22 1.51978101727e-06 4842 -137914.769668 -0.0243902439024 0.25 1.4924739234e-06 4755 -139695.720461 -0.0243902439024 0.28 1.47364144488e-06 4695 -141997.294447 -0.0243902439024 0.31 1.45292571849e-06 4629 -144810.730107 -0.0243902439024 0.34 1.4388013596e-06 4584 -148140.214587 -0.0243902439024 0.37 1.41808563322e-06 4518 -151995.978095 -0.0243902439024 0.4 1.40647227146e-06 4481 -156398.99106 -0.0243902439024 0.43 1.39517278434e-06 4445 -161379.729886 -0.0243902439024 0.46 1.38199004937e-06 4403 -166972.801242 -0.0243902439024 0.49 1.37069056225e-06 4367 -173225.941393 -0.0243902439024 0.52 1.3606465737e-06 4335 -180196.722942 -0.0243902439024 0.55 1.35248583301e-06 4309 -187957.793598 -0.0243902439024 0.58 1.34150022053e-06 4274 -196597.605228 -0.0243902439024 0.61 1.33239785591e-06 4245 -206225.259286 -0.0243902439024 0.64 1.32203999272e-06 4212 -216980.475554 -0.0243902439024 0.67 1.31419312666e-06 4187 -229039.175135 -0.0243902439024 0.7 1.30257976491e-06 4150 -242629.232668 -0.0243902439024 0.73 1.29504677349e-06 4126 -258051.500565 -0.0243902439024 0.76 1.28343341173e-06 4089 -275714.769655 -0.0243902439024 0.79 1.27715591889e-06 4069 -296193.760237 -0.0243902439024 0.82 1.26868130355e-06 4042 -320329.123752 -0.0243902439024 0.85 1.25800956572e-06 4008 -349419.694714 -0.0243902439024 0.88 1.24827945181e-06 3977 -385635.396338 -0.0196078431373 0.01 2.93410015478e-06 9348 -148498.466954 -0.0196078431373 0.04 1.86975124326e-06 5957 -141741.668613 -0.0196078431373 0.07 1.66887147229e-06 5317 -137797.607539 -0.0196078431373 0.1 1.56654833895e-06 4991 -135703.702967 -0.0196078431373 0.13 1.50157628803e-06 4784 -134726.60019 -0.0196078431373 0.16 1.45731996348e-06 4643 -134577.515808 -0.0196078431373 0.19 1.41683013465e-06 4514 -135106.887459 -0.0196078431373 0.22 1.39172016327e-06 4434 -136231.471965 -0.0196078431373 0.25 1.36755181583e-06 4357 -137909.165628 -0.0196078431373 0.28 1.35123033444e-06 4305 -140113.087181 -0.0196078431373 0.31 1.33208398127e-06 4244 -142835.314044 -0.0196078431373 0.34 1.31952899558e-06 4204 -146075.610904 -0.0196078431373 0.37 1.30603238597e-06 4161 -149845.477111 -0.0196078431373 0.4 1.29536064814e-06 4127 -154163.371633 -0.0196078431373 0.43 1.2809224146e-06 4081 -159056.348347 -0.0196078431373 0.46 1.27244779926e-06 4054 -164561.036785 -0.0196078431373 0.49 1.26522868249e-06 4031 -170724.096266 -0.0196078431373 0.52 1.25581244323e-06 4001 -177601.95894 -0.0196078431373 0.55 1.24733782789e-06 3974 -185264.61658 -0.0196078431373 0.58 1.24357133218e-06 3962 -193800.573442 -0.0196078431373 0.61 1.23572446613e-06 3937 -203318.009157 -0.0196078431373 0.64 1.23038859721e-06 3920 -213953.627589 -0.0196078431373 0.67 1.22599435222e-06 3906 -225881.765073 -0.0196078431373 0.7 1.21814748617e-06 3881 -239326.076937 -0.0196078431373 0.73 1.21061449476e-06 3857 -254583.887996 -0.0196078431373 0.76 1.20025663157e-06 3824 -272057.258962 -0.0196078431373 0.79 1.19366526408e-06 3803 -292310.40304 -0.0196078431373 0.82 1.18738777124e-06 3783 -316171.012162 -0.0196078431373 0.85 1.17828540662e-06 3754 -344915.833831 -0.0196078431373 0.88 1.16949691664e-06 3726 -380676.137333 -0.016393442623 0.01 2.88074146562e-06 9178 -148238.951955 -0.016393442623 0.04 1.76334773958e-06 5618 -141320.153976 -0.016393442623 0.07 1.57094258394e-06 5005 -137124.470779 -0.016393442623 0.1 1.46202808312e-06 4658 -134838.515361 -0.016393442623 0.13 1.39674215755e-06 4450 -133720.919166 -0.016393442623 0.16 1.35939107513e-06 4331 -133457.703056 -0.016393442623 0.19 1.32831748556e-06 4232 -133893.294598 -0.016393442623 0.22 1.30289363955e-06 4151 -134937.013968 -0.016393442623 0.25 1.2787252921e-06 4074 -136537.370778 -0.016393442623 0.28 1.26554255713e-06 4032 -138668.696809 -0.016393442623 0.31 1.25141819824e-06 3987 -141321.315854 -0.016393442623 0.34 1.24106033504e-06 3954 -144494.482684 -0.016393442623 0.37 1.23038859721e-06 3920 -148199.166995 -0.016393442623 0.4 1.22191398187e-06 3893 -152451.568181 -0.016393442623 0.43 1.21343936654e-06 3866 -157278.86005 -0.016393442623 0.46 1.20527862584e-06 3840 -162715.929842 -0.016393442623 0.49 1.1968040105e-06 3813 -168807.113089 -0.016393442623 0.52 1.19021264302e-06 3792 -175608.216447 -0.016393442623 0.55 1.18550452339e-06 3777 -183189.303582 -0.016393442623 0.58 1.17702990805e-06 3750 -191635.99382 -0.016393442623 0.61 1.17263566306e-06 3736 -201055.874861 -0.016393442623 0.64 1.16604429557e-06 3715 -211583.312365 -0.016393442623 0.67 1.15819742952e-06 3690 -223389.018938 -0.016393442623 0.7 1.1528615606e-06 3673 -236694.706709 -0.016393442623 0.73 1.14627019312e-06 3652 -251792.803141 -0.016393442623 0.76 1.1409343242e-06 3635 -269080.336351 -0.016393442623 0.79 1.13183195958e-06 3606 -289112.329 -0.016393442623 0.82 1.12272959496e-06 3577 -312700.133592 -0.016393442623 0.85 1.11362723033e-06 3548 -341096.487136 -0.016393442623 0.88 1.10640811356e-06 3525 -376393.803972 -0.0140845070423 0.01 2.82895214966e-06 9013 -148029.711632 -0.0140845070423 0.04 1.68613457761e-06 5372 -140973.63127 -0.0140845070423 0.07 1.48556868128e-06 4733 -136589.140351 -0.0140845070423 0.1 1.38230392401e-06 4404 -134158.87826 -0.0140845070423 0.13 1.32988685877e-06 4237 -132934.942574 -0.0140845070423 0.16 1.28563053423e-06 4096 -132589.314568 -0.0140845070423 0.19 1.25518469394e-06 3999 -132948.641969 -0.0140845070423 0.22 1.23509671684e-06 3935 -133924.243252 -0.0140845070423 0.25 1.21971685938e-06 3886 -135466.431375 -0.0140845070423 0.28 1.20810349762e-06 3849 -137545.277942 -0.0140845070423 0.31 1.19554851193e-06 3809 -140145.972683 -0.0140845070423 0.34 1.18393515017e-06 3772 -143266.16501 -0.0140845070423 0.37 1.17546053484e-06 3745 -146916.188241 -0.0140845070423 0.4 1.16886916735e-06 3724 -151113.14498 -0.0140845070423 0.43 1.16008067737e-06 3696 -155882.44839 -0.0140845070423 0.46 1.15254768596e-06 3672 -161257.484374 -0.0140845070423 0.49 1.14438694526e-06 3646 -167282.033339 -0.0140845070423 0.52 1.13905107635e-06 3629 -174011.783344 -0.0140845070423 0.55 1.13245970886e-06 3608 -181515.327979 -0.0140845070423 0.58 1.1268099653e-06 3590 -189876.867145 -0.0140845070423 0.61 1.11833534997e-06 3563 -199201.497637 -0.0140845070423 0.64 1.11143010784e-06 3541 -209621.860489 -0.0140845070423 0.67 1.10829136142e-06 3531 -221308.141517 -0.0140845070423 0.7 1.09981674608e-06 3504 -234477.667424 -0.0140845070423 0.73 1.09291150395e-06 3482 -249417.619486 -0.0140845070423 0.76 1.08632013647e-06 3461 -266518.941512 -0.0140845070423 0.79 1.07941489434e-06 3439 -286328.249506 -0.0140845070423 0.82 1.07345127614e-06 3420 -309642.402001 -0.0140845070423 0.85 1.06748765794e-06 3401 -337693.600303 -0.0140845070423 0.88 1.0590130426e-06 3374 -372530.298364 -0.0123456790123 0.01 2.77779058299e-06 8850 -147851.138646 -0.0123456790123 0.04 1.62712614488e-06 5184 -140694.481585 -0.0123456790123 0.07 1.41494688679e-06 4508 -136160.801015 -0.0123456790123 0.1 1.32329549129e-06 4216 -133620.289476 -0.0123456790123 0.13 1.26208993607e-06 4021 -132309.90306 -0.0123456790123 0.16 1.22693597615e-06 3909 -131890.375247 -0.0123456790123 0.19 1.20841737226e-06 3850 -132195.55712 -0.0123456790123 0.22 1.18832939516e-06 3786 -133126.31055 -0.0123456790123 0.25 1.17389116163e-06 3740 -134622.549188 -0.0123456790123 0.28 1.16290554915e-06 3705 -136654.925463 -0.0123456790123 0.31 1.15097831275e-06 3667 -139209.841103 -0.0123456790123 0.34 1.14124819884e-06 3636 -142283.951765 -0.0123456790123 0.37 1.134970706e-06 3616 -145886.056462 -0.0123456790123 0.4 1.12524059209e-06 3585 -150031.968853 -0.0123456790123 0.43 1.11519660354e-06 3553 -154745.123921 -0.0123456790123 0.46 1.10829136142e-06 3531 -160059.795513 -0.0123456790123 0.49 1.10232774322e-06 3512 -166021.016094 -0.0123456790123 0.52 1.09353925324e-06 3484 -172681.298157 -0.0123456790123 0.55 1.08663401111e-06 3462 -180107.569468 -0.0123456790123 0.58 1.08192589148e-06 3447 -188384.658662 -0.0123456790123 0.61 1.07564839863e-06 3427 -197616.421133 -0.0123456790123 0.64 1.07062640436e-06 3411 -207933.365089 -0.0123456790123 0.67 1.06623215937e-06 3397 -219502.485 -0.0123456790123 0.7 1.06183791438e-06 3383 -232538.671407 -0.0123456790123 0.73 1.05556042154e-06 3363 -247325.153847 -0.0123456790123 0.76 1.04551643299e-06 3331 -264244.316856 -0.0123456790123 0.79 1.03955281479e-06 3312 -283832.864484 -0.0123456790123 0.82 1.03421694587e-06 3295 -306876.425881 -0.0123456790123 0.85 1.0291949516e-06 3279 -334581.940521 -0.0123456790123 0.88 1.02197583483e-06 3256 -368957.856898 -0.010989010989 0.01 2.72662901632e-06 8687 -147693.31049 -0.010989010989 0.04 1.58067269785e-06 5036 -140472.316549 -0.010989010989 0.07 1.3546829555e-06 4316 -135805.749177 -0.010989010989 0.1 1.26365930928e-06 4026 -133177.464331 -0.010989010989 0.13 1.21657811296e-06 3876 -131799.574207 -0.010989010989 0.16 1.18738777124e-06 3783 -131334.878044 -0.010989010989 0.19 1.1669859195e-06 3718 -131596.671712 -0.010989010989 0.22 1.15129218739e-06 3668 -132486.626052 -0.010989010989 0.25 1.13716782849e-06 3623 -133944.039208 -0.010989010989 0.28 1.12618221602e-06 3588 -135938.033856 -0.010989010989 0.31 1.11268560641e-06 3545 -138451.189282 -0.010989010989 0.34 1.10452486571e-06 3519 -141479.836593 -0.010989010989 0.37 1.09510862645e-06 3489 -145034.563558 -0.010989010989 0.4 1.08569238718e-06 3459 -149128.878036 -0.010989010989 0.43 1.07878714506e-06 3437 -153788.500503 -0.010989010989 0.46 1.07156802829e-06 3414 -159046.320523 -0.010989010989 0.49 1.06685990865e-06 3399 -164945.201756 -0.010989010989 0.52 1.06183791438e-06 3383 -171538.91575 -0.010989010989 0.55 1.05461879761e-06 3360 -178893.444648 -0.010989010989 0.58 1.04614418227e-06 3333 -187089.817325 -0.010989010989 0.61 1.03955281479e-06 3312 -196230.218933 -0.010989010989 0.64 1.03704181765e-06 3304 -206445.354015 -0.010989010989 0.67 1.03233369802e-06 3289 -217899.413824 -0.010989010989 0.7 1.02731170374e-06 3273 -230803.059378 -0.010989010989 0.73 1.02354520804e-06 3261 -245436.160112 -0.010989010989 0.76 1.01726771519e-06 3241 -262175.423418 -0.010989010989 0.79 1.0128734702e-06 3227 -281548.878857 -0.010989010989 0.82 1.00785147593e-06 3211 -304326.295793 -0.010989010989 0.85 1.00282948166e-06 3195 -331692.241487 -0.010989010989 0.88 9.9906298595e-07 3183 -365613.419073 -0.00990099009901 0.01 2.68645306213e-06 8559 -147555.25669 -0.00990099009901 0.04 1.53610249866e-06 4894 -140287.720573 -0.00990099009901 0.07 1.30917113239e-06 4171 -135509.817938 -0.00990099009901 0.1 1.22034460866e-06 3888 -132807.52639 -0.00990099009901 0.13 1.18267965161e-06 3768 -131389.650464 -0.00990099009901 0.16 1.15694193095e-06 3686 -130887.044265 -0.00990099009901 0.19 1.13559845528e-06 3618 -131115.815203 -0.00990099009901 0.22 1.1208463471e-06 3571 -131970.808628 -0.00990099009901 0.25 1.10389711643e-06 3517 -133390.352673 -0.00990099009901 0.28 1.09259762931e-06 3481 -135344.517739 -0.00990099009901 0.31 1.08067039291e-06 3443 -137815.876501 -0.00990099009901 0.34 1.07125415364e-06 3413 -140803.172502 -0.00990099009901 0.37 1.06403503687e-06 3390 -144312.935474 -0.00990099009901 0.4 1.05807141867e-06 3371 -148361.094259 -0.00990099009901 0.43 1.04928292869e-06 3343 -152971.076082 -0.00990099009901 0.46 1.03986668943e-06 3313 -158173.821204 -0.00990099009901 0.49 1.03610019372e-06 3301 -164012.363667 -0.00990099009901 0.52 1.03107819945e-06 3285 -170540.249349 -0.00990099009901 0.55 1.02574233053e-06 3268 -177821.926267 -0.00990099009901 0.58 1.02197583483e-06 3256 -185939.244178 -0.00990099009901 0.61 1.01632609127e-06 3238 -194993.053383 -0.00990099009901 0.64 1.01224572092e-06 3225 -205110.183476 -0.00990099009901 0.67 1.00753760129e-06 3210 -216452.034634 -0.00990099009901 0.7 1.00282948166e-06 3195 -229227.239054 -0.00990099009901 0.73 1.00031848452e-06 3187 -243710.052163 -0.00990099009901 0.76 9.98121362024e-07 3180 -260273.025126 -0.00990099009901 0.79 9.95924239529e-07 3173 -279435.158033 -0.00990099009901 0.82 9.89018997402e-07 3151 -301950.022349 -0.00990099009901 0.85 9.80544382064e-07 3124 -328978.068445 -0.00990099009901 0.88 9.76464011716e-07 3111 -362445.659844 -0.00900900900901 0.01 2.64847423043e-06 8438 -147437.394265 -0.00900900900901 0.04 1.48211606021e-06 4722 -140131.375048 -0.00900900900901 0.07 1.26554255713e-06 4032 -135259.083305 -0.00900900900901 0.1 1.19366526408e-06 3803 -132506.419616 -0.00900900900901 0.13 1.15600030702e-06 3683 -131054.673847 -0.00900900900901 0.16 1.12932096244e-06 3598 -130525.021048 -0.00900900900901 0.19 1.10734973749e-06 3528 -130722.598595 -0.00900900900901 0.22 1.09134213074e-06 3477 -131543.000903 -0.00900900900901 0.25 1.07564839863e-06 3427 -132927.065507 -0.00900900900901 0.28 1.06560441009e-06 3395 -134843.955463 -0.00900900900901 0.31 1.05744366939e-06 3369 -137279.261396 -0.00900900900901 0.34 1.0448886837e-06 3329 -140227.934595 -0.00900900900901 0.37 1.03484469516e-06 3297 -143694.047498 -0.00900900900901 0.4 1.02982270088e-06 3281 -147695.895555 -0.00900900900901 0.43 1.02480070661e-06 3265 -152256.230472 -0.00900900900901 0.46 1.01883708841e-06 3246 -157407.301216 -0.00900900900901 0.49 1.01381509413e-06 3230 -163189.429805 -0.00900900900901 0.52 1.00847922521e-06 3213 -169654.901873 -0.00900900900901 0.55 1.00534047879e-06 3203 -176868.008594 -0.00900900900901 0.58 1.00126010845e-06 3190 -184908.932224 -0.00900900900901 0.61 9.98749111308e-07 3182 -193877.541927 -0.00900900900901 0.64 9.95924239529e-07 3173 -203899.360573 -0.00900900900901 0.67 9.91216119897e-07 3158 -215132.65308 -0.00900900900901 0.7 9.86821874907e-07 3144 -227781.500816 -0.00900900900901 0.73 9.80230507422e-07 3123 -242115.731542 -0.00900900900901 0.76 9.77405635642e-07 3114 -258501.167286 -0.00900900900901 0.79 9.7269751601e-07 3099 -277448.318336 -0.00900900900901 0.82 9.67675521736e-07 3083 -299697.203223 -0.00900900900901 0.85 9.62653527462e-07 3067 -326386.690291 -0.00900900900901 0.88 9.54492786766e-07 3041 -359400.548583 -0.00826446280992 0.01 2.61363414515e-06 8327 -147334.710644 -0.00826446280992 0.04 1.44507885244e-06 4604 -139996.803203 -0.00826446280992 0.07 1.22913309864e-06 3916 -135044.800818 -0.00826446280992 0.1 1.16541654629e-06 3713 -132261.403483 -0.00826446280992 0.13 1.13057646101e-06 3602 -130783.358263 -0.00826446280992 0.16 1.10264161786e-06 3513 -130224.787931 -0.00826446280992 0.19 1.08192589148e-06 3447 -130392.918578 -0.00826446280992 0.22 1.06591828473e-06 3396 -131182.356639 -0.00826446280992 0.25 1.05493267225e-06 3361 -132536.174963 -0.00826446280992 0.28 1.0389250655e-06 3310 -134420.17659 -0.00826446280992 0.31 1.03045045017e-06 3283 -136817.813604 -0.00826446280992 0.34 1.02385908268e-06 3262 -139727.057504 -0.00826446280992 0.37 1.01663996591e-06 3239 -143154.547809 -0.00826446280992 0.4 1.01161797164e-06 3223 -147114.17848 -0.00826446280992 0.43 1.00596822808e-06 3205 -151628.818775 -0.00826446280992 0.46 1.0009462338e-06 3189 -156729.952421 -0.00826446280992 0.49 9.9749361274e-07 3178 -162457.626339 -0.00826446280992 0.52 9.9466874096e-07 3169 -168863.735914 -0.00826446280992 0.55 9.89646746686e-07 3153 -176010.816105 -0.00826446280992 0.58 9.83997003127e-07 3135 -183977.077798 -0.00826446280992 0.61 9.78347259569e-07 3117 -192860.147817 -0.00826446280992 0.64 9.76777886358e-07 3112 -202784.286039 -0.00826446280992 0.67 9.7269751601e-07 3099 -213906.546095 -0.00826446280992 0.7 9.67989396378e-07 3084 -226427.413545 -0.00826446280992 0.73 9.64222900672e-07 3072 -240613.266994 -0.00826446280992 0.76 9.57317658545e-07 3050 -256822.193344 -0.00826446280992 0.79 9.53865037481e-07 3039 -275554.637798 -0.00826446280992 0.82 9.52295664271e-07 3034 -297539.787295 -0.00826446280992 0.85 9.47587544639e-07 3019 -323894.120996 -0.00826446280992 0.88 9.41310051796e-07 2999 -356460.738163 -0.00763358778626 0.01 2.58224668093e-06 8227 -147246.918164 -0.00763358778626 0.04 1.40772777002e-06 4485 -139885.172929 -0.00763358778626 0.07 1.20308150335e-06 3833 -134868.305177 -0.00763358778626 0.1 1.14501469455e-06 3648 -132057.116982 -0.00763358778626 0.13 1.10954685999e-06 3535 -130559.17433 -0.00763358778626 0.16 1.07972876898e-06 3440 -129973.793412 -0.00763358778626 0.19 1.06152403974e-06 3382 -130113.054358 -0.00763358778626 0.22 1.04457480906e-06 3328 -130876.80811 -0.00763358778626 0.25 1.03139207409e-06 3286 -132199.688903 -0.00763358778626 0.28 1.02260358411e-06 3258 -134051.760643 -0.00763358778626 0.31 1.01350121949e-06 3229 -136418.26085 -0.00763358778626 0.34 1.00596822808e-06 3205 -139293.403058 -0.00763358778626 0.37 1.00000460988e-06 3186 -142683.139354 -0.00763358778626 0.4 9.95924239529e-07 3173 -146601.852523 -0.00763358778626 0.43 9.92785493108e-07 3163 -151073.058439 -0.00763358778626 0.46 9.86821874907e-07 3144 -156126.044258 -0.00763358778626 0.49 9.7991663278e-07 3122 -161799.551408 -0.00763358778626 0.52 9.76150137074e-07 3110 -168144.256812 -0.00763358778626 0.55 9.73325265294e-07 3101 -175223.536436 -0.00763358778626 0.58 9.68617145662e-07 3086 -183114.314927 -0.00763358778626 0.61 9.63595151388e-07 3070 -191913.047633 -0.00763358778626 0.64 9.58259282471e-07 3053 -201741.134334 -0.00763358778626 0.67 9.54806661408e-07 3042 -212752.196972 -0.00763358778626 0.7 9.52295664271e-07 3034 -225145.894609 -0.00763358778626 0.73 9.50098541776e-07 3027 -239184.192726 -0.00763358778626 0.76 9.4633204607e-07 3015 -255219.483084 -0.00763358778626 0.79 9.42251675722e-07 3002 -273742.318324 -0.00763358778626 0.82 9.38171305374e-07 2989 -295466.627625 -0.00763358778626 0.85 9.32521561815e-07 2971 -321486.006431 -0.00763358778626 0.88 9.2875506611e-07 2959 -353605.49287 -0.00709219858156 0.01 2.56121707991e-06 8160 -147173.783528 -0.00709219858156 0.04 1.37634030581e-06 4385 -139793.528954 -0.00709219858156 0.07 1.18456289946e-06 3774 -134722.804442 -0.00709219858156 0.1 1.12555446674e-06 3586 -131889.626902 -0.00709219858156 0.13 1.08851725896e-06 3468 -130368.472474 -0.00709219858156 0.16 1.06058241581e-06 3379 -129759.867447 -0.00709219858156 0.19 1.03923894015e-06 3311 -129876.59913 -0.00709219858156 0.22 1.02574233053e-06 3268 -130611.453504 -0.00709219858156 0.25 1.01475671806e-06 3233 -131909.139404 -0.00709219858156 0.28 1.00439885487e-06 3200 -133734.359361 -0.00709219858156 0.31 9.97179738098e-07 3177 -136069.261231 -0.00709219858156 0.34 9.93413242392e-07 3165 -138911.608554 -0.00709219858156 0.37 9.87763498833e-07 3147 -142266.945321 -0.00709219858156 0.4 9.7991663278e-07 3122 -146146.463108 -0.00709219858156 0.43 9.75208513147e-07 3107 -150572.097738 -0.00709219858156 0.46 9.70814268157e-07 3093 -155575.618666 -0.00709219858156 0.49 9.66733897809e-07 3080 -161195.069719 -0.00709219858156 0.52 9.61398028893e-07 3063 -167480.303464 -0.00709219858156 0.55 9.56062159976e-07 3046 -174492.082013 -0.00709219858156 0.58 9.51981789629e-07 3033 -182307.121801 -0.00709219858156 0.61 9.51040165702e-07 3030 -191021.627679 -0.00709219858156 0.64 9.48529168565e-07 3022 -200755.7751 -0.00709219858156 0.67 9.44762672859e-07 3010 -211659.975819 -0.00709219858156 0.7 9.40368427869e-07 2996 -223929.348866 -0.00709219858156 0.73 9.37229681448e-07 2986 -237821.040046 -0.00709219858156 0.76 9.32521561815e-07 2971 -253681.873935 -0.00709219858156 0.79 9.2875506611e-07 2959 -271994.110828 -0.00709219858156 0.82 9.26244068973e-07 2951 -293458.508406 -0.00709219858156 0.85 9.23105322551e-07 2941 -319146.801181 -0.00709219858156 0.88 9.20594325414e-07 2933 -350826.020314 -0.00662251655629 0.01 2.53736260711e-06 8084 -147113.539847 -0.00662251655629 0.04 1.35279970765e-06 4310 -139716.616462 -0.00662251655629 0.07 1.16604429557e-06 3715 -134604.641544 -0.00662251655629 0.1 1.1089191107e-06 3533 -131751.334196 -0.00662251655629 0.13 1.06905703115e-06 3406 -130206.37311 -0.00662251655629 0.16 1.04363318514e-06 3325 -129578.866057 -0.00662251655629 0.19 1.02228970947e-06 3257 -129671.230544 -0.00662251655629 0.22 1.00942084914e-06 3216 -130383.712248 -0.00662251655629 0.25 1.00000460988e-06 3186 -131655.574854 -0.00662251655629 0.28 9.9309936775e-07 3164 -133454.259986 -0.00662251655629 0.31 9.86194125622e-07 3142 -135763.116949 -0.00662251655629 0.34 9.77719510285e-07 3115 -138573.588198 -0.00662251655629 0.37 9.73639139937e-07 3102 -141891.442321 -0.00662251655629 0.4 9.67989396378e-07 3084 -145731.664391 -0.00662251655629 0.43 9.62025778177e-07 3065 -150114.519799 -0.00662251655629 0.46 9.54806661408e-07 3042 -155069.069227 -0.00662251655629 0.49 9.51667914986e-07 3032 -160634.096083 -0.00662251655629 0.52 9.5072629106e-07 3029 -166859.887852 -0.00662251655629 0.55 9.47901419281e-07 3020 -173807.300895 -0.00662251655629 0.58 9.42565550364e-07 3003 -181550.380414 -0.00662251655629 0.61 9.39112929301e-07 2992 -190182.569776 -0.00662251655629 0.64 9.35032558953e-07 2979 -199822.138694 -0.00662251655629 0.67 9.31893812531e-07 2969 -210617.922889 -0.00662251655629 0.7 9.28127316825e-07 2957 -222762.426004 -0.00662251655629 0.73 9.26244068973e-07 2951 -236508.654403 -0.00662251655629 0.76 9.23733071835e-07 2943 -252197.110352 -0.00662251655629 0.79 9.2153594934e-07 2936 -270302.37539 -0.00662251655629 0.82 9.18397202919e-07 2926 -291510.795897 -0.00662251655629 0.85 9.16200080424e-07 2919 -316871.916787 -0.00662251655629 0.88 9.1274745936e-07 2908 -348114.16212 -0.00621118012422 0.01 2.51256651038e-06 8005 -147062.827388 -0.00621118012422 0.04 1.32329549129e-06 4216 -139654.614993 -0.00621118012422 0.07 1.1490950649e-06 3661 -134508.52775 -0.00621118012422 0.1 1.09040050681e-06 3474 -131635.255529 -0.00621118012422 0.13 1.05367717368e-06 3357 -130070.575274 -0.00621118012422 0.16 1.02574233053e-06 3268 -129420.114441 -0.00621118012422 0.19 1.00879309986e-06 3214 -129493.697127 -0.00621118012422 0.22 9.95610364887e-07 3172 -130184.635266 -0.00621118012422 0.25 9.89646746686e-07 3153 -131434.89357 -0.00621118012422 0.28 9.7991663278e-07 3122 -133209.133622 -0.00621118012422 0.31 9.73639139937e-07 3102 -135488.095785 -0.00621118012422 0.34 9.65792273883e-07 3077 -138267.618736 -0.00621118012422 0.37 9.5951478104e-07 3057 -141551.31874 -0.00621118012422 0.4 9.52923413555e-07 3036 -145351.222599 -0.00621118012422 0.43 9.5072629106e-07 3029 -149690.374031 -0.00621118012422 0.46 9.47587544639e-07 3019 -154599.043681 -0.00621118012422 0.49 9.43507174291e-07 3006 -160113.784905 -0.00621118012422 0.52 9.38485180016e-07 2990 -166281.873747 -0.00621118012422 0.55 9.35660308237e-07 2981 -173163.580913 -0.00621118012422 0.58 9.30952188605e-07 2966 -180832.983336 -0.00621118012422 0.61 9.27813442183e-07 2956 -189382.411756 -0.00621118012422 0.64 9.25302445046e-07 2948 -198928.322036 -0.00621118012422 0.67 9.23419197193e-07 2942 -209617.389377 -0.00621118012422 0.7 9.2153594934e-07 2936 -221639.657211 -0.00621118012422 0.73 9.19338826845e-07 2929 -235243.045506 -0.00621118012422 0.76 9.1714170435e-07 2922 -250762.090723 -0.00621118012422 0.79 9.15258456497e-07 2916 -268662.29078 -0.00621118012422 0.82 9.1117808615e-07 2903 -289616.414852 -0.00621118012422 0.85 9.0835321437e-07 2894 -314651.987073 -0.00621118012422 0.88 9.04586718665e-07 2882 -345459.60508 -0.00584795321637 0.01 2.49436178113e-06 7947 -147021.414708 -0.00584795321637 0.04 1.30948500703e-06 4172 -139608.013556 -0.00584795321637 0.07 1.13654007921e-06 3621 -134432.664852 -0.00584795321637 0.1 1.07219577757e-06 3416 -131538.83501 -0.00584795321637 0.13 1.03421694587e-06 3295 -129954.688956 -0.00584795321637 0.16 1.01224572092e-06 3225 -129283.765111 -0.00584795321637 0.19 9.95924239529e-07 3173 -129338.05022 -0.00584795321637 0.22 9.88391248117e-07 3149 -130012.048814 -0.00584795321637 0.25 9.75522387789e-07 3108 -131241.246608 -0.00584795321637 0.28 9.69558769589e-07 3089 -132989.93868 -0.00584795321637 0.31 9.61084154251e-07 3062 -135240.824972 -0.00584795321637 0.34 9.53865037481e-07 3039 -137988.641135 -0.00584795321637 0.37 9.49784667134e-07 3026 -141237.288103 -0.00584795321637 0.4 9.46959795354e-07 3017 -145001.800777 -0.00584795321637 0.43 9.41310051796e-07 2999 -149300.288351 -0.00584795321637 0.46 9.36288057521e-07 2983 -154161.831592 -0.00584795321637 0.49 9.32521561815e-07 2971 -159624.240696 -0.00584795321637 0.52 9.27499567541e-07 2955 -165734.24661 -0.00584795321637 0.55 9.25302445046e-07 2948 -172551.103693 -0.00584795321637 0.58 9.22791447909e-07 2940 -180148.422694 -0.00584795321637 0.61 9.21222074698e-07 2935 -188617.42674 -0.00584795321637 0.64 9.19652701488e-07 2930 -198072.097957 -0.00584795321637 0.67 9.1714170435e-07 2922 -208656.926983 -0.00584795321637 0.7 9.15886205782e-07 2918 -220557.897406 -0.00584795321637 0.73 9.1274745936e-07 2908 -234019.391704 -0.00584795321637 0.76 9.09608712939e-07 2898 -249369.641496 -0.00584795321637 0.79 9.07725465086e-07 2892 -267065.052589 -0.00584795321637 0.82 9.04586718665e-07 2882 -287766.026065 -0.00584795321637 0.85 9.01447972243e-07 2872 -312479.025712 -0.00584795321637 0.88 8.97995351179e-07 2861 -342856.581136 -0.00552486187845 0.01 2.47333218011e-06 7880 -146987.307339 -0.00552486187845 0.04 1.28845540601e-06 4105 -139574.567771 -0.00552486187845 0.07 1.12241572031e-06 3576 -134370.127581 -0.00552486187845 0.1 1.05775754403e-06 3370 -131457.783008 -0.00552486187845 0.13 1.02040646162e-06 3251 -129853.189414 -0.00552486187845 0.16 9.99690735235e-07 3185 -129166.454666 -0.00552486187845 0.19 9.88077373475e-07 3148 -129204.269698 -0.00552486187845 0.22 9.75208513147e-07 3107 -129860.055077 -0.00552486187845 0.25 9.66733897809e-07 3080 -131068.415706 -0.00552486187845 0.28 9.58259282471e-07 3053 -132792.969135 -0.00552486187845 0.31 9.49784667134e-07 3026 -135015.77001 -0.00552486187845 0.34 9.47587544639e-07 3019 -137733.619238 -0.00552486187845 0.37 9.40368427869e-07 2996 -140950.513289 -0.00552486187845 0.4 9.35660308237e-07 2981 -144677.112686 -0.00552486187845 0.43 9.3032443932e-07 2964 -148934.072047 -0.00552486187845 0.46 9.2593019433e-07 2950 -153749.187172 -0.00552486187845 0.49 9.23733071835e-07 2943 -159160.039299 -0.00552486187845 0.52 9.21849823983e-07 2937 -165213.727551 -0.00552486187845 0.55 9.20280450772e-07 2932 -171968.560584 -0.00552486187845 0.58 9.18083328277e-07 2925 -179496.09284 -0.00552486187845 0.61 9.15886205782e-07 2918 -187885.674836 -0.00552486187845 0.64 9.13689083287e-07 2911 -197249.778978 -0.00552486187845 0.67 9.1117808615e-07 2903 -207730.425702 -0.00552486187845 0.7 9.0835321437e-07 2894 -219510.390122 -0.00552486187845 0.73 9.05842217233e-07 2886 -232830.099205 -0.00552486187845 0.76 9.03331220096e-07 2878 -248012.169014 -0.00552486187845 0.79 9.01134097601e-07 2871 -265504.678765 -0.00552486187845 0.82 8.98309225822e-07 2862 -285955.405396 -0.00552486187845 0.85 8.95484354042e-07 2853 -310348.78938 -0.00552486187845 0.88 8.92659482263e-07 2844 -340300.515839 -0.00523560209424 0.01 2.45606907479e-06 7825 -146959.675732 -0.00523560209424 0.04 1.27307554854e-06 4056 -139551.463334 -0.00523560209424 0.07 1.10923298534e-06 3534 -134320.575056 -0.00523560209424 0.1 1.04614418227e-06 3333 -131390.585425 -0.00523560209424 0.13 1.01099022235e-06 3221 -129767.690315 -0.00523560209424 0.16 9.89960621328e-07 3154 -129065.59405 -0.00523560209424 0.19 9.77719510285e-07 3115 -129089.817711 -0.00523560209424 0.22 9.66106148525e-07 3078 -129725.907129 -0.00523560209424 0.25 9.55434410692e-07 3044 -130912.854959 -0.00523560209424 0.28 9.48529168565e-07 3022 -132613.377788 -0.00523560209424 0.31 9.44134923575e-07 3008 -134811.586339 -0.00523560209424 0.34 9.36288057521e-07 2983 -137500.218326 -0.00523560209424 0.37 9.30638313963e-07 2965 -140682.626846 -0.00523560209424 0.4 9.25302445046e-07 2948 -144371.725126 -0.00523560209424 0.43 9.22791447909e-07 2940 -148587.869824 -0.00523560209424 0.46 9.2153594934e-07 2936 -153359.163917 -0.00523560209424 0.49 9.19652701488e-07 2930 -158721.83259 -0.00523560209424 0.52 9.16200080424e-07 2919 -164720.737133 -0.00523560209424 0.55 9.15258456497e-07 2916 -171413.381371 -0.00523560209424 0.58 9.1274745936e-07 2908 -178871.068798 -0.00523560209424 0.61 9.09294838297e-07 2897 -187181.433837 -0.00523560209424 0.64 9.0678384116e-07 2889 -196454.623319 -0.00523560209424 0.67 9.04272844022e-07 2881 -206831.26572 -0.00523560209424 0.7 9.01761846885e-07 2873 -218491.119585 -0.00523560209424 0.73 9.01134097601e-07 2871 -231670.622638 -0.00523560209424 0.76 8.97053727253e-07 2858 -246686.826467 -0.00523560209424 0.79 8.95484354042e-07 2853 -263978.329416 -0.00523560209424 0.82 8.92973356905e-07 2845 -284180.554655 -0.00523560209424 0.85 8.9077623441e-07 2838 -308258.285703 -0.00523560209424 0.88 8.89520735842e-07 2834 -337790.339454 -0.00497512437811 0.01 2.43911984412e-06 7771 -146938.363496 -0.00497512437811 0.04 1.25738181644e-06 4006 -139536.522959 -0.00497512437811 0.07 1.09448087716e-06 3487 -134282.337887 -0.00497512437811 0.1 1.03107819945e-06 3285 -131334.302491 -0.00497512437811 0.13 1.00000460988e-06 3186 -129696.268821 -0.00497512437811 0.16 9.85252501696e-07 3139 -128981.349117 -0.00497512437811 0.19 9.68931020304e-07 3087 -128988.795345 -0.00497512437811 0.22 9.57003783903e-07 3049 -129607.217958 -0.00497512437811 0.25 9.47587544639e-07 3019 -130771.6065 -0.00497512437811 0.28 9.40682302511e-07 2997 -132450.727506 -0.00497512437811 0.31 9.33463185742e-07 2974 -134622.892774 -0.00497512437811 0.34 9.28127316825e-07 2957 -137281.596492 -0.00497512437811 0.37 9.2436082112e-07 2945 -140431.928151 -0.00497512437811 0.4 9.2153594934e-07 2936 -144085.750254 -0.00497512437811 0.43 9.19024952203e-07 2928 -148263.475342 -0.00497512437811 0.46 9.16200080424e-07 2919 -152991.446223 -0.00497512437811 0.49 9.14944581855e-07 2915 -158305.292746 -0.00497512437811 0.52 9.1117808615e-07 2903 -164249.938022 -0.00497512437811 0.55 9.07097715802e-07 2890 -170880.672456 -0.00497512437811 0.58 9.05842217233e-07 2886 -178267.922471 -0.00497512437811 0.61 9.02703470812e-07 2876 -186498.931954 -0.00497512437811 0.64 9.01134097601e-07 2871 -195682.53313 -0.00497512437811 0.67 9.00506348317e-07 2869 -205956.929457 -0.00497512437811 0.7 8.96112103327e-07 2855 -217498.132125 -0.00497512437811 0.73 8.951704794e-07 2852 -230538.59953 -0.00497512437811 0.76 8.92659482263e-07 2844 -245389.709563 -0.00497512437811 0.79 8.91090109052e-07 2839 -262482.984735 -0.00497512437811 0.82 8.89834610484e-07 2835 -282440.229303 -0.00497512437811 0.85 8.88265237273e-07 2830 -306206.540277 -0.00497512437811 0.88 8.8638198942e-07 2824 -335324.21331 -0.00473933649289 0.01 2.42530935986e-06 7727 -146921.930947 -0.00473933649289 0.04 1.24451295611e-06 3965 -139528.904992 -0.00473933649289 0.07 1.08129814219e-06 3445 -134253.469202 -0.00473933649289 0.1 1.02040646162e-06 3251 -131286.280753 -0.00473933649289 0.13 9.90902245255e-07 3157 -129637.414412 -0.00473933649289 0.16 9.73639139937e-07 3102 -128909.445338 -0.00473933649289 0.19 9.59828655682e-07 3058 -128900.849887 -0.00473933649289 0.22 9.46645920712e-07 3016 -129499.329382 -0.00473933649289 0.25 9.39740678585e-07 2994 -130645.345846 -0.00473933649289 0.28 9.32835436458e-07 2972 -132300.52574 -0.00473933649289 0.31 9.25616319688e-07 2949 -134446.84482 -0.00473933649289 0.34 9.2153594934e-07 2936 -137078.386025 -0.00473933649289 0.37 9.19652701488e-07 2930 -140198.25561 -0.00473933649289 0.4 9.1714170435e-07 2922 -143818.661018 -0.00473933649289 0.43 9.14316832571e-07 2913 -147957.491823 -0.00473933649289 0.46 9.10864211507e-07 2902 -152641.976676 -0.00473933649289 0.49 9.0678384116e-07 2889 -157906.638664 -0.00473933649289 0.52 9.05214467949e-07 2884 -163795.943485 -0.00473933649289 0.55 9.02703470812e-07 2876 -170365.530082 -0.00473933649289 0.58 9.00820222959e-07 2870 -177684.264667 -0.00473933649289 0.61 8.98936975106e-07 2864 -185837.66307 -0.00473933649289 0.64 8.96112103327e-07 2855 -194932.285085 -0.00473933649289 0.67 8.94228855474e-07 2849 -205104.54319 -0.00473933649289 0.7 8.92659482263e-07 2844 -216528.211911 -0.00473933649289 0.73 8.91090109052e-07 2839 -229431.479485 -0.00473933649289 0.76 8.89834610484e-07 2835 -244120.126548 -0.00473933649289 0.79 8.88265237273e-07 2830 -261017.550775 -0.00473933649289 0.82 8.86695864062e-07 2825 -280732.699102 -0.00473933649289 0.85 8.85126490851e-07 2820 -304190.835947 -0.00473933649289 0.88 8.83557117641e-07 2815 -332899.471879 -0.00452488687783 0.01 2.40647688133e-06 7667 -146910.094233 -0.00452488687783 0.04 1.23038859721e-06 3920 -139527.85159 -0.00452488687783 0.07 1.07188190293e-06 3415 -134234.447172 -0.00452488687783 0.1 1.01224572092e-06 3225 -131248.837418 -0.00452488687783 0.13 9.85566376338e-07 3140 -129588.806326 -0.00452488687783 0.16 9.65792273883e-07 3077 -128847.553548 -0.00452488687783 0.19 9.47901419281e-07 3020 -128822.03236 -0.00452488687783 0.22 9.41623926438e-07 3000 -129403.871166 -0.00452488687783 0.25 9.32835436458e-07 2972 -130529.83343 -0.00452488687783 0.28 9.2436082112e-07 2945 -132162.391738 -0.00452488687783 0.31 9.2153594934e-07 2936 -134284.170943 -0.00452488687783 0.34 9.19024952203e-07 2928 -136889.511307 -0.00452488687783 0.37 9.14630707213e-07 2914 -139979.993091 -0.00452488687783 0.4 9.1117808615e-07 2903 -143565.874344 -0.00452488687783 0.43 9.07725465086e-07 2892 -147666.191863 -0.00452488687783 0.46 9.05528342591e-07 2885 -152306.819895 -0.00452488687783 0.49 9.02703470812e-07 2876 -157522.995481 -0.00452488687783 0.52 9.00506348317e-07 2869 -163358.347833 -0.00452488687783 0.55 8.98936975106e-07 2864 -169867.800602 -0.00452488687783 0.58 8.95798228684e-07 2854 -177118.010813 -0.00452488687783 0.61 8.94228855474e-07 2849 -185194.161899 -0.00452488687783 0.64 8.92659482263e-07 2844 -194201.247774 -0.00452488687783 0.67 8.9077623441e-07 2838 -204272.964496 -0.00452488687783 0.7 8.89834610484e-07 2835 -215580.653565 -0.00452488687783 0.73 8.88265237273e-07 2830 -228348.413361 -0.00452488687783 0.76 8.86695864062e-07 2825 -242876.210071 -0.00452488687783 0.79 8.85126490851e-07 2820 -259579.484224 -0.00452488687783 0.82 8.84184866925e-07 2817 -279055.451194 -0.00452488687783 0.85 8.82615493714e-07 2812 -302209.212815 -0.00452488687783 0.88 8.81673869788e-07 2809 -330514.562288 -0.004329004329 0.01 2.39392189565e-06 7627 -146902.005174 -0.004329004329 0.04 1.21312549189e-06 3865 -139532.532669 -0.004329004329 0.07 1.06058241581e-06 3379 -134222.522239 -0.004329004329 0.1 1.00282948166e-06 3195 -131221.094733 -0.004329004329 0.13 9.76777886358e-07 3112 -129548.415203 -0.004329004329 0.16 9.56689909261e-07 3048 -128794.442697 -0.004329004329 0.19 9.45390422143e-07 3012 -128752.422661 -0.004329004329 0.22 9.33777060384e-07 2975 -129317.975025 -0.004329004329 0.25 9.24988570404e-07 2947 -130424.293114 -0.004329004329 0.28 9.2153594934e-07 2936 -132035.923299 -0.004329004329 0.31 9.17455578992e-07 2923 -134134.553053 -0.004329004329 0.34 9.13375208645e-07 2910 -136712.837444 -0.004329004329 0.37 9.10236462223e-07 2900 -139773.032314 -0.004329004329 0.4 9.06469966517e-07 2888 -143325.022151 -0.004329004329 0.43 9.03331220096e-07 2878 -147386.926646 -0.004329004329 0.46 9.00820222959e-07 2870 -151985.160426 -0.004329004329 0.49 8.9956472439e-07 2866 -157153.992073 -0.004329004329 0.52 8.95798228684e-07 2854 -162935.565699 -0.004329004329 0.55 8.94228855474e-07 2849 -169384.687355 -0.004329004329 0.58 8.92659482263e-07 2844 -176567.633263 -0.004329004329 0.61 8.9077623441e-07 2838 -184567.58659 -0.004329004329 0.64 8.89520735842e-07 2834 -193488.260841 -0.004329004329 0.67 8.88265237273e-07 2830 -203460.973902 -0.004329004329 0.7 8.8638198942e-07 2824 -214653.752692 -0.004329004329 0.73 8.85440365494e-07 2821 -227286.999522 -0.004329004329 0.76 8.83870992283e-07 2816 -241655.805776 -0.004329004329 0.79 8.83243242999e-07 2814 -258167.304918 -0.004329004329 0.82 8.82301619072e-07 2811 -277406.889832 -0.004329004329 0.85 8.81359995146e-07 2808 -300260.731598 -0.004329004329 0.88 8.79162872651e-07 2801 -328167.722745 -0.00414937759336 0.01 2.38011141139e-06 7583 -146897.710399 -0.00414937759336 0.04 1.20151213013e-06 3828 -139541.934017 -0.00414937759336 0.07 1.05210780047e-06 3352 -134216.317437 -0.00414937759336 0.1 9.9309936775e-07 3164 -131200.73167 -0.00414937759336 0.13 9.67361647094e-07 3082 -129514.859693 -0.00414937759336 0.16 9.48529168565e-07 3022 -128748.17688 -0.00414937759336 0.19 9.37229681448e-07 2986 -128692.736358 -0.00414937759336 0.22 9.27499567541e-07 2955 -129240.691832 -0.00414937759336 0.25 9.20594325414e-07 2933 -130328.146655 -0.00414937759336 0.28 9.16827829708e-07 2921 -131919.761021 -0.00414937759336 0.31 9.13375208645e-07 2910 -133995.235862 -0.00414937759336 0.34 9.09294838297e-07 2897 -136546.83057 -0.00414937759336 0.37 9.05214467949e-07 2884 -139576.333623 -0.00414937759336 0.4 9.02075721527e-07 2874 -143094.574228 -0.00414937759336 0.43 9.00192473674e-07 2868 -147119.341148 -0.00414937759336 0.46 8.96112103327e-07 2855 -151675.75189 -0.00414937759336 0.49 8.951704794e-07 2852 -156797.009176 -0.00414937759336 0.52 8.92973356905e-07 2845 -162526.178934 -0.00414937759336 0.55 8.91090109052e-07 2839 -168915.892183 -0.00414937759336 0.58 8.89834610484e-07 2835 -176032.197668 -0.00414937759336 0.61 8.88579111915e-07 2831 -183956.897513 -0.00414937759336 0.64 8.86068114778e-07 2823 -192791.762804 -0.00414937759336 0.67 8.85440365494e-07 2821 -202666.041157 -0.00414937759336 0.7 8.84498741567e-07 2818 -213745.479962 -0.00414937759336 0.73 8.83557117641e-07 2815 -226246.078356 -0.00414937759336 0.76 8.82301619072e-07 2811 -240457.545945 -0.00414937759336 0.79 8.81673869788e-07 2809 -256779.782032 -0.00414937759336 0.82 8.80104496577e-07 2804 -275786.023428 -0.00414937759336 0.85 8.79162872651e-07 2801 -298342.90977 -0.00414937759336 0.88 8.78535123366e-07 2799 -325857.838742 -0.00398406374502 0.01 2.36630092714e-06 7539 -146896.546338 -0.00398406374502 0.04 1.19460688801e-06 3806 -139556.88352 -0.00398406374502 0.07 1.04363318514e-06 3325 -134216.089308 -0.00398406374502 0.1 9.85566376338e-07 3140 -131186.774449 -0.00398406374502 0.13 9.61711903535e-07 3064 -129488.791203 -0.00398406374502 0.16 9.43821048933e-07 3007 -128707.714367 -0.00398406374502 0.19 9.31893812531e-07 2969 -128640.128272 -0.00398406374502 0.22 9.21849823983e-07 2937 -129170.828086 -0.00398406374502 0.25 9.17455578992e-07 2923 -130240.74617 -0.00398406374502 0.28 9.13375208645e-07 2910 -131812.516984 -0.00398406374502 0.31 9.0835321437e-07 2894 -133864.925842 -0.00398406374502 0.34 9.04900593307e-07 2883 -136389.688266 -0.00398406374502 0.37 9.01134097601e-07 2871 -139389.180671 -0.00398406374502 0.4 8.99250849748e-07 2865 -142874.307236 -0.00398406374502 0.43 8.95798228684e-07 2854 -146861.75702 -0.00398406374502 0.46 8.93914980832e-07 2848 -151376.839706 -0.00398406374502 0.49 8.91717858337e-07 2841 -156451.745349 -0.00398406374502 0.52 8.89834610484e-07 2835 -162128.636273 -0.00398406374502 0.55 8.88579111915e-07 2831 -168460.160255 -0.00398406374502 0.58 8.86695864062e-07 2825 -175510.398175 -0.00398406374502 0.61 8.86068114778e-07 2823 -183360.230347 -0.00398406374502 0.64 8.84812616209e-07 2819 -192110.311274 -0.00398406374502 0.67 8.83870992283e-07 2816 -201887.530965 -0.00398406374502 0.7 8.82301619072e-07 2811 -212854.603394 -0.00398406374502 0.73 8.8198774443e-07 2810 -225224.302567 -0.00398406374502 0.76 8.80418371219e-07 2805 -239280.81813 -0.00398406374502 0.79 8.79476747293e-07 2802 -255415.429487 -0.00398406374502 0.82 8.78848998009e-07 2800 -274190.879727 -0.00398406374502 0.85 8.77907374082e-07 2797 -296455.638918 -0.00398406374502 0.88 8.7759349944e-07 2796 -323584.155146 -0.00383141762452 0.01 2.35594306395e-06 7506 -146898.326001 -0.00383141762452 0.04 1.18832939516e-06 3786 -139577.142287 -0.00383141762452 0.07 1.0351585698e-06 3298 -134220.334849 -0.00383141762452 0.1 9.81799880632e-07 3128 -131178.749423 -0.00383141762452 0.13 9.5512053605e-07 3043 -129469.423497 -0.00383141762452 0.16 9.38799054658e-07 2991 -128675.260149 -0.00383141762452 0.19 9.24988570404e-07 2947 -128592.957638 -0.00383141762452 0.22 9.19024952203e-07 2928 -129108.393194 -0.00383141762452 0.25 9.13689083287e-07 2911 -130161.552182 -0.00383141762452 0.28 9.08980963655e-07 2896 -131713.000872 -0.00383141762452 0.31 9.04586718665e-07 2882 -133741.912421 -0.00383141762452 0.34 9.00506348317e-07 2869 -136240.572764 -0.00383141762452 0.37 8.98309225822e-07 2862 -139211.215136 -0.00383141762452 0.4 8.94856604758e-07 2851 -142662.893233 -0.00383141762452 0.43 8.92659482263e-07 2844 -146613.523056 -0.00383141762452 0.46 8.90462359768e-07 2837 -151087.361865 -0.00383141762452 0.49 8.88892986557e-07 2832 -156116.676967 -0.00383141762452 0.52 8.87323613346e-07 2827 -161742.230631 -0.00383141762452 0.55 8.85754240136e-07 2822 -168015.550269 -0.00383141762452 0.58 8.84812616209e-07 2819 -175000.917134 -0.00383141762452 0.61 8.83870992283e-07 2816 -182777.061108 -0.00383141762452 0.64 8.82301619072e-07 2811 -191443.210303 -0.00383141762452 0.67 8.82301619072e-07 2811 -201124.42789 -0.00383141762452 0.7 8.81673869788e-07 2809 -211980.754529 -0.00383141762452 0.73 8.79790621935e-07 2803 -224220.491908 -0.00383141762452 0.76 8.79162872651e-07 2801 -238123.036483 -0.00383141762452 0.79 8.78535123366e-07 2799 -254073.153247 -0.00383141762452 0.82 8.77907374082e-07 2797 -272621.221463 -0.00383141762452 0.85 8.76965750156e-07 2794 -294597.728551 -0.00383141762452 0.88 8.76338000871e-07 2792 -321345.419757 -0.00369003690037 0.01 2.3458990754e-06 7474 -146902.911264 -0.00369003690037 0.04 1.18016865447e-06 3760 -139600.453545 -0.00369003690037 0.07 1.02260358411e-06 3258 -134228.494701 -0.00369003690037 0.1 9.76777886358e-07 3112 -131175.95533 -0.00369003690037 0.13 9.47587544639e-07 3019 -129455.461522 -0.00369003690037 0.16 9.31266063247e-07 2967 -128647.718701 -0.00369003690037 0.19 9.21222074698e-07 2935 -128550.685643 -0.00369003690037 0.22 9.15258456497e-07 2916 -129053.558567 -0.00369003690037 0.25 9.09608712939e-07 2898 -130088.926144 -0.00369003690037 0.28 9.04586718665e-07 2882 -131619.841103 -0.00369003690037 0.31 9.00820222959e-07 2870 -133625.806346 -0.00369003690037 0.34 8.97681476537e-07 2860 -136099.239215 -0.00369003690037 0.37 8.94542730116e-07 2850 -139040.422012 -0.00369003690037 0.4 8.92345607621e-07 2843 -142459.707795 -0.00369003690037 0.43 8.89520735842e-07 2834 -146373.719832 -0.00369003690037 0.46 8.88265237273e-07 2830 -150806.834058 -0.00369003690037 0.49 8.85754240136e-07 2822 -155790.654042 -0.00369003690037 0.52 8.85126490851e-07 2820 -161365.62631 -0.00369003690037 0.55 8.83870992283e-07 2816 -167582.108538 -0.00369003690037 0.58 8.82929368356e-07 2813 -174502.930855 -0.00369003690037 0.61 8.82301619072e-07 2811 -182206.409636 -0.00369003690037 0.64 8.81359995146e-07 2808 -190789.814114 -0.00369003690037 0.67 8.79790621935e-07 2803 -200375.872384 -0.00369003690037 0.7 8.79162872651e-07 2801 -211122.021043 -0.00369003690037 0.73 8.78848998009e-07 2800 -223233.606916 -0.00369003690037 0.76 8.78221248724e-07 2798 -236984.631188 -0.00369003690037 0.79 8.77279624798e-07 2795 -252752.190623 -0.00369003690037 0.82 8.76965750156e-07 2794 -271075.857856 -0.00369003690037 0.85 8.76338000871e-07 2792 -292768.106776 -0.00369003690037 0.88 8.76338000871e-07 2792 -319141.028329 -0.00355871886121 0.01 2.333971839e-06 7436 -146910.043667 -0.00355871886121 0.04 1.17451891091e-06 3742 -139626.960248 -0.00355871886121 0.07 1.01412896877e-06 3231 -134239.412039 -0.00355871886121 0.1 9.68931020304e-07 3087 -131177.852282 -0.00355871886121 0.13 9.4193780108e-07 3001 -129445.932017 -0.00355871886121 0.16 9.26557943615e-07 2952 -128625.650293 -0.00355871886121 0.19 9.18083328277e-07 2925 -128514.830804 -0.00355871886121 0.22 9.12119710076e-07 2906 -129003.575253 -0.00355871886121 0.25 9.05214467949e-07 2884 -130022.13665 -0.00355871886121 0.28 9.01447972243e-07 2872 -131532.835202 -0.00355871886121 0.31 8.97995351179e-07 2861 -133516.405664 -0.00355871886121 0.34 8.94542730116e-07 2850 -135963.785337 -0.00355871886121 0.37 8.91717858337e-07 2841 -138876.52871 -0.00355871886121 0.4 8.89206861199e-07 2833 -142263.684627 -0.00355871886121 0.43 8.87323613346e-07 2827 -146141.798862 -0.00355871886121 0.46 8.85754240136e-07 2822 -150534.566064 -0.00355871886121 0.49 8.84498741567e-07 2818 -155473.474229 -0.00355871886121 0.52 8.83557117641e-07 2815 -160998.2123 -0.00355871886121 0.55 8.82301619072e-07 2811 -167158.516695 -0.00355871886121 0.58 8.8198774443e-07 2810 -174015.940431 -0.00355871886121 0.61 8.81046120504e-07 2807 -181647.39032 -0.00355871886121 0.64 8.79790621935e-07 2803 -190148.643597 -0.00355871886121 0.67 8.79162872651e-07 2801 -199640.636449 -0.00355871886121 0.7 8.78535123366e-07 2799 -210278.272234 -0.00355871886121 0.73 8.77907374082e-07 2797 -222263.212665 -0.00355871886121 0.76 8.77279624798e-07 2795 -235864.343201 -0.00355871886121 0.79 8.76651875514e-07 2793 -251451.679987 -0.00355871886121 0.82 8.76338000871e-07 2792 -269553.890686 -0.00355871886121 0.85 8.76338000871e-07 2792 -290966.199599 -0.00355871886121 0.88 8.76338000871e-07 2792 -316970.428259 -0.00343642611684 0.01 2.32424172509e-06 7405 -146919.238808 -0.00343642611684 0.04 1.16604429557e-06 3715 -139657.053341 -0.00343642611684 0.07 1.01004859843e-06 3218 -134254.820483 -0.00343642611684 0.1 9.63595151388e-07 3070 -131183.170105 -0.00343642611684 0.13 9.39112929301e-07 2992 -129441.12248 -0.00343642611684 0.16 9.21222074698e-07 2935 -128608.269102 -0.00343642611684 0.19 9.15258456497e-07 2916 -128484.722898 -0.00343642611684 0.22 9.08667089012e-07 2895 -128958.554784 -0.00343642611684 0.25 9.02389596169e-07 2875 -129960.726071 -0.00343642611684 0.28 8.99250849748e-07 2865 -131451.555083 -0.00343642611684 0.31 8.93914980832e-07 2848 -133412.339924 -0.00343642611684 0.34 8.91717858337e-07 2841 -135834.406994 -0.00343642611684 0.37 8.88892986557e-07 2832 -138718.791293 -0.00343642611684 0.4 8.87009738704e-07 2826 -142074.359671 -0.00343642611684 0.43 8.85440365494e-07 2821 -145917.085078 -0.00343642611684 0.46 8.84184866925e-07 2817 -150270.192397 -0.00343642611684 0.49 8.83243242999e-07 2814 -155164.739924 -0.00343642611684 0.52 8.8198774443e-07 2810 -160639.618173 -0.00343642611684 0.55 8.81359995146e-07 2808 -166744.179217 -0.00343642611684 0.58 8.79790621935e-07 2803 -173538.874187 -0.00343642611684 0.61 8.79162872651e-07 2801 -181098.898646 -0.00343642611684 0.64 8.78848998009e-07 2800 -189519.023077 -0.00343642611684 0.67 8.78221248724e-07 2798 -198918.412527 -0.00343642611684 0.7 8.77279624798e-07 2795 -209448.759416 -0.00343642611684 0.73 8.76965750156e-07 2794 -221308.379648 -0.00343642611684 0.76 8.76651875514e-07 2793 -234761.543653 -0.00343642611684 0.79 8.76338000871e-07 2792 -250171.068343 -0.00343642611684 0.82 8.76338000871e-07 2792 -268055.061749 -0.00343642611684 0.85 8.76338000871e-07 2792 -289191.549714 -0.00343642611684 0.88 8.76338000871e-07 2792 -314832.549724 -0.00332225913621 0.01 2.31639485904e-06 7380 -146930.568497 -0.00332225913621 0.04 1.16165005058e-06 3701 -139689.43807 -0.00332225913621 0.07 1.0031433563e-06 3196 -134273.748462 -0.00332225913621 0.1 9.57317658545e-07 3050 -131192.098485 -0.00332225913621 0.13 9.331493111e-07 2973 -129439.580181 -0.00332225913621 0.16 9.18083328277e-07 2925 -128595.56623 -0.00332225913621 0.19 9.11805835434e-07 2905 -128459.64247 -0.00332225913621 0.22 9.04586718665e-07 2882 -128918.169139 -0.00332225913621 0.25 8.99250849748e-07 2865 -129903.062013 -0.00332225913621 0.28 8.94542730116e-07 2850 -131375.112632 -0.00332225913621 0.31 8.91403983694e-07 2840 -133313.425327 -0.00332225913621 0.34 8.88892986557e-07 2832 -135710.493796 -0.00332225913621 0.37 8.86695864062e-07 2825 -138567.043602 -0.00332225913621 0.4 8.85440365494e-07 2821 -141891.288007 -0.00332225913621 0.43 8.83870992283e-07 2816 -145699.071193 -0.00332225913621 0.46 8.82301619072e-07 2811 -150013.141511 -0.00332225913621 0.49 8.8198774443e-07 2810 -154863.565259 -0.00332225913621 0.52 8.81359995146e-07 2808 -160289.545146 -0.00332225913621 0.55 8.79790621935e-07 2803 -166338.512263 -0.00332225913621 0.58 8.79162872651e-07 2801 -173070.739225 -0.00332225913621 0.61 8.78535123366e-07 2799 -180560.688067 -0.00332225913621 0.64 8.7759349944e-07 2796 -188900.69513 -0.00332225913621 0.67 8.77279624798e-07 2795 -198208.029983 -0.00332225913621 0.7 8.76651875514e-07 2793 -208632.589387 -0.00332225913621 0.73 8.76338000871e-07 2792 -220368.690851 -0.00332225913621 0.76 8.76338000871e-07 2792 -233675.733324 -0.00332225913621 0.79 8.76338000871e-07 2792 -248909.912954 -0.00332225913621 0.82 8.76338000871e-07 2792 -266578.757709 -0.00332225913621 0.85 8.76338000871e-07 2792 -287443.316909 -0.00332225913621 0.88 8.76338000871e-07 2792 -312726.660768 -0.0032154340836 0.01 2.3079202437e-06 7353 -146943.896413 -0.0032154340836 0.04 1.15348930989e-06 3675 -139723.460219 -0.0032154340836 0.07 9.98749111308e-07 3182 -134295.826837 -0.0032154340836 0.1 9.53237288197e-07 3037 -131203.998448 -0.0032154340836 0.13 9.28441191468e-07 2958 -129441.468119 -0.0032154340836 0.16 9.1714170435e-07 2922 -128587.27635 -0.0032154340836 0.19 9.08667089012e-07 2895 -128439.092866 -0.0032154340836 0.22 9.02075721527e-07 2874 -128881.915098 -0.0032154340836 0.25 8.96739852611e-07 2857 -129849.76856 -0.0032154340836 0.28 8.92659482263e-07 2844 -131302.928751 -0.0032154340836 0.31 8.89206861199e-07 2833 -133219.394623 -0.0032154340836 0.34 8.87009738704e-07 2826 -135591.810933 -0.0032154340836 0.37 8.85440365494e-07 2821 -138420.590878 -0.0032154340836 0.4 8.83243242999e-07 2814 -141714.05956 -0.0032154340836 0.43 8.8198774443e-07 2810 -145487.275564 -0.0032154340836 0.46 8.8198774443e-07 2810 -149762.614981 -0.0032154340836 0.49 8.80104496577e-07 2804 -154569.995142 -0.0032154340836 0.52 8.79162872651e-07 2801 -159946.748897 -0.0032154340836 0.55 8.79162872651e-07 2801 -165941.1116 -0.0032154340836 0.58 8.77907374082e-07 2797 -172611.660795 -0.0032154340836 0.61 8.7759349944e-07 2796 -180031.73197 -0.0032154340836 0.64 8.76965750156e-07 2794 -188292.764048 -0.0032154340836 0.67 8.76651875514e-07 2793 -197509.588669 -0.0032154340836 0.7 8.76338000871e-07 2792 -207829.269193 -0.0032154340836 0.73 8.76338000871e-07 2792 -219443.425948 -0.0032154340836 0.76 8.76338000871e-07 2792 -232606.593507 -0.0032154340836 0.79 8.76338000871e-07 2792 -247667.718894 -0.0032154340836 0.82 8.76338000871e-07 2792 -265124.188515 -0.0032154340836 0.85 8.76338000871e-07 2792 -285720.753326 -0.0032154340836 0.88 8.76338000871e-07 2792 -310651.970836 -0.00311526479751 0.01 2.299759503e-06 7327 -146958.833789 -0.00311526479751 0.04 1.14752569169e-06 3656 -139758.445526 -0.00311526479751 0.07 9.92157743823e-07 3161 -134320.11665 -0.00311526479751 0.1 9.47901419281e-07 3020 -131218.672861 -0.00311526479751 0.13 9.24046946478e-07 2944 -129446.334236 -0.00311526479751 0.16 9.14316832571e-07 2913 -128582.730881 -0.00311526479751 0.19 9.04900593307e-07 2883 -128422.174049 -0.00311526479751 0.22 8.98623100464e-07 2863 -128849.566524 -0.00311526479751 0.25 8.93914980832e-07 2848 -129800.056613 -0.00311526479751 0.28 8.89520735842e-07 2834 -131234.213795 -0.00311526479751 0.31 8.87637487989e-07 2828 -133129.975661 -0.00311526479751 0.34 8.85440365494e-07 2821 -135477.92291 -0.00311526479751 0.37 8.83557117641e-07 2815 -138279.418957 -0.00311526479751 0.4 8.8198774443e-07 2810 -141542.13994 -0.00311526479751 0.43 8.81673869788e-07 2809 -145281.275969 -0.00311526479751 0.46 8.79790621935e-07 2803 -149518.456504 -0.00311526479751 0.49 8.79162872651e-07 2801 -154282.576231 -0.00311526479751 0.52 8.78221248724e-07 2798 -159611.295979 -0.00311526479751 0.55 8.7759349944e-07 2796 -165551.27767 -0.00311526479751 0.58 8.77279624798e-07 2795 -172160.929064 -0.00311526479751 0.61 8.76965750156e-07 2794 -179512.120254 -0.00311526479751 0.64 8.76338000871e-07 2792 -187694.790616 -0.00311526479751 0.67 8.76338000871e-07 2792 -196822.140315 -0.00311526479751 0.7 8.76338000871e-07 2792 -207038.701064 -0.00311526479751 0.73 8.76338000871e-07 2792 -218532.376443 -0.00311526479751 0.76 8.76338000871e-07 2792 -231553.26517 -0.00311526479751 0.79 8.76338000871e-07 2792 -246443.752472 -0.00311526479751 0.82 8.76338000871e-07 2792 -263690.82096 -0.00311526479751 0.85 8.76338000871e-07 2792 -284023.185721 -0.00311526479751 0.88 8.76338000871e-07 2792 -308607.743632 -0.00302114803625 0.01 2.29285426088e-06 7305 -146975.528387 -0.00302114803625 0.04 1.14281757205e-06 3641 -139795.186949 -0.00302114803625 0.07 9.86194125622e-07 3142 -134346.014379 -0.00302114803625 0.1 9.41623926438e-07 3000 -131235.85944 -0.00302114803625 0.13 9.20594325414e-07 2933 -129453.911764 -0.00302114803625 0.16 9.10864211507e-07 2902 -128580.590337 -0.00302114803625 0.19 9.02389596169e-07 2875 -128408.332867 -0.00302114803625 0.22 8.96425977969e-07 2856 -128821.061999 -0.00302114803625 0.25 8.91403983694e-07 2840 -129754.263027 -0.00302114803625 0.28 8.88265237273e-07 2830 -131169.341054 -0.00302114803625 0.31 8.85126490851e-07 2820 -133044.280709 -0.00302114803625 0.34 8.84184866925e-07 2817 -135368.482289 -0.00302114803625 0.37 8.82301619072e-07 2811 -138142.918016 -0.00302114803625 0.4 8.81673869788e-07 2809 -141375.532359 -0.00302114803625 0.43 8.79790621935e-07 2803 -145080.739317 -0.00302114803625 0.46 8.78848998009e-07 2800 -149279.651957 -0.00302114803625 0.49 8.78221248724e-07 2798 -154001.285375 -0.00302114803625 0.52 8.7759349944e-07 2796 -159282.405551 -0.00302114803625 0.55 8.77279624798e-07 2795 -165168.990432 -0.00302114803625 0.58 8.76651875514e-07 2793 -171718.287037 -0.00302114803625 0.61 8.76338000871e-07 2792 -179001.373912 -0.00302114803625 0.64 8.76338000871e-07 2792 -187106.585972 -0.00302114803625 0.67 8.76338000871e-07 2792 -196145.493521 -0.00302114803625 0.7 8.76338000871e-07 2792 -206260.163142 -0.00302114803625 0.73 8.76338000871e-07 2792 -217635.009152 -0.00302114803625 0.76 8.76338000871e-07 2792 -230515.411061 -0.00302114803625 0.79 8.76338000871e-07 2792 -245237.282204 -0.00302114803625 0.82 8.76338000871e-07 2792 -262277.938479 -0.00302114803625 0.85 8.76338000871e-07 2792 -282350.072651 -0.00302114803625 0.88 8.76338000871e-07 2792 -306593.367538 -0.00293255131965 0.01 2.28720451732e-06 7287 -146993.685307 -0.00293255131965 0.04 1.14062044956e-06 3634 -139833.436709 -0.00293255131965 0.07 9.82427629917e-07 3130 -134374.350326 -0.00293255131965 0.1 9.39740678585e-07 2994 -131255.665326 -0.00293255131965 0.13 9.18083328277e-07 2925 -129464.519348 -0.00293255131965 0.16 9.08039339728e-07 2893 -128581.650395 -0.00293255131965 0.19 8.9956472439e-07 2866 -128397.225063 -0.00293255131965 0.22 8.93601106189e-07 2847 -128795.529783 -0.00293255131965 0.25 8.89520735842e-07 2834 -129712.063997 -0.00293255131965 0.28 8.8638198942e-07 2824 -131108.229679 -0.00293255131965 0.31 8.84184866925e-07 2817 -132961.866184 -0.00293255131965 0.34 8.82929368356e-07 2813 -135263.26911 -0.00293255131965 0.37 8.8198774443e-07 2810 -138010.971496 -0.00293255131965 0.4 8.79476747293e-07 2802 -141213.606661 -0.00293255131965 0.43 8.78848998009e-07 2800 -144884.845889 -0.00293255131965 0.46 8.78221248724e-07 2798 -149046.235397 -0.00293255131965 0.49 8.7759349944e-07 2796 -153725.873916 -0.00293255131965 0.52 8.77279624798e-07 2795 -158959.874205 -0.00293255131965 0.55 8.76651875514e-07 2793 -164793.697742 -0.00293255131965 0.58 8.76338000871e-07 2792 -171283.4172 -0.00293255131965 0.61 8.76338000871e-07 2792 -178499.073714 -0.00293255131965 0.64 8.76338000871e-07 2792 -186527.973367 -0.00293255131965 0.67 8.76338000871e-07 2792 -195479.413498 -0.00293255131965 0.7 8.76338000871e-07 2792 -205493.194339 -0.00293255131965 0.73 8.76338000871e-07 2792 -216750.644356 -0.00293255131965 0.76 8.76338000871e-07 2792 -229492.464362 -0.00293255131965 0.79 8.76338000871e-07 2792 -244048.028173 -0.00293255131965 0.82 8.76338000871e-07 2792 -260884.958667 -0.00293255131965 0.85 8.76338000871e-07 2792 -280700.733404 -0.00293255131965 0.88 8.76338000871e-07 2792 -304608.249833 -0.002849002849 0.01 2.28218252304e-06 7271 -147013.253489 -0.002849002849 0.04 1.13559845528e-06 3618 -139873.012339 -0.002849002849 0.07 9.77719510285e-07 3115 -134405.091973 -0.002849002849 0.1 9.37857430732e-07 2988 -131278.503601 -0.002849002849 0.13 9.16200080424e-07 2919 -129477.361614 -0.002849002849 0.16 9.05214467949e-07 2884 -128584.909011 -0.002849002849 0.19 8.97995351179e-07 2861 -128388.288062 -0.002849002849 0.22 8.91403983694e-07 2840 -128772.993144 -0.002849002849 0.25 8.87951362631e-07 2829 -129673.026609 -0.002849002849 0.28 8.85126490851e-07 2820 -131050.397478 -0.002849002849 0.31 8.83243242999e-07 2814 -132883.345632 -0.002849002849 0.34 8.8198774443e-07 2810 -135161.371807 -0.002849002849 0.37 8.79790621935e-07 2803 -137883.326038 -0.002849002849 0.4 8.78848998009e-07 2800 -141055.744023 -0.002849002849 0.43 8.78221248724e-07 2798 -144693.79051 -0.002849002849 0.46 8.7759349944e-07 2796 -148817.90949 -0.002849002849 0.49 8.77279624798e-07 2795 -153456.022173 -0.002849002849 0.52 8.76651875514e-07 2793 -158643.52327 -0.002849002849 0.55 8.76338000871e-07 2792 -164424.918755 -0.002849002849 0.58 8.76338000871e-07 2792 -170855.935245 -0.002849002849 0.61 8.76338000871e-07 2792 -178005.18282 -0.002849002849 0.64 8.76338000871e-07 2792 -185958.395099 -0.002849002849 0.67 8.76338000871e-07 2792 -194823.470268 -0.002849002849 0.7 8.76338000871e-07 2792 -204737.539188 -0.002849002849 0.73 8.76338000871e-07 2792 -215878.863493 -0.002849002849 0.76 8.76338000871e-07 2792 -228483.870724 -0.002849002849 0.79 8.76338000871e-07 2792 -242875.425233 -0.002849002849 0.82 8.76338000871e-07 2792 -259511.584565 -0.002849002849 0.85 8.76338000871e-07 2792 -279074.664877 -0.002849002849 0.88 8.76338000871e-07 2792 -302651.726484 -0.00277008310249 0.01 2.27527728092e-06 7249 -147034.026691 -0.00277008310249 0.04 1.13183195958e-06 3606 -139913.883274 -0.00277008310249 0.07 9.75522387789e-07 3108 -134437.291135 -0.00277008310249 0.1 9.331493111e-07 2973 -131302.982018 -0.00277008310249 0.13 9.14002957929e-07 2912 -129492.727547 -0.00277008310249 0.16 9.03017345454e-07 2877 -128590.25122 -0.00277008310249 0.19 8.94228855474e-07 2849 -128381.885665 -0.00277008310249 0.22 8.89520735842e-07 2834 -128753.041184 -0.00277008310249 0.25 8.8638198942e-07 2824 -129637.124842 -0.00277008310249 0.28 8.84184866925e-07 2817 -130996.087058 -0.00277008310249 0.31 8.8198774443e-07 2810 -132808.127913 -0.00277008310249 0.34 8.81046120504e-07 2807 -135062.887608 -0.00277008310249 0.37 8.78848998009e-07 2800 -137758.879338 -0.00277008310249 0.4 8.78221248724e-07 2798 -140902.095976 -0.00277008310249 0.43 8.7759349944e-07 2796 -144507.146814 -0.00277008310249 0.46 8.77279624798e-07 2795 -148594.559223 -0.00277008310249 0.49 8.76651875514e-07 2793 -153191.401349 -0.00277008310249 0.52 8.76338000871e-07 2792 -158332.815005 -0.00277008310249 0.55 8.76338000871e-07 2792 -164062.705079 -0.00277008310249 0.58 8.76338000871e-07 2792 -170435.543673 -0.00277008310249 0.61 8.76338000871e-07 2792 -177519.131708 -0.00277008310249 0.64 8.76338000871e-07 2792 -185397.655619 -0.00277008310249 0.67 8.76338000871e-07 2792 -194177.171462 -0.00277008310249 0.7 8.76338000871e-07 2792 -203992.810063 -0.00277008310249 0.73 8.76338000871e-07 2792 -215019.435373 -0.00277008310249 0.76 8.76338000871e-07 2792 -227489.240853 -0.00277008310249 0.79 8.76338000871e-07 2792 -241718.992539 -0.00277008310249 0.82 8.76338000871e-07 2792 -258157.27184 -0.00277008310249 0.85 8.76338000871e-07 2792 -277471.524077 -0.00277008310249 0.88 8.76338000871e-07 2792 -300723.307411 -0.00269541778976 0.01 2.26837203879e-06 7227 -147055.823508 -0.00269541778976 0.04 1.13026258637e-06 3601 -139955.91341 -0.00269541778976 0.07 9.73639139937e-07 3102 -134471.075601 -0.00269541778976 0.1 9.29068940752e-07 2960 -131328.528321 -0.00269541778976 0.13 9.1117808615e-07 2903 -129510.4152 -0.00269541778976 0.16 9.00506348317e-07 2869 -128597.799262 -0.00269541778976 0.19 8.92659482263e-07 2844 -128377.46531 -0.00269541778976 0.22 8.88265237273e-07 2830 -128735.225221 -0.00269541778976 0.25 8.85126490851e-07 2820 -129603.850825 -0.00269541778976 0.28 8.82615493714e-07 2812 -130944.763866 -0.00269541778976 0.31 8.81359995146e-07 2808 -132736.095451 -0.00269541778976 0.34 8.79476747293e-07 2802 -134967.654277 -0.00269541778976 0.37 8.78535123366e-07 2799 -137637.605056 -0.00269541778976 0.4 8.7759349944e-07 2796 -140752.350967 -0.00269541778976 0.43 8.77279624798e-07 2795 -144324.789103 -0.00269541778976 0.46 8.76651875514e-07 2793 -148375.68646 -0.00269541778976 0.49 8.76338000871e-07 2792 -152931.839851 -0.00269541778976 0.52 8.76338000871e-07 2792 -158027.717077 -0.00269541778976 0.55 8.76338000871e-07 2792 -163706.573501 -0.00269541778976 0.58 8.76338000871e-07 2792 -170022.002102 -0.00269541778976 0.61 8.76338000871e-07 2792 -177040.555187 -0.00269541778976 0.64 8.76338000871e-07 2792 -184845.269819 -0.00269541778976 0.67 8.76338000871e-07 2792 -193540.337243 -0.00269541778976 0.7 8.76338000871e-07 2792 -203258.56466 -0.00269541778976 0.73 8.76338000871e-07 2792 -214172.004205 -0.00269541778976 0.76 8.76338000871e-07 2792 -226508.354962 -0.00269541778976 0.79 8.76338000871e-07 2792 -240578.367567 -0.00269541778976 0.82 8.76338000871e-07 2792 -256821.572343 -0.00269541778976 0.85 8.76338000871e-07 2792 -275890.777807 -0.00269541778976 0.88 8.76338000871e-07 2792 -298822.580066 -0.00262467191601 0.01 2.26146679666e-06 7205 -147078.461406 -0.00262467191601 0.04 1.12555446674e-06 3586 -139999.212202 -0.00262467191601 0.07 9.70814268157e-07 3093 -134506.064173 -0.00262467191601 0.1 9.26244068973e-07 2951 -131355.547225 -0.00262467191601 0.13 9.09608712939e-07 2898 -129529.997057 -0.00262467191601 0.16 8.97681476537e-07 2860 -128607.007079 -0.00262467191601 0.19 8.91090109052e-07 2839 -128375.026827 -0.00262467191601 0.22 8.87009738704e-07 2826 -128719.456731 -0.00262467191601 0.25 8.83870992283e-07 2816 -129573.175846 -0.00262467191601 0.28 8.81673869788e-07 2809 -130896.082341 -0.00262467191601 0.31 8.79790621935e-07 2803 -132667.209901 -0.00262467191601 0.34 8.78848998009e-07 2800 -134875.371011 -0.00262467191601 0.37 8.77907374082e-07 2797 -137519.689976 -0.00262467191601 0.4 8.77279624798e-07 2795 -140605.945097 -0.00262467191601 0.43 8.76651875514e-07 2793 -144146.482815 -0.00262467191601 0.46 8.76338000871e-07 2792 -148161.259529 -0.00262467191601 0.49 8.76338000871e-07 2792 -152677.140203 -0.00262467191601 0.52 8.76338000871e-07 2792 -157728.018983 -0.00262467191601 0.55 8.76338000871e-07 2792 -163356.330471 -0.00262467191601 0.58 8.76338000871e-07 2792 -169614.903173 -0.00262467191601 0.61 8.76338000871e-07 2792 -176569.201188 -0.00262467191601 0.64 8.76338000871e-07 2792 -184300.899527 -0.00262467191601 0.67 8.76338000871e-07 2792 -192912.548317 -0.00262467191601 0.7 8.76338000871e-07 2792 -202534.633964 -0.00262467191601 0.73 8.76338000871e-07 2792 -213336.16488 -0.00262467191601 0.76 8.76338000871e-07 2792 -225540.876997 -0.00262467191601 0.79 8.76338000871e-07 2792 -239453.322105 -0.00262467191601 0.82 8.76338000871e-07 2792 -255504.139723 -0.00262467191601 0.85 8.76338000871e-07 2792 -274331.986361 -0.00262467191601 0.88 8.76338000871e-07 2792 -296948.9919 -0.00255754475703 0.01 2.25456155453e-06 7183 -147101.778922 -0.00255754475703 0.04 1.1230434696e-06 3578 -140043.269336 -0.00255754475703 0.07 9.66420023167e-07 3079 -134542.209058 -0.00255754475703 0.1 9.21849823983e-07 2937 -131384.375454 -0.00255754475703 0.13 9.07097715802e-07 2890 -129551.3471 -0.00255754475703 0.16 8.97053727253e-07 2858 -128617.894753 -0.00255754475703 0.19 8.89206861199e-07 2833 -128374.61431 -0.00255754475703 0.22 8.84812616209e-07 2819 -128705.909589 -0.00255754475703 0.25 8.82929368356e-07 2813 -129544.547284 -0.00255754475703 0.28 8.81046120504e-07 2807 -130850.100365 -0.00255754475703 0.31 8.78848998009e-07 2800 -132600.79155 -0.00255754475703 0.34 8.78221248724e-07 2798 -134786.210934 -0.00255754475703 0.37 8.77279624798e-07 2795 -137405.001072 -0.00255754475703 0.4 8.76651875514e-07 2793 -140462.689247 -0.00255754475703 0.43 8.76338000871e-07 2792 -143971.8305 -0.00255754475703 0.46 8.76338000871e-07 2792 -147951.062152 -0.00255754475703 0.49 8.76338000871e-07 2792 -152427.162556 -0.00255754475703 0.52 8.76338000871e-07 2792 -157433.486207 -0.00255754475703 0.55 8.76338000871e-07 2792 -163011.727365 -0.00255754475703 0.58 8.76338000871e-07 2792 -169214.026411 -0.00255754475703 0.61 8.76338000871e-07 2792 -176104.780632 -0.00255754475703 0.64 8.76338000871e-07 2792 -183764.287857 -0.00255754475703 0.67 8.76338000871e-07 2792 -192293.496916 -0.00255754475703 0.7 8.76338000871e-07 2792 -201820.64819 -0.00255754475703 0.73 8.76338000871e-07 2792 -212511.750242 -0.00255754475703 0.76 8.76338000871e-07 2792 -224586.428488 -0.00255754475703 0.79 8.76338000871e-07 2792 -238343.529046 -0.00255754475703 0.82 8.76338000871e-07 2792 -254204.718336 -0.00255754475703 0.85 8.76338000871e-07 2792 -272794.79172 -0.00255754475703 0.88 8.76338000871e-07 2792 -295102.076623 -0.00249376558603 0.01 2.24891181098e-06 7165 -147125.618471 -0.00249376558603 0.04 1.11739372604e-06 3560 -140087.942678 -0.00249376558603 0.07 9.60770279609e-07 3061 -134579.491422 -0.00249376558603 0.1 9.19338826845e-07 2929 -131414.488086 -0.00249376558603 0.13 9.05214467949e-07 2884 -129573.77054 -0.00249376558603 0.16 8.93287231547e-07 2846 -128630.700287 -0.00249376558603 0.19 8.88265237273e-07 2830 -128376.000051 -0.00249376558603 0.22 8.84184866925e-07 2817 -128694.132812 -0.00249376558603 0.25 8.81673869788e-07 2809 -129517.567928 -0.00249376558603 0.28 8.79790621935e-07 2803 -130806.445984 -0.00249376558603 0.31 8.78848998009e-07 2800 -132537.022564 -0.00249376558603 0.34 8.7759349944e-07 2796 -134699.913037 -0.00249376558603 0.37 8.76965750156e-07 2794 -137293.283289 -0.00249376558603 0.4 8.76338000871e-07 2792 -140322.752613 -0.00249376558603 0.43 8.76338000871e-07 2792 -143800.49234 -0.00249376558603 0.46 8.76338000871e-07 2792 -147744.981772 -0.00249376558603 0.49 8.76338000871e-07 2792 -152181.630655 -0.00249376558603 0.52 8.76338000871e-07 2792 -157143.775639 -0.00249376558603 0.55 8.76338000871e-07 2792 -162672.594251 -0.00249376558603 0.58 8.76338000871e-07 2792 -168819.143789 -0.00249376558603 0.61 8.76338000871e-07 2792 -175647.048242 -0.00249376558603 0.64 8.76338000871e-07 2792 -183235.241755 -0.00249376558603 0.67 8.76338000871e-07 2792 -191682.913718 -0.00249376558603 0.7 8.76338000871e-07 2792 -201116.313685 -0.00249376558603 0.73 8.76338000871e-07 2792 -211698.431255 -0.00249376558603 0.76 8.76338000871e-07 2792 -223644.834926 -0.00249376558603 0.79 8.76338000871e-07 2792 -237248.625794 -0.00249376558603 0.82 8.76338000871e-07 2792 -252922.97848 -0.00249376558603 0.85 8.76338000871e-07 2792 -271278.895428 -0.00249376558603 0.88 8.76338000871e-07 2792 -293281.435978 -0.00243309002433 0.01 2.24577306455e-06 7155 -147150.401354 -0.00243309002433 0.04 1.11519660354e-06 3553 -140133.71442 -0.00243309002433 0.07 9.58259282471e-07 3053 -134617.104337 -0.00243309002433 0.1 9.1714170435e-07 2922 -131445.49881 -0.00243309002433 0.13 9.02703470812e-07 2876 -129597.025182 -0.00243309002433 0.16 8.92659482263e-07 2844 -128644.817969 -0.00243309002433 0.19 8.87009738704e-07 2826 -128378.932512 -0.00243309002433 0.22 8.83243242999e-07 2814 -128684.10983 -0.00243309002433 0.25 8.81673869788e-07 2809 -129492.757247 -0.00243309002433 0.28 8.78848998009e-07 2800 -130764.59749 -0.00243309002433 0.31 8.77907374082e-07 2797 -132475.670354 -0.00243309002433 0.34 8.77279624798e-07 2795 -134616.219023 -0.00243309002433 0.37 8.76651875514e-07 2793 -137184.51461 -0.00243309002433 0.4 8.76338000871e-07 2792 -140185.980281 -0.00243309002433 0.43 8.76338000871e-07 2792 -143632.513262 -0.00243309002433 0.46 8.76338000871e-07 2792 -147542.538756 -0.00243309002433 0.49 8.76338000871e-07 2792 -151940.389884 -0.00243309002433 0.52 8.76338000871e-07 2792 -156858.829526 -0.00243309002433 0.55 8.76338000871e-07 2792 -162338.582761 -0.00243309002433 0.58 8.76338000871e-07 2792 -168430.10258 -0.00243309002433 0.61 8.76338000871e-07 2792 -175195.782472 -0.00243309002433 0.64 8.76338000871e-07 2792 -182713.463366 -0.00243309002433 0.67 8.76338000871e-07 2792 -191080.678996 -0.00243309002433 0.7 8.76338000871e-07 2792 -200421.379559 -0.00243309002433 0.73 8.76338000871e-07 2792 -210895.917388 -0.00243309002433 0.76 8.76338000871e-07 2792 -222715.792145 -0.00243309002433 0.79 8.76338000871e-07 2792 -236168.419383 -0.00243309002433 0.82 8.76338000871e-07 2792 -251658.558102 -0.00243309002433 0.85 8.76338000871e-07 2792 -269783.946946 -0.00243309002433 0.88 8.76338000871e-07 2792 -291486.706659 -0.00237529691211 0.01 2.24075107028e-06 7139 -147175.838241 -0.00237529691211 0.04 1.11237173177e-06 3544 -140180.173691 -0.00237529691211 0.07 9.56689909261e-07 3048 -134655.946391 -0.00237529691211 0.1 9.14630707213e-07 2914 -131477.280741 -0.00237529691211 0.13 9.00820222959e-07 2870 -129621.51858 -0.00237529691211 0.16 8.9077623441e-07 2838 -128660.587479 -0.00237529691211 0.19 8.85440365494e-07 2821 -128383.179432 -0.00237529691211 0.22 8.82615493714e-07 2812 -128675.750197 -0.00237529691211 0.25 8.80732245861e-07 2806 -129469.939158 -0.00237529691211 0.28 8.78848998009e-07 2800 -130724.431398 -0.00237529691211 0.31 8.7759349944e-07 2796 -132416.524184 -0.00237529691211 0.34 8.76651875514e-07 2793 -134535.065895 -0.00237529691211 0.37 8.76338000871e-07 2792 -137078.53746 -0.00237529691211 0.4 8.76338000871e-07 2792 -140052.244147 -0.00237529691211 0.43 8.76338000871e-07 2792 -143468.008208 -0.00237529691211 0.46 8.76338000871e-07 2792 -147343.460921 -0.00237529691211 0.49 8.76338000871e-07 2792 -151703.148529 -0.00237529691211 0.52 8.76338000871e-07 2792 -156578.363378 -0.00237529691211 0.55 8.76338000871e-07 2792 -162009.663429 -0.00237529691211 0.58 8.76338000871e-07 2792 -168046.656307 -0.00237529691211 0.61 8.76338000871e-07 2792 -174750.84111 -0.00237529691211 0.64 8.76338000871e-07 2792 -182198.778175 -0.00237529691211 0.67 8.76338000871e-07 2792 -190486.452511 -0.00237529691211 0.7 8.76338000871e-07 2792 -199735.736016 -0.00237529691211 0.73 8.76338000871e-07 2792 -210103.978518 -0.00237529691211 0.76 8.76338000871e-07 2792 -221799.015833 -0.00237529691211 0.79 8.76338000871e-07 2792 -235102.6197 -0.00237529691211 0.82 8.76338000871e-07 2792 -250411.237382 -0.00237529691211 0.85 8.76338000871e-07 2792 -268309.567556 -0.00237529691211 0.88 8.76338000871e-07 2792 -289717.489069 -0.00232018561485 0.01 2.23541520136e-06 7122 -147201.919993 -0.00232018561485 0.04 1.11017460927e-06 3537 -140227.143287 -0.00232018561485 0.07 9.52295664271e-07 3034 -134695.530603 -0.00232018561485 0.1 9.14316832571e-07 2913 -131509.854122 -0.00232018561485 0.13 8.98936975106e-07 2864 -129647.422346 -0.00232018561485 0.16 8.89834610484e-07 2835 -128677.393489 -0.00232018561485 0.19 8.84812616209e-07 2819 -128389.071352 -0.00232018561485 0.22 8.81673869788e-07 2809 -128668.972073 -0.00232018561485 0.25 8.79476747293e-07 2802 -129448.347983 -0.00232018561485 0.28 8.78221248724e-07 2798 -130686.074789 -0.00232018561485 0.31 8.77279624798e-07 2795 -132359.331116 -0.00232018561485 0.34 8.76338000871e-07 2792 -134456.180447 -0.00232018561485 0.37 8.76338000871e-07 2792 -136975.175113 -0.00232018561485 0.4 8.76338000871e-07 2792 -139921.515887 -0.00232018561485 0.43 8.76338000871e-07 2792 -143306.61441 -0.00232018561485 0.46 8.76338000871e-07 2792 -147147.888932 -0.00232018561485 0.49 8.76338000871e-07 2792 -151469.520314 -0.00232018561485 0.52 8.76338000871e-07 2792 -156302.272219 -0.00232018561485 0.55 8.76338000871e-07 2792 -161685.55821 -0.00232018561485 0.58 8.76338000871e-07 2792 -167668.636581 -0.00232018561485 0.61 8.76338000871e-07 2792 -174312.061458 -0.00232018561485 0.64 8.76338000871e-07 2792 -181691.032068 -0.00232018561485 0.67 8.76338000871e-07 2792 -189900.10322 -0.00232018561485 0.7 8.76338000871e-07 2792 -199059.042383 -0.00232018561485 0.73 8.76338000871e-07 2792 -209322.474243 -0.00232018561485 0.76 8.76338000871e-07 2792 -220894.280816 -0.00232018561485 0.79 8.76338000871e-07 2792 -234050.937778 -0.00232018561485 0.82 8.76338000871e-07 2792 -249180.722782 -0.00232018561485 0.85 8.76338000871e-07 2792 -266855.495851 -0.00232018561485 0.88 8.76338000871e-07 2792 -287973.363852 -0.00226757369615 0.01 2.23039320709e-06 7106 -147228.353408 -0.00226757369615 0.04 1.1089191107e-06 3533 -140274.748414 -0.00226757369615 0.07 9.51040165702e-07 3030 -134735.775621 -0.00226757369615 0.1 9.13061334002e-07 2909 -131543.414317 -0.00226757369615 0.13 8.97367601895e-07 2859 -129674.379354 -0.00226757369615 0.16 8.88265237273e-07 2830 -128695.053907 -0.00226757369615 0.19 8.83870992283e-07 2816 -128396.265326 -0.00226757369615 0.22 8.81359995146e-07 2808 -128663.654115 -0.00226757369615 0.25 8.78848998009e-07 2800 -129428.339355 -0.00226757369615 0.28 8.7759349944e-07 2796 -130649.533785 -0.00226757369615 0.31 8.76651875514e-07 2793 -132303.911687 -0.00226757369615 0.34 8.76338000871e-07 2792 -134379.526768 -0.00226757369615 0.37 8.76338000871e-07 2792 -136874.381016 -0.00226757369615 0.4 8.76338000871e-07 2792 -139793.628669 -0.00226757369615 0.43 8.76338000871e-07 2792 -143148.267528 -0.00226757369615 0.46 8.76338000871e-07 2792 -146955.742723 -0.00226757369615 0.49 8.76338000871e-07 2792 -151239.444439 -0.00226757369615 0.52 8.76338000871e-07 2792 -156030.212202 -0.00226757369615 0.55 8.76338000871e-07 2792 -161366.195002 -0.00226757369615 0.58 8.76338000871e-07 2792 -167295.93926 -0.00226757369615 0.61 8.76338000871e-07 2792 -173879.185901 -0.00226757369615 0.64 8.76338000871e-07 2792 -181190.110585 -0.00226757369615 0.67 8.76338000871e-07 2792 -189321.468683 -0.00226757369615 0.7 8.76338000871e-07 2792 -198391.189288 -0.00226757369615 0.73 8.76338000871e-07 2792 -208551.11452 -0.00226757369615 0.76 8.76338000871e-07 2792 -220001.412069 -0.00226757369615 0.79 8.76338000871e-07 2792 -233013.144953 -0.00226757369615 0.82 8.76338000871e-07 2792 -247966.712056 -0.00226757369615 0.85 8.76338000871e-07 2792 -265421.41593 -0.00226757369615 0.88 8.76338000871e-07 2792 -286254.005469 -0.00221729490022 0.01 2.22694058603e-06 7095 -147255.330452 -0.00221729490022 0.04 1.10703586285e-06 3527 -140322.8558 -0.00221729490022 0.07 9.47273669996e-07 3018 -134776.695233 -0.00221729490022 0.1 9.1117808615e-07 2903 -131578.010071 -0.00221729490022 0.13 8.96425977969e-07 2856 -129702.198617 -0.00221729490022 0.16 8.87323613346e-07 2827 -128713.623734 -0.00221729490022 0.19 8.82929368356e-07 2813 -128404.820697 -0.00221729490022 0.22 8.80418371219e-07 2805 -128659.552266 -0.00221729490022 0.25 8.78221248724e-07 2798 -129409.877247 -0.00221729490022 0.28 8.77279624798e-07 2795 -130614.576892 -0.00221729490022 0.31 8.76338000871e-07 2792 -132250.029694 -0.00221729490022 0.34 8.76338000871e-07 2792 -134304.875352 -0.00221729490022 0.37 8.76338000871e-07 2792 -136775.948618 -0.00221729490022 0.4 8.76338000871e-07 2792 -139668.316433 -0.00221729490022 0.43 8.76338000871e-07 2792 -142992.90707 -0.00221729490022 0.46 8.76338000871e-07 2792 -146766.745495 -0.00221729490022 0.49 8.76338000871e-07 2792 -151013.043345 -0.00221729490022 0.52 8.76338000871e-07 2792 -155761.953098 -0.00221729490022 0.55 8.76338000871e-07 2792 -161051.344941 -0.00221729490022 0.58 8.76338000871e-07 2792 -166928.37411 -0.00221729490022 0.61 8.76338000871e-07 2792 -173452.209813 -0.00221729490022 0.64 8.76338000871e-07 2792 -180695.754012 -0.00221729490022 0.67 8.76338000871e-07 2792 -188750.429604 -0.00221729490022 0.7 8.76338000871e-07 2792 -197731.995156 -0.00221729490022 0.73 8.76338000871e-07 2792 -207789.764847 -0.00221729490022 0.76 8.76338000871e-07 2792 -219120.164773 -0.00221729490022 0.79 8.76338000871e-07 2792 -231989.031777 -0.00221729490022 0.82 8.76338000871e-07 2792 -246768.960651 -0.00221729490022 0.85 8.76338000871e-07 2792 -264007.00014 -0.00221729490022 0.88 8.76338000871e-07 2792 -284559.052071 -0.00216919739696 0.01 2.2238018396e-06 7085 -147282.800089 -0.00216919739696 0.04 1.10609423892e-06 3524 -140371.652954 -0.00216919739696 0.07 9.44134923575e-07 3008 -134818.10161 -0.00216919739696 0.1 9.09294838297e-07 2897 -131613.215196 -0.00216919739696 0.13 8.92973356905e-07 2845 -129730.446726 -0.00216919739696 0.16 8.8638198942e-07 2824 -128733.163296 -0.00216919739696 0.19 8.8198774443e-07 2810 -128414.46293 -0.00216919739696 0.22 8.79476747293e-07 2802 -128656.736223 -0.00216919739696 0.25 8.7759349944e-07 2796 -129392.742209 -0.00216919739696 0.28 8.76965750156e-07 2794 -130581.079386 -0.00216919739696 0.31 8.76338000871e-07 2792 -132198.009217 -0.00216919739696 0.34 8.76338000871e-07 2792 -134232.13401 -0.00216919739696 0.37 8.76338000871e-07 2792 -136679.768648 -0.00216919739696 0.4 8.76338000871e-07 2792 -139545.548074 -0.00216919739696 0.43 8.76338000871e-07 2792 -142840.399688 -0.00216919739696 0.46 8.76338000871e-07 2792 -146580.910711 -0.00216919739696 0.49 8.76338000871e-07 2792 -150790.137445 -0.00216919739696 0.52 8.76338000871e-07 2792 -155497.540233 -0.00216919739696 0.55 8.76338000871e-07 2792 -160740.718536 -0.00216919739696 0.58 8.76338000871e-07 2792 -166565.850819 -0.00216919739696 0.61 8.76338000871e-07 2792 -173030.885615 -0.00216919739696 0.64 8.76338000871e-07 2792 -180207.915501 -0.00216919739696 0.67 8.76338000871e-07 2792 -188186.792101 -0.00216919739696 0.7 8.76338000871e-07 2792 -197081.334657 -0.00216919739696 0.73 8.76338000871e-07 2792 -207038.233596 -0.00216919739696 0.76 8.76338000871e-07 2792 -218250.360184 -0.00216919739696 0.79 8.76338000871e-07 2792 -230978.381752 -0.00216919739696 0.82 8.76338000871e-07 2792 -245587.22239 -0.00216919739696 0.85 8.76338000871e-07 2792 -262611.968725 -0.00216919739696 0.88 8.76338000871e-07 2792 -282888.12568 -0.00212314225053 0.01 2.21815209605e-06 7067 -147310.491407 -0.00212314225053 0.04 1.10578036428e-06 3523 -140421.199684 -0.00212314225053 0.07 9.39112929301e-07 2992 -134859.755188 -0.00212314225053 0.1 9.08667089012e-07 2895 -131648.963486 -0.00212314225053 0.13 8.92659482263e-07 2844 -129759.199194 -0.00212314225053 0.16 8.84812616209e-07 2819 -128753.811288 -0.00212314225053 0.19 8.81673869788e-07 2809 -128424.825883 -0.00212314225053 0.22 8.78848998009e-07 2800 -128654.998244 -0.00212314225053 0.25 8.77279624798e-07 2795 -129376.78548 -0.00212314225053 0.28 8.76338000871e-07 2792 -130548.990094 -0.00212314225053 0.31 8.76338000871e-07 2792 -132147.747544 -0.00212314225053 0.34 8.76338000871e-07 2792 -134160.975578 -0.00212314225053 0.37 8.76338000871e-07 2792 -136585.596196 -0.00212314225053 0.4 8.76338000871e-07 2792 -139425.148855 -0.00212314225053 0.43 8.76338000871e-07 2792 -142690.510937 -0.00212314225053 0.46 8.76338000871e-07 2792 -146398.126357 -0.00212314225053 0.49 8.76338000871e-07 2792 -150570.550917 -0.00212314225053 0.52 8.76338000871e-07 2792 -155237.022781 -0.00212314225053 0.55 8.76338000871e-07 2792 -160434.219052 -0.00212314225053 0.58 8.76338000871e-07 2792 -166208.108128 -0.00212314225053 0.61 8.76338000871e-07 2792 -172615.172935 -0.00212314225053 0.64 8.76338000871e-07 2792 -179726.430529 -0.00212314225053 0.67 8.76338000871e-07 2792 -187630.394206 -0.00212314225053 0.7 8.76338000871e-07 2792 -196439.054159 -0.00212314225053 0.73 8.76338000871e-07 2792 -206296.37535 -0.00212314225053 0.76 8.76338000871e-07 2792 -217391.805418 -0.00212314225053 0.79 8.76338000871e-07 2792 -229980.960327 -0.00212314225053 0.82 8.76338000871e-07 2792 -244421.280144 -0.00212314225053 0.85 8.76338000871e-07 2792 -261236.031786 -0.00212314225053 0.88 8.76338000871e-07 2792 -281240.889701 -0.002079002079 0.01 2.21281622713e-06 7050 -147338.467751 -0.002079002079 0.04 1.10421099107e-06 3518 -140470.995334 -0.002079002079 0.07 9.3754355609e-07 2987 -134901.862787 -0.002079002079 0.1 9.07097715802e-07 2890 -131685.58954 -0.002079002079 0.13 8.91717858337e-07 2841 -129788.536889 -0.002079002079 0.16 8.84498741567e-07 2818 -128775.305125 -0.002079002079 0.19 8.81046120504e-07 2807 -128436.09363 -0.002079002079 0.22 8.78535123366e-07 2799 -128654.488499 -0.002079002079 0.25 8.77279624798e-07 2795 -129361.998619 -0.002079002079 0.28 8.76338000871e-07 2792 -130518.311679 -0.002079002079 0.31 8.76338000871e-07 2792 -132098.897212 -0.002079002079 0.34 8.76338000871e-07 2792 -134091.669514 -0.002079002079 0.37 8.76338000871e-07 2792 -136493.365967 -0.002079002079 0.4 8.76338000871e-07 2792 -139307.02939 -0.002079002079 0.43 8.76338000871e-07 2792 -142543.233491 -0.002079002079 0.46 8.76338000871e-07 2792 -146218.300325 -0.002079002079 0.49 8.76338000871e-07 2792 -150354.292706 -0.002079002079 0.52 8.76338000871e-07 2792 -154980.152215 -0.002079002079 0.55 8.76338000871e-07 2792 -160131.960048 -0.002079002079 0.58 8.76338000871e-07 2792 -165854.951009 -0.002079002079 0.61 8.76338000871e-07 2792 -172204.873103 -0.002079002079 0.64 8.76338000871e-07 2792 -179251.17042 -0.002079002079 0.67 8.76338000871e-07 2792 -187081.180967 -0.002079002079 0.7 8.76338000871e-07 2792 -195804.941353 -0.002079002079 0.73 8.76338000871e-07 2792 -205564.07283 -0.002079002079 0.76 8.76338000871e-07 2792 -216544.349537 -0.002079002079 0.79 8.76338000871e-07 2792 -228996.584283 -0.002079002079 0.82 8.76338000871e-07 2792 -243270.856136 -0.002079002079 0.85 8.76338000871e-07 2792 -259878.951767 -0.002079002079 0.88 8.76338000871e-07 2792 -279616.997715 -0.0020366598778 0.01 2.20653873429e-06 7030 -147366.657378 -0.0020366598778 0.04 1.10169999393e-06 3510 -140521.097313 -0.0020366598778 0.07 9.35974182879e-07 2982 -134944.811954 -0.0020366598778 0.1 9.05214467949e-07 2884 -131722.614467 -0.0020366598778 0.13 8.90462359768e-07 2837 -129818.472425 -0.0020366598778 0.16 8.83870992283e-07 2816 -128797.487364 -0.0020366598778 0.19 8.79790621935e-07 2803 -128448.146832 -0.0020366598778 0.22 8.77907374082e-07 2797 -128654.944284 -0.0020366598778 0.25 8.76651875514e-07 2793 -129348.545288 -0.0020366598778 0.28 8.76338000871e-07 2792 -130488.901182 -0.0020366598778 0.31 8.76338000871e-07 2792 -132051.563124 -0.0020366598778 0.34 8.76338000871e-07 2792 -134024.129151 -0.0020366598778 0.37 8.76338000871e-07 2792 -136402.746626 -0.0020366598778 0.4 8.76338000871e-07 2792 -139190.997296 -0.0020366598778 0.43 8.76338000871e-07 2792 -142398.413766 -0.0020366598778 0.46 8.76338000871e-07 2792 -146041.214592 -0.0020366598778 0.49 8.76338000871e-07 2792 -150141.270477 -0.0020366598778 0.52 8.76338000871e-07 2792 -154726.879642 -0.0020366598778 0.55 8.76338000871e-07 2792 -159833.839546 -0.0020366598778 0.58 8.76338000871e-07 2792 -165506.377582 -0.0020366598778 0.61 8.76338000871e-07 2792 -171799.756504 -0.0020366598778 0.64 8.76338000871e-07 2792 -178782.04091 -0.0020366598778 0.67 8.76338000871e-07 2792 -186538.956645 -0.0020366598778 0.7 8.76338000871e-07 2792 -195178.969611 -0.0020366598778 0.73 8.76338000871e-07 2792 -204841.103007 -0.0020366598778 0.76 8.76338000871e-07 2792 -215707.855683 -0.0020366598778 0.79 8.76338000871e-07 2792 -228025.077359 -0.0020366598778 0.82 8.76338000871e-07 2792 -242135.760789 -0.0020366598778 0.85 8.76338000871e-07 2792 -258540.401976 -0.0020366598778 0.88 8.76338000871e-07 2792 -278016.151974 -0.00199600798403 0.01 2.20308611322e-06 7019 -147394.978768 -0.00199600798403 0.04 1.10044449536e-06 3506 -140571.69612 -0.00199600798403 0.07 9.35346433595e-07 2980 -134988.348449 -0.00199600798403 0.1 9.03017345454e-07 2877 -131760.084209 -0.00199600798403 0.13 8.88892986557e-07 2832 -129849.228452 -0.00199600798403 0.16 8.82929368356e-07 2813 -128820.128461 -0.00199600798403 0.19 8.79476747293e-07 2802 -128460.868102 -0.00199600798403 0.22 8.7759349944e-07 2796 -128656.104516 -0.00199600798403 0.25 8.76338000871e-07 2792 -129336.063513 -0.00199600798403 0.28 8.76338000871e-07 2792 -130460.663625 -0.00199600798403 0.31 8.76338000871e-07 2792 -132005.62897 -0.00199600798403 0.34 8.76338000871e-07 2792 -133958.073654 -0.00199600798403 0.37 8.76338000871e-07 2792 -136313.982107 -0.00199600798403 0.4 8.76338000871e-07 2792 -139076.993276 -0.00199600798403 0.43 8.76338000871e-07 2792 -142255.978643 -0.00199600798403 0.46 8.76338000871e-07 2792 -145866.893255 -0.00199600798403 0.49 8.76338000871e-07 2792 -149931.36575 -0.00199600798403 0.52 8.76338000871e-07 2792 -154477.183171 -0.00199600798403 0.55 8.76338000871e-07 2792 -159539.666717 -0.00199600798403 0.58 8.76338000871e-07 2792 -165162.441944 -0.00199600798403 0.61 8.76338000871e-07 2792 -171399.726992 -0.00199600798403 0.64 8.76338000871e-07 2792 -178318.826 -0.00199600798403 0.67 8.76338000871e-07 2792 -186003.668609 -0.00199600798403 0.7 8.76338000871e-07 2792 -194560.939637 -0.00199600798403 0.73 8.76338000871e-07 2792 -204127.378989 -0.00199600798403 0.76 8.76338000871e-07 2792 -214882.126619 -0.00199600798403 0.79 8.76338000871e-07 2792 -227066.27179 -0.00199600798403 0.82 8.76338000871e-07 2792 -241015.775219 -0.00199600798403 0.85 8.76338000871e-07 2792 -257220.161639 -0.00199600798403 0.88 8.76338000871e-07 2792 -276437.979078 -0.00195694716243 0.01 2.19649474574e-06 6998 -147423.428163 -0.00195694716243 0.04 1.09981674608e-06 3504 -140622.535126 -0.00195694716243 0.07 9.34404809668e-07 2977 -135032.440906 -0.00195694716243 0.1 9.02075721527e-07 2874 -131797.857223 -0.00195694716243 0.13 8.88265237273e-07 2830 -129880.299354 -0.00195694716243 0.16 8.82301619072e-07 2811 -128843.299019 -0.00195694716243 0.19 8.78848998009e-07 2800 -128474.502796 -0.00195694716243 0.22 8.77279624798e-07 2795 -128658.030755 -0.00195694716243 0.25 8.76338000871e-07 2792 -129324.662821 -0.00195694716243 0.28 8.76338000871e-07 2792 -130433.647001 -0.00195694716243 0.31 8.76338000871e-07 2792 -131961.086088 -0.00195694716243 0.34 8.76338000871e-07 2792 -133893.487612 -0.00195694716243 0.37 8.76338000871e-07 2792 -136227.015655 -0.00195694716243 0.4 8.76338000871e-07 2792 -138964.729615 -0.00195694716243 0.43 8.76338000871e-07 2792 -142115.772987 -0.00195694716243 0.46 8.76338000871e-07 2792 -145695.18458 -0.00195694716243 0.49 8.76338000871e-07 2792 -149724.414817 -0.00195694716243 0.52 8.76338000871e-07 2792 -154230.972533 -0.00195694716243 0.55 8.76338000871e-07 2792 -159249.434361 -0.00195694716243 0.58 8.76338000871e-07 2792 -164822.992682 -0.00195694716243 0.61 8.76338000871e-07 2792 -171004.83682 -0.00195694716243 0.64 8.76338000871e-07 2792 -177861.357919 -0.00195694716243 0.67 8.76338000871e-07 2792 -185475.133208 -0.00195694716243 0.7 8.76338000871e-07 2792 -193950.754192 -0.00195694716243 0.73 8.76338000871e-07 2792 -203422.758017 -0.00195694716243 0.76 8.76338000871e-07 2792 -214066.987443 -0.00195694716243 0.79 8.76338000871e-07 2792 -226119.983946 -0.00195694716243 0.82 8.76338000871e-07 2792 -239910.701348 -0.00195694716243 0.85 8.76338000871e-07 2792 -255917.968513 -0.00195694716243 0.88 8.76338000871e-07 2792 -274882.193269 -0.00191938579655 0.01 2.19115887682e-06 6981 -147451.934341 -0.00191938579655 0.04 1.09856124751e-06 3500 -140673.678257 -0.00191938579655 0.07 9.32521561815e-07 2971 -135076.842628 -0.00191938579655 0.1 9.00820222959e-07 2870 -131836.165762 -0.00191938579655 0.13 8.87637487989e-07 2828 -129911.724527 -0.00191938579655 0.16 8.81673869788e-07 2809 -128866.8353 -0.00191938579655 0.19 8.78535123366e-07 2799 -128488.863071 -0.00191938579655 0.22 8.76965750156e-07 2794 -128660.639883 -0.00191938579655 0.25 8.76338000871e-07 2792 -129314.27788 -0.00191938579655 0.28 8.76338000871e-07 2792 -130407.897907 -0.00191938579655 0.31 8.76338000871e-07 2792 -131917.738869 -0.00191938579655 0.34 8.76338000871e-07 2792 -133830.354281 -0.00191938579655 0.37 8.76338000871e-07 2792 -136141.691268 -0.00191938579655 0.4 8.76338000871e-07 2792 -138854.365008 -0.00191938579655 0.43 8.76338000871e-07 2792 -141977.735716 -0.00191938579655 0.46 8.76338000871e-07 2792 -145526.033949 -0.00191938579655 0.49 8.76338000871e-07 2792 -149520.445531 -0.00191938579655 0.52 8.76338000871e-07 2792 -153988.114946 -0.00191938579655 0.55 8.76338000871e-07 2792 -158963.087222 -0.00191938579655 0.58 8.76338000871e-07 2792 -164487.894852 -0.00191938579655 0.61 8.76338000871e-07 2792 -170615.036269 -0.00191938579655 0.64 8.76338000871e-07 2792 -177409.602908 -0.00191938579655 0.67 8.76338000871e-07 2792 -184953.154828 -0.00191938579655 0.7 8.76338000871e-07 2792 -193348.294442 -0.00191938579655 0.73 8.76338000871e-07 2792 -202727.079487 -0.00191938579655 0.76 8.76338000871e-07 2792 -213262.351354 -0.00191938579655 0.79 8.76338000871e-07 2792 -225185.989135 -0.00191938579655 0.82 8.76338000871e-07 2792 -238820.34477 -0.00191938579655 0.85 8.76338000871e-07 2792 -254633.578146 -0.00191938579655 0.88 8.76338000871e-07 2792 -273348.471185 -0.00188323917137 0.01 2.18770625576e-06 6970 -147480.571156 -0.00188323917137 0.04 1.09793349823e-06 3498 -140724.908812 -0.00188323917137 0.07 9.30638313963e-07 2965 -135121.49168 -0.00188323917137 0.1 8.99878599032e-07 2867 -131874.797941 -0.00188323917137 0.13 8.86695864062e-07 2825 -129943.800368 -0.00188323917137 0.16 8.81673869788e-07 2809 -128890.905937 -0.00188323917137 0.19 8.78221248724e-07 2798 -128503.723225 -0.00188323917137 0.22 8.76651875514e-07 2793 -128663.9337 -0.00188323917137 0.25 8.76338000871e-07 2792 -129304.680029 -0.00188323917137 0.28 8.76338000871e-07 2792 -130383.124795 -0.00188323917137 0.31 8.76338000871e-07 2792 -131875.49038 -0.00188323917137 0.34 8.76338000871e-07 2792 -133768.649334 -0.00188323917137 0.37 8.76338000871e-07 2792 -136057.874494 -0.00188323917137 0.4 8.76338000871e-07 2792 -138745.900827 -0.00188323917137 0.43 8.76338000871e-07 2792 -141841.632305 -0.00188323917137 0.46 8.76338000871e-07 2792 -145359.308678 -0.00188323917137 0.49 8.76338000871e-07 2792 -149319.306333 -0.00188323917137 0.52 8.76338000871e-07 2792 -153748.506885 -0.00188323917137 0.55 8.76338000871e-07 2792 -158680.550231 -0.00188323917137 0.58 8.76338000871e-07 2792 -164157.153858 -0.00188323917137 0.61 8.76338000871e-07 2792 -170230.148256 -0.00188323917137 0.64 8.76338000871e-07 2792 -176963.585599 -0.00188323917137 0.67 8.76338000871e-07 2792 -184437.63751 -0.00188323917137 0.7 8.76338000871e-07 2792 -192753.368592 -0.00188323917137 0.73 8.76338000871e-07 2792 -202040.259323 -0.00188323917137 0.76 8.76338000871e-07 2792 -212468.01416 -0.00188323917137 0.79 8.76338000871e-07 2792 -224264.191284 -0.00188323917137 0.82 8.76338000871e-07 2792 -237744.464747 -0.00188323917137 0.85 8.76338000871e-07 2792 -253366.771419 -0.00188323917137 0.88 8.76338000871e-07 2792 -271836.514871 -0.00184842883549 0.01 2.18268426148e-06 6954 -147509.330856 -0.00184842883549 0.04 1.09793349823e-06 3498 -140776.2088 -0.00184842883549 0.07 9.28441191468e-07 2958 -135166.438478 -0.00184842883549 0.1 8.98309225822e-07 2862 -131913.666798 -0.00184842883549 0.13 8.85754240136e-07 2822 -129976.176665 -0.00184842883549 0.16 8.81046120504e-07 2807 -128915.54008 -0.00184842883549 0.19 8.7759349944e-07 2796 -128518.971293 -0.00184842883549 0.22 8.76338000871e-07 2792 -128668.092906 -0.00184842883549 0.25 8.76338000871e-07 2792 -129295.838809 -0.00184842883549 0.28 8.76338000871e-07 2792 -130359.423772 -0.00184842883549 0.31 8.76338000871e-07 2792 -131834.491199 -0.00184842883549 0.34 8.76338000871e-07 2792 -133708.228708 -0.00184842883549 0.37 8.76338000871e-07 2792 -135975.606996 -0.00184842883549 0.4 8.76338000871e-07 2792 -138639.277198 -0.00184842883549 0.43 8.76338000871e-07 2792 -141707.53089 -0.00184842883549 0.46 8.76338000871e-07 2792 -145194.943785 -0.00184842883549 0.49 8.76338000871e-07 2792 -149120.960527 -0.00184842883549 0.52 8.76338000871e-07 2792 -153512.15242 -0.00184842883549 0.55 8.76338000871e-07 2792 -158401.679795 -0.00184842883549 0.58 8.76338000871e-07 2792 -163830.674641 -0.00184842883549 0.61 8.76338000871e-07 2792 -169850.123689 -0.00184842883549 0.64 8.76338000871e-07 2792 -176523.197684 -0.00184842883549 0.67 8.76338000871e-07 2792 -183928.569319 -0.00184842883549 0.7 8.76338000871e-07 2792 -192165.818205 -0.00184842883549 0.73 8.76338000871e-07 2792 -201362.114689 -0.00184842883549 0.76 8.76338000871e-07 2792 -211683.870526 -0.00184842883549 0.79 8.76338000871e-07 2792 -223354.386774 -0.00184842883549 0.82 8.76338000871e-07 2792 -236682.894956 -0.00184842883549 0.85 8.76338000871e-07 2792 -252117.279001 -0.00184842883549 0.88 8.76338000871e-07 2792 -270346.036232 -0.00181488203267 0.01 2.17954551506e-06 6944 -147538.237177 -0.00181488203267 0.04 1.09730574894e-06 3496 -140827.771208 -0.00181488203267 0.07 9.26244068973e-07 2951 -135211.761621 -0.00181488203267 0.1 8.97053727253e-07 2858 -131952.970885 -0.00181488203267 0.13 8.84812616209e-07 2819 -130008.784529 -0.00181488203267 0.16 8.79790621935e-07 2803 -128940.709885 -0.00181488203267 0.19 8.77279624798e-07 2795 -128534.669611 -0.00181488203267 0.22 8.76338000871e-07 2792 -128672.980091 -0.00181488203267 0.25 8.76338000871e-07 2792 -129287.664583 -0.00181488203267 0.28 8.76338000871e-07 2792 -130336.686148 -0.00181488203267 0.31 8.76338000871e-07 2792 -131794.680395 -0.00181488203267 0.34 8.76338000871e-07 2792 -133649.052967 -0.00181488203267 0.37 8.76338000871e-07 2792 -135894.813567 -0.00181488203267 0.4 8.76338000871e-07 2792 -138534.251962 -0.00181488203267 0.43 8.76338000871e-07 2792 -141575.506642 -0.00181488203267 0.46 8.76338000871e-07 2792 -145032.761774 -0.00181488203267 0.49 8.76338000871e-07 2792 -148925.287839 -0.00181488203267 0.52 8.76338000871e-07 2792 -153278.907731 -0.00181488203267 0.55 8.76338000871e-07 2792 -158126.423916 -0.00181488203267 0.58 8.76338000871e-07 2792 -163508.402048 -0.00181488203267 0.61 8.76338000871e-07 2792 -169474.929525 -0.00181488203267 0.64 8.76338000871e-07 2792 -176088.285356 -0.00181488203267 0.67 8.76338000871e-07 2792 -183425.913613 -0.00181488203267 0.7 8.76338000871e-07 2792 -191585.574939 -0.00181488203267 0.73 8.76338000871e-07 2792 -200692.460894 -0.00181488203267 0.76 8.76338000871e-07 2792 -210909.765374 -0.00181488203267 0.79 8.76338000871e-07 2792 -222456.409111 -0.00181488203267 0.82 8.76338000871e-07 2792 -235635.444227 -0.00181488203267 0.85 8.76338000871e-07 2792 -250884.853278 -0.00181488203267 0.88 8.76338000871e-07 2792 -268876.726345 -0.0017825311943 0.01 2.17546514471e-06 6931 -147567.252991 -0.0017825311943 0.04 1.0969918743e-06 3495 -140879.407946 -0.0017825311943 0.07 9.24988570404e-07 2947 -135257.426371 -0.0017825311943 0.1 8.97053727253e-07 2858 -131992.812075 -0.0017825311943 0.13 8.84184866925e-07 2817 -130041.824646 -0.0017825311943 0.16 8.79476747293e-07 2802 -128965.924039 -0.0017825311943 0.19 8.77279624798e-07 2795 -128550.745689 -0.0017825311943 0.22 8.76338000871e-07 2792 -128678.505641 -0.0017825311943 0.25 8.76338000871e-07 2792 -129280.222686 -0.0017825311943 0.28 8.76338000871e-07 2792 -130314.738149 -0.0017825311943 0.31 8.76338000871e-07 2792 -131755.8442 -0.0017825311943 0.34 8.76338000871e-07 2792 -133591.020879 -0.0017825311943 0.37 8.76338000871e-07 2792 -135815.505313 -0.0017825311943 0.4 8.76338000871e-07 2792 -138430.914521 -0.0017825311943 0.43 8.76338000871e-07 2792 -141445.499098 -0.0017825311943 0.46 8.76338000871e-07 2792 -144872.757407 -0.0017825311943 0.49 8.76338000871e-07 2792 -148732.220592 -0.0017825311943 0.52 8.76338000871e-07 2792 -153048.749628 -0.0017825311943 0.55 8.76338000871e-07 2792 -157854.748128 -0.0017825311943 0.58 8.76338000871e-07 2792 -163190.189815 -0.0017825311943 0.61 8.76338000871e-07 2792 -169104.478392 -0.0017825311943 0.64 8.76338000871e-07 2792 -175658.812645 -0.0017825311943 0.67 8.76338000871e-07 2792 -182929.526532 -0.0017825311943 0.7 8.76338000871e-07 2792 -191012.632192 -0.0017825311943 0.73 8.76338000871e-07 2792 -200031.188071 -0.0017825311943 0.76 8.76338000871e-07 2792 -210145.507209 -0.0017825311943 0.79 8.76338000871e-07 2792 -221570.120343 -0.0017825311943 0.82 8.76338000871e-07 2792 -234601.896362 -0.0017825311943 0.85 8.76338000871e-07 2792 -249669.299465 -0.0017825311943 0.88 8.76338000871e-07 2792 -267428.261488 -0.00175131348511 0.01 2.17326802222e-06 6924 -147596.363951 -0.00175131348511 0.04 1.0969918743e-06 3495 -140931.330887 -0.00175131348511 0.07 9.23733071835e-07 2943 -135303.314239 -0.00175131348511 0.1 8.94856604758e-07 2851 -132032.928508 -0.00175131348511 0.13 8.83870992283e-07 2816 -130075.111321 -0.00175131348511 0.16 8.78848998009e-07 2800 -128991.502422 -0.00175131348511 0.19 8.76965750156e-07 2794 -128567.22579 -0.00175131348511 0.22 8.76338000871e-07 2792 -128684.493643 -0.00175131348511 0.25 8.76338000871e-07 2792 -129273.539732 -0.00175131348511 0.28 8.76338000871e-07 2792 -130293.524715 -0.00175131348511 0.31 8.76338000871e-07 2792 -131718.088874 -0.00175131348511 0.34 8.76338000871e-07 2792 -133534.306886 -0.00175131348511 0.37 8.76338000871e-07 2792 -135737.528194 -0.00175131348511 0.4 8.76338000871e-07 2792 -138329.19723 -0.00175131348511 0.43 8.76338000871e-07 2792 -141317.308209 -0.00175131348511 0.46 8.76338000871e-07 2792 -144715.040207 -0.00175131348511 0.49 8.76338000871e-07 2792 -148541.630493 -0.00175131348511 0.52 8.76338000871e-07 2792 -152821.563483 -0.00175131348511 0.55 8.76338000871e-07 2792 -157586.523226 -0.00175131348511 0.58 8.76338000871e-07 2792 -162876.008632 -0.00175131348511 0.61 8.76338000871e-07 2792 -168738.691706 -0.00175131348511 0.64 8.76338000871e-07 2792 -175234.728701 -0.00175131348511 0.67 8.76338000871e-07 2792 -182439.296502 -0.00175131348511 0.7 8.76338000871e-07 2792 -190446.878899 -0.00175131348511 0.73 8.76338000871e-07 2792 -199378.227204 -0.00175131348511 0.76 8.76338000871e-07 2792 -209390.928882 -0.00175131348511 0.79 8.76338000871e-07 2792 -220695.323746 -0.00175131348511 0.82 8.76338000871e-07 2792 -233582.089632 -0.00175131348511 0.85 8.76338000871e-07 2792 -248470.357221 -0.00175131348511 0.88 8.76338000871e-07 2792 -266000.391474 -0.00172117039587 0.01 2.17107089972e-06 6917 -147625.643274 -0.00172117039587 0.04 1.09636412502e-06 3493 -140983.203564 -0.00172117039587 0.07 9.2153594934e-07 2936 -135349.366716 -0.00172117039587 0.1 8.92973356905e-07 2845 -132073.069473 -0.00172117039587 0.13 8.82929368356e-07 2813 -130108.695845 -0.00172117039587 0.16 8.78848998009e-07 2800 -129017.615057 -0.00172117039587 0.19 8.76651875514e-07 2793 -128584.128077 -0.00172117039587 0.22 8.76338000871e-07 2792 -128690.933592 -0.00172117039587 0.25 8.76338000871e-07 2792 -129267.651592 -0.00172117039587 0.28 8.76338000871e-07 2792 -130272.989103 -0.00172117039587 0.31 8.76338000871e-07 2792 -131681.30229 -0.00172117039587 0.34 8.76338000871e-07 2792 -133478.760218 -0.00172117039587 0.37 8.76338000871e-07 2792 -135660.832289 -0.00172117039587 0.4 8.76338000871e-07 2792 -138229.102973 -0.00172117039587 0.43 8.76338000871e-07 2792 -141190.946684 -0.00172117039587 0.46 8.76338000871e-07 2792 -144559.547639 -0.00172117039587 0.49 8.76338000871e-07 2792 -148353.451707 -0.00172117039587 0.52 8.76338000871e-07 2792 -152597.282087 -0.00172117039587 0.55 8.76338000871e-07 2792 -157321.738166 -0.00172117039587 0.58 8.76338000871e-07 2792 -162565.808712 -0.00172117039587 0.61 8.76338000871e-07 2792 -168377.434394 -0.00172117039587 0.64 8.76338000871e-07 2792 -174815.947262 -0.00172117039587 0.67 8.76338000871e-07 2792 -181955.186545 -0.00172117039587 0.7 8.76338000871e-07 2792 -189888.160576 -0.00172117039587 0.73 8.76338000871e-07 2792 -198733.525342 -0.00172117039587 0.76 8.76338000871e-07 2792 -208645.924142 -0.00172117039587 0.79 8.76338000871e-07 2792 -219831.818475 -0.00172117039587 0.82 8.76338000871e-07 2792 -232575.821142 -0.00172117039587 0.85 8.76338000871e-07 2792 -247287.805464 -0.00172117039587 0.88 8.76338000871e-07 2792 -264592.808041 -0.00169204737733 0.01 2.16981540115e-06 6913 -147655.056199 -0.00169204737733 0.04 1.09730574894e-06 3496 -141035.122092 -0.00169204737733 0.07 9.20280450772e-07 2932 -135395.681449 -0.00169204737733 0.1 8.92659482263e-07 2844 -132113.403544 -0.00169204737733 0.13 8.82615493714e-07 2812 -130142.492656 -0.00169204737733 0.16 8.78221248724e-07 2798 -129043.943149 -0.00169204737733 0.19 8.76338000871e-07 2792 -128601.566642 -0.00169204737733 0.22 8.76338000871e-07 2792 -128697.809687 -0.00169204737733 0.25 8.76338000871e-07 2792 -129262.382769 -0.00169204737733 0.28 8.76338000871e-07 2792 -130253.195771 -0.00169204737733 0.31 8.76338000871e-07 2792 -131645.35664 -0.00169204737733 0.34 8.76338000871e-07 2792 -133424.267756 -0.00169204737733 0.37 8.76338000871e-07 2792 -135585.451047 -0.00169204737733 0.4 8.76338000871e-07 2792 -138130.520426 -0.00169204737733 0.43 8.76338000871e-07 2792 -141066.408828 -0.00169204737733 0.46 8.76338000871e-07 2792 -144406.135524 -0.00169204737733 0.49 8.76338000871e-07 2792 -148167.811956 -0.00169204737733 0.52 8.76338000871e-07 2792 -152375.804707 -0.00169204737733 0.55 8.76338000871e-07 2792 -157060.274288 -0.00169204737733 0.58 8.76338000871e-07 2792 -162259.460656 -0.00169204737733 0.61 8.76338000871e-07 2792 -168020.690737 -0.00169204737733 0.64 8.76338000871e-07 2792 -174402.3736 -0.00169204737733 0.67 8.76338000871e-07 2792 -181477.105347 -0.00169204737733 0.7 8.76338000871e-07 2792 -189336.407745 -0.00169204737733 0.73 8.76338000871e-07 2792 -198096.943229 -0.00169204737733 0.76 8.76338000871e-07 2792 -207910.431606 -0.00169204737733 0.79 8.76338000871e-07 2792 -218979.460383 -0.00169204737733 0.82 8.76338000871e-07 2792 -231582.870438 -0.00169204737733 0.85 8.76338000871e-07 2792 -246121.425374 -0.00169204737733 0.88 8.76338000871e-07 2792 -263205.21655 -0.00166389351082 0.01 2.16636278009e-06 6902 -147684.574539 -0.00166389351082 0.04 1.09730574894e-06 3496 -141087.289802 -0.00166389351082 0.07 9.19024952203e-07 2928 -135442.244954 -0.00166389351082 0.1 8.92031732979e-07 2842 -132153.929226 -0.00166389351082 0.13 8.81673869788e-07 2809 -130176.468284 -0.00166389351082 0.16 8.7759349944e-07 2796 -129070.507705 -0.00166389351082 0.19 8.76338000871e-07 2792 -128619.274978 -0.00166389351082 0.22 8.76338000871e-07 2792 -128705.069457 -0.00166389351082 0.25 8.76338000871e-07 2792 -129257.693491 -0.00166389351082 0.28 8.76338000871e-07 2792 -130234.120319 -0.00166389351082 0.31 8.76338000871e-07 2792 -131610.189757 -0.00166389351082 0.34 8.76338000871e-07 2792 -133370.914978 -0.00166389351082 0.37 8.76338000871e-07 2792 -135511.461271 -0.00166389351082 0.4 8.76338000871e-07 2792 -138033.430914 -0.00166389351082 0.43 8.76338000871e-07 2792 -140943.643936 -0.00166389351082 0.46 8.76338000871e-07 2792 -144254.755483 -0.00166389351082 0.49 8.76338000871e-07 2792 -147984.643811 -0.00166389351082 0.52 8.76338000871e-07 2792 -152157.038776 -0.00166389351082 0.55 8.76338000871e-07 2792 -156802.067357 -0.00166389351082 0.58 8.76338000871e-07 2792 -161956.961219 -0.00166389351082 0.61 8.76338000871e-07 2792 -167668.392843 -0.00166389351082 0.64 8.76338000871e-07 2792 -173993.881483 -0.00166389351082 0.67 8.76338000871e-07 2792 -181004.98082 -0.00166389351082 0.7 8.76338000871e-07 2792 -188791.554034 -0.00166389351082 0.73 8.76338000871e-07 2792 -197468.332983 -0.00166389351082 0.76 8.76338000871e-07 2792 -207184.325026 -0.00166389351082 0.79 8.76338000871e-07 2792 -218138.125082 -0.00166389351082 0.82 8.76338000871e-07 2792 -230603.035827 -0.00166389351082 0.85 8.76338000871e-07 2792 -244970.969511 -0.00166389351082 0.88 8.76338000871e-07 2792 -261837.351272 -0.00163666121113 0.01 2.16385178295e-06 6894 -147714.171839 -0.00163666121113 0.04 1.09793349823e-06 3498 -141139.54726 -0.00163666121113 0.07 9.1714170435e-07 2922 -135488.889182 -0.00163666121113 0.1 8.91090109052e-07 2839 -132194.600661 -0.00163666121113 0.13 8.81673869788e-07 2809 -130210.767385 -0.00163666121113 0.16 8.7759349944e-07 2796 -129097.358364 -0.00163666121113 0.19 8.76338000871e-07 2792 -128637.2315 -0.00163666121113 0.22 8.76338000871e-07 2792 -128712.736766 -0.00163666121113 0.25 8.76338000871e-07 2792 -129253.414229 -0.00163666121113 0.28 8.76338000871e-07 2792 -130215.881668 -0.00163666121113 0.31 8.76338000871e-07 2792 -131575.776139 -0.00163666121113 0.34 8.76338000871e-07 2792 -133318.585749 -0.00163666121113 0.37 8.76338000871e-07 2792 -135438.686707 -0.00163666121113 0.4 8.76338000871e-07 2792 -137937.729188 -0.00163666121113 0.43 8.76338000871e-07 2792 -140822.65234 -0.00163666121113 0.46 8.76338000871e-07 2792 -144105.426079 -0.00163666121113 0.49 8.76338000871e-07 2792 -147803.869644 -0.00163666121113 0.52 8.76338000871e-07 2792 -151941.108179 -0.00163666121113 0.55 8.76338000871e-07 2792 -156547.033779 -0.00163666121113 0.58 8.76338000871e-07 2792 -161658.187466 -0.00163666121113 0.61 8.76338000871e-07 2792 -167320.420411 -0.00163666121113 0.64 8.76338000871e-07 2792 -173590.456413 -0.00163666121113 0.67 8.76338000871e-07 2792 -180538.693388 -0.00163666121113 0.7 8.76338000871e-07 2792 -188253.492777 -0.00163666121113 0.73 8.76338000871e-07 2792 -196847.618376 -0.00163666121113 0.76 8.76338000871e-07 2792 -206467.441803 -0.00163666121113 0.79 8.76338000871e-07 2792 -217307.711062 -0.00163666121113 0.82 8.76338000871e-07 2792 -229636.15363 -0.00163666121113 0.85 8.76338000871e-07 2792 -243836.18609 -0.00163666121113 0.88 8.76338000871e-07 2792 -260488.913912 -0.00161030595813 0.01 2.16102691117e-06 6885 -147743.754111 -0.00161030595813 0.04 1.09918899679e-06 3502 -141192.014986 -0.00161030595813 0.07 9.16513955066e-07 2920 -135535.669577 -0.00161030595813 0.1 8.90462359768e-07 2837 -132235.503658 -0.00161030595813 0.13 8.81673869788e-07 2809 -130245.452531 -0.00161030595813 0.16 8.77279624798e-07 2795 -129124.388752 -0.00161030595813 0.19 8.76338000871e-07 2792 -128655.631057 -0.00161030595813 0.22 8.76338000871e-07 2792 -128720.829269 -0.00161030595813 0.25 8.76338000871e-07 2792 -129249.621769 -0.00161030595813 0.28 8.76338000871e-07 2792 -130198.318372 -0.00161030595813 0.31 8.76338000871e-07 2792 -131542.1528 -0.00161030595813 0.34 8.76338000871e-07 2792 -133267.186464 -0.00161030595813 0.37 8.76338000871e-07 2792 -135367.095255 -0.00161030595813 0.4 8.76338000871e-07 2792 -137843.533122 -0.00161030595813 0.43 8.76338000871e-07 2792 -140703.311484 -0.00161030595813 0.46 8.76338000871e-07 2792 -143958.087857 -0.00161030595813 0.49 8.76338000871e-07 2792 -147625.36142 -0.00161030595813 0.52 8.76338000871e-07 2792 -151727.939483 -0.00161030595813 0.55 8.76338000871e-07 2792 -156295.067752 -0.00161030595813 0.58 8.76338000871e-07 2792 -161363.077877 -0.00161030595813 0.61 8.76338000871e-07 2792 -166976.763734 -0.00161030595813 0.64 8.76338000871e-07 2792 -173192.012884 -0.00161030595813 0.67 8.76338000871e-07 2792 -180078.140172 -0.00161030595813 0.7 8.76338000871e-07 2792 -187722.141133 -0.00161030595813 0.73 8.76338000871e-07 2792 -196234.714606 -0.00161030595813 0.76 8.76338000871e-07 2792 -205759.661456 -0.00161030595813 0.79 8.76338000871e-07 2792 -216488.058055 -0.00161030595813 0.82 8.76338000871e-07 2792 -228682.089653 -0.00161030595813 0.85 8.76338000871e-07 2792 -242716.863835 -0.00161030595813 0.88 8.76338000871e-07 2792 -259159.605255 -0.00158478605388 0.01 2.15757429011e-06 6874 -147773.344835 -0.00158478605388 0.04 1.09918899679e-06 3502 -141244.603881 -0.00158478605388 0.07 9.1557233114e-07 2917 -135582.54642 -0.00158478605388 0.1 8.89520735842e-07 2834 -132276.612825 -0.00158478605388 0.13 8.81046120504e-07 2807 -130280.326047 -0.00158478605388 0.16 8.77279624798e-07 2795 -129151.710716 -0.00158478605388 0.19 8.76338000871e-07 2792 -128674.386634 -0.00158478605388 0.22 8.76338000871e-07 2792 -128729.442051 -0.00158478605388 0.25 8.76338000871e-07 2792 -129246.247075 -0.00158478605388 0.28 8.76338000871e-07 2792 -130181.388678 -0.00158478605388 0.31 8.76338000871e-07 2792 -131509.290681 -0.00158478605388 0.34 8.76338000871e-07 2792 -133216.661777 -0.00158478605388 0.37 8.76338000871e-07 2792 -135296.737583 -0.00158478605388 0.4 8.76338000871e-07 2792 -137750.812838 -0.00158478605388 0.43 8.76338000871e-07 2792 -140585.597244 -0.00158478605388 0.46 8.76338000871e-07 2792 -143812.74898 -0.00158478605388 0.49 8.76338000871e-07 2792 -147449.165653 -0.00158478605388 0.52 8.76338000871e-07 2792 -151517.495339 -0.00158478605388 0.55 8.76338000871e-07 2792 -156046.276077 -0.00158478605388 0.58 8.76338000871e-07 2792 -161071.557795 -0.00158478605388 0.61 8.76338000871e-07 2792 -166637.296514 -0.00158478605388 0.64 8.76338000871e-07 2792 -172798.444969 -0.00158478605388 0.67 8.76338000871e-07 2792 -179623.288587 -0.00158478605388 0.7 8.76338000871e-07 2792 -187197.366775 -0.00158478605388 0.73 8.76338000871e-07 2792 -195629.506641 -0.00158478605388 0.76 8.76338000871e-07 2792 -205060.884694 -0.00158478605388 0.79 8.76338000871e-07 2792 -215678.98492 -0.00158478605388 0.82 8.76338000871e-07 2792 -227740.674158 -0.00158478605388 0.85 8.76338000871e-07 2792 -241612.799061 -0.00158478605388 0.88 8.76338000871e-07 2792 -257849.138215 -0.0015600624025 0.01 2.15537716762e-06 6867 -147802.940116 -0.0015600624025 0.04 1.09918899679e-06 3502 -141297.218923 -0.0015600624025 0.07 9.14630707213e-07 2914 -135629.398273 -0.0015600624025 0.1 8.88579111915e-07 2831 -132317.865829 -0.0015600624025 0.13 8.80418371219e-07 2805 -130315.30277 -0.0015600624025 0.16 8.76965750156e-07 2794 -129179.208377 -0.0015600624025 0.19 8.76338000871e-07 2792 -128693.371977 -0.0015600624025 0.22 8.76338000871e-07 2792 -128738.391221 -0.0015600624025 0.25 8.76338000871e-07 2792 -129243.264318 -0.0015600624025 0.28 8.76338000871e-07 2792 -130164.982029 -0.0015600624025 0.31 8.76338000871e-07 2792 -131477.302283 -0.0015600624025 0.34 8.76338000871e-07 2792 -133167.003776 -0.0015600624025 0.37 8.76338000871e-07 2792 -135227.50822 -0.0015600624025 0.4 8.76338000871e-07 2792 -137659.418124 -0.0015600624025 0.43 8.76338000871e-07 2792 -140469.48931 -0.0015600624025 0.46 8.76338000871e-07 2792 -143669.300582 -0.0015600624025 0.49 8.76338000871e-07 2792 -147275.226885 -0.0015600624025 0.52 8.76338000871e-07 2792 -151309.62049 -0.0015600624025 0.55 8.76338000871e-07 2792 -155800.586493 -0.0015600624025 0.58 8.76338000871e-07 2792 -160783.515148 -0.0015600624025 0.61 8.76338000871e-07 2792 -166301.960203 -0.0015600624025 0.64 8.76338000871e-07 2792 -172409.725609 -0.0015600624025 0.67 8.76338000871e-07 2792 -179174.036194 -0.0015600624025 0.7 8.76338000871e-07 2792 -186679.084804 -0.0015600624025 0.73 8.76338000871e-07 2792 -195031.887731 -0.0015600624025 0.76 8.76338000871e-07 2792 -204370.989674 -0.0015600624025 0.79 8.76338000871e-07 2792 -214880.368561 -0.0015600624025 0.82 8.76338000871e-07 2792 -226811.717526 -0.0015600624025 0.85 8.76338000871e-07 2792 -240523.810894 -0.0015600624025 0.88 8.76338000871e-07 2792 -256557.247706 -0.00153609831029 0.01 2.15318004512e-06 6860 -147832.552215 -0.00153609831029 0.04 1.09856124751e-06 3500 -141349.766433 -0.00153609831029 0.07 9.13689083287e-07 2911 -135676.356261 -0.00153609831029 0.1 8.87951362631e-07 2829 -132359.173658 -0.00153609831029 0.13 8.79476747293e-07 2802 -130350.327491 -0.00153609831029 0.16 8.76651875514e-07 2793 -129206.816162 -0.00153609831029 0.19 8.76338000871e-07 2792 -128712.612087 -0.00153609831029 0.22 8.76338000871e-07 2792 -128747.532376 -0.00153609831029 0.25 8.76338000871e-07 2792 -129240.702246 -0.00153609831029 0.28 8.76338000871e-07 2792 -130149.056156 -0.00153609831029 0.31 8.76338000871e-07 2792 -131446.093947 -0.00153609831029 0.34 8.76338000871e-07 2792 -133118.225508 -0.00153609831029 0.37 8.76338000871e-07 2792 -135159.327036 -0.00153609831029 0.4 8.76338000871e-07 2792 -137569.386877 -0.00153609831029 0.43 8.76338000871e-07 2792 -140355.073576 -0.00153609831029 0.46 8.76338000871e-07 2792 -143527.742673 -0.00153609831029 0.49 8.76338000871e-07 2792 -147103.526229 -0.00153609831029 0.52 8.76338000871e-07 2792 -151104.340971 -0.00153609831029 0.55 8.76338000871e-07 2792 -155557.973386 -0.00153609831029 0.58 8.76338000871e-07 2792 -160499.032267 -0.00153609831029 0.61 8.76338000871e-07 2792 -165970.682162 -0.00153609831029 0.64 8.76338000871e-07 2792 -172025.726896 -0.00153609831029 0.67 8.76338000871e-07 2792 -178730.290674 -0.00153609831029 0.7 8.76338000871e-07 2792 -186167.235872 -0.00153609831029 0.73 8.76338000871e-07 2792 -194441.721985 -0.00153609831029 0.76 8.76338000871e-07 2792 -203689.862292 -0.00153609831029 0.79 8.76338000871e-07 2792 -214092.085319 -0.00153609831029 0.82 8.76338000871e-07 2792 -225895.03017 -0.00153609831029 0.85 8.76338000871e-07 2792 -239449.679382 -0.00153609831029 0.88 8.76338000871e-07 2792 -255283.686324 -0.00151285930408 0.01 2.15035517334e-06 6851 -147862.174773 -0.00151285930408 0.04 1.09981674608e-06 3504 -141402.230606 -0.00151285930408 0.07 9.13689083287e-07 2911 -135723.409635 -0.00151285930408 0.1 8.87637487989e-07 2828 -132400.558869 -0.00151285930408 0.13 8.79162872651e-07 2801 -130385.447446 -0.00151285930408 0.16 8.76338000871e-07 2792 -129234.640286 -0.00151285930408 0.19 8.76338000871e-07 2792 -128732.123964 -0.00151285930408 0.22 8.76338000871e-07 2792 -128757.038206 -0.00151285930408 0.25 8.76338000871e-07 2792 -129238.585337 -0.00151285930408 0.28 8.76338000871e-07 2792 -130133.66028 -0.00151285930408 0.31 8.76338000871e-07 2792 -131415.582489 -0.00151285930408 0.34 8.76338000871e-07 2792 -133070.302563 -0.00151285930408 0.37 8.76338000871e-07 2792 -135092.157802 -0.00151285930408 0.4 8.76338000871e-07 2792 -137480.717849 -0.00151285930408 0.43 8.76338000871e-07 2792 -140242.253338 -0.00151285930408 0.46 8.76338000871e-07 2792 -143387.97936 -0.00151285930408 0.49 8.76338000871e-07 2792 -146934.031924 -0.00151285930408 0.52 8.76338000871e-07 2792 -150901.633287 -0.00151285930408 0.55 8.76338000871e-07 2792 -155318.290283 -0.00151285930408 0.58 8.76338000871e-07 2792 -160218.045356 -0.00151285930408 0.61 8.76338000871e-07 2792 -165643.347354 -0.00151285930408 0.64 8.76338000871e-07 2792 -171646.391258 -0.00151285930408 0.67 8.76338000871e-07 2792 -178292.005482 -0.00151285930408 0.7 8.76338000871e-07 2792 -185661.704151 -0.00151285930408 0.73 8.76338000871e-07 2792 -193858.927174 -0.00151285930408 0.76 8.76338000871e-07 2792 -203017.370881 -0.00151285930408 0.79 8.76338000871e-07 2792 -213313.981561 -0.00151285930408 0.82 8.76338000871e-07 2792 -224990.461454 -0.00151285930408 0.85 8.76338000871e-07 2792 -238390.170536 -0.00151285930408 0.88 8.76338000871e-07 2792 -254028.192551 -0.00149031296572 0.01 2.14941354942e-06 6848 -147891.7945 -0.00149031296572 0.04 1.10107224465e-06 3508 -141454.659257 -0.00149031296572 0.07 9.13689083287e-07 2911 -135770.581633 -0.00149031296572 0.1 8.87009738704e-07 2826 -132442.101597 -0.00149031296572 0.13 8.78848998009e-07 2800 -130420.664655 -0.00149031296572 0.16 8.76338000871e-07 2792 -129262.776979 -0.00149031296572 0.19 8.76338000871e-07 2792 -128751.82694 -0.00149031296572 0.22 8.76338000871e-07 2792 -128766.969231 -0.00149031296572 0.25 8.76338000871e-07 2792 -129236.985864 -0.00149031296572 0.28 8.76338000871e-07 2792 -130118.732684 -0.00149031296572 0.31 8.76338000871e-07 2792 -131385.746612 -0.00149031296572 0.34 8.76338000871e-07 2792 -133023.316737 -0.00149031296572 0.37 8.76338000871e-07 2792 -135025.989113 -0.00149031296572 0.4 8.76338000871e-07 2792 -137393.305598 -0.00149031296572 0.43 8.76338000871e-07 2792 -140130.924764 -0.00149031296572 0.46 8.76338000871e-07 2792 -143250.076424 -0.00149031296572 0.49 8.76338000871e-07 2792 -146766.655953 -0.00149031296572 0.52 8.76338000871e-07 2792 -150701.442939 -0.00149031296572 0.55 8.76338000871e-07 2792 -155081.535476 -0.00149031296572 0.58 8.76338000871e-07 2792 -159940.523537 -0.00149031296572 0.61 8.76338000871e-07 2792 -165320.011121 -0.00149031296572 0.64 8.76338000871e-07 2792 -171271.643114 -0.00149031296572 0.67 8.76338000871e-07 2792 -177859.049273 -0.00149031296572 0.7 8.76338000871e-07 2792 -185162.404407 -0.00149031296572 0.73 8.76338000871e-07 2792 -193283.414948 -0.00149031296572 0.76 8.76338000871e-07 2792 -202353.365497 -0.00149031296572 0.79 8.76338000871e-07 2792 -212545.92882 -0.00149031296572 0.82 8.76338000871e-07 2792 -224097.853487 -0.00149031296572 0.85 8.76338000871e-07 2792 -237345.0849 -0.00149031296572 0.88 8.76338000871e-07 2792 -252790.491961 -0.0014684287812 0.01 2.14721642692e-06 6841 -147921.453232 -0.0014684287812 0.04 1.1029554925e-06 3514 -141507.057359 -0.0014684287812 0.07 9.13061334002e-07 2909 -135817.932583 -0.0014684287812 0.1 8.8638198942e-07 2824 -132483.801 -0.0014684287812 0.13 8.78848998009e-07 2800 -130456.022258 -0.0014684287812 0.16 8.76338000871e-07 2792 -129291.140067 -0.0014684287812 0.19 8.76338000871e-07 2792 -128771.785725 -0.0014684287812 0.22 8.76338000871e-07 2792 -128777.141262 -0.0014684287812 0.25 8.76338000871e-07 2792 -129235.768735 -0.0014684287812 0.28 8.76338000871e-07 2792 -130104.261627 -0.0014684287812 0.31 8.76338000871e-07 2792 -131356.470376 -0.0014684287812 0.34 8.76338000871e-07 2792 -132977.234661 -0.0014684287812 0.37 8.76338000871e-07 2792 -134960.825707 -0.0014684287812 0.4 8.76338000871e-07 2792 -137307.090404 -0.0014684287812 0.43 8.76338000871e-07 2792 -140021.148323 -0.0014684287812 0.46 8.76338000871e-07 2792 -143114.050769 -0.0014684287812 0.49 8.76338000871e-07 2792 -146601.374272 -0.0014684287812 0.52 8.76338000871e-07 2792 -150503.777266 -0.0014684287812 0.55 8.76338000871e-07 2792 -154847.690653 -0.0014684287812 0.58 8.76338000871e-07 2792 -159666.34133 -0.0014684287812 0.61 8.76338000871e-07 2792 -165000.619694 -0.0014684287812 0.64 8.76338000871e-07 2792 -170901.365954 -0.0014684287812 0.67 8.76338000871e-07 2792 -177431.362955 -0.0014684287812 0.7 8.76338000871e-07 2792 -184669.269374 -0.0014684287812 0.73 8.76338000871e-07 2792 -192715.06149 -0.0014684287812 0.76 8.76338000871e-07 2792 -201697.763806 -0.0014684287812 0.79 8.76338000871e-07 2792 -211787.769501 -0.0014684287812 0.82 8.76338000871e-07 2792 -223217.032215 -0.0014684287812 0.85 8.76338000871e-07 2792 -236314.22499 -0.0014684287812 0.88 8.76338000871e-07 2792 -251570.305669 -0.00144717800289 0.01 2.14533317907e-06 6835 -147951.068728 -0.00144717800289 0.04 1.10326936714e-06 3515 -141559.409097 -0.00144717800289 0.07 9.12433584718e-07 2907 -135865.245024 -0.00144717800289 0.1 8.85754240136e-07 2822 -132525.485863 -0.00144717800289 0.13 8.78221248724e-07 2798 -130491.525146 -0.00144717800289 0.16 8.76338000871e-07 2792 -129319.645965 -0.00144717800289 0.19 8.76338000871e-07 2792 -128791.933798 -0.00144717800289 0.22 8.76338000871e-07 2792 -128787.540619 -0.00144717800289 0.25 8.76338000871e-07 2792 -129234.781198 -0.00144717800289 0.28 8.76338000871e-07 2792 -130090.264802 -0.00144717800289 0.31 8.76338000871e-07 2792 -131327.806186 -0.00144717800289 0.34 8.76338000871e-07 2792 -132931.962503 -0.00144717800289 0.37 8.76338000871e-07 2792 -134896.653051 -0.00144717800289 0.4 8.76338000871e-07 2792 -137222.058447 -0.00144717800289 0.43 8.76338000871e-07 2792 -139912.892778 -0.00144717800289 0.46 8.76338000871e-07 2792 -142979.777621 -0.00144717800289 0.49 8.76338000871e-07 2792 -146438.151017 -0.00144717800289 0.52 8.76338000871e-07 2792 -150308.514215 -0.00144717800289 0.55 8.76338000871e-07 2792 -154616.699524 -0.00144717800289 0.58 8.76338000871e-07 2792 -159395.461595 -0.00144717800289 0.61 8.76338000871e-07 2792 -164685.12941 -0.00144717800289 0.64 8.76338000871e-07 2792 -170535.588302 -0.00144717800289 0.67 8.76338000871e-07 2792 -177008.864673 -0.00144717800289 0.7 8.76338000871e-07 2792 -184182.163472 -0.00144717800289 0.73 8.76338000871e-07 2792 -192153.779613 -0.00144717800289 0.76 8.76338000871e-07 2792 -201050.451089 -0.00144717800289 0.79 8.76338000871e-07 2792 -211039.347276 -0.00144717800289 0.82 8.76338000871e-07 2792 -222347.83443 -0.00144717800289 0.85 8.76338000871e-07 2792 -235297.38648 -0.00144717800289 0.88 8.76338000871e-07 2792 -250367.381413 -0.00142653352354 0.01 2.14376380586e-06 6830 -147980.662378 -0.00142653352354 0.04 1.10578036428e-06 3523 -141611.736322 -0.00142653352354 0.07 9.11805835434e-07 2905 -135912.501527 -0.00142653352354 0.1 8.84812616209e-07 2819 -132567.168033 -0.00142653352354 0.13 8.78221248724e-07 2798 -130527.149318 -0.00142653352354 0.16 8.76338000871e-07 2792 -129348.26836 -0.00142653352354 0.19 8.76338000871e-07 2792 -128812.214384 -0.00142653352354 0.22 8.76338000871e-07 2792 -128798.234463 -0.00142653352354 0.25 8.76338000871e-07 2792 -129234.169716 -0.00142653352354 0.28 8.76338000871e-07 2792 -130076.773946 -0.00142653352354 0.31 8.76338000871e-07 2792 -131299.71845 -0.00142653352354 0.34 8.76338000871e-07 2792 -132887.497934 -0.00142653352354 0.37 8.76338000871e-07 2792 -134833.508842 -0.00142653352354 0.4 8.76338000871e-07 2792 -137138.179329 -0.00142653352354 0.43 8.76338000871e-07 2792 -139806.064828 -0.00142653352354 0.46 8.76338000871e-07 2792 -142847.217493 -0.00142653352354 0.49 8.76338000871e-07 2792 -146277.045682 -0.00142653352354 0.52 8.76338000871e-07 2792 -150115.668849 -0.00142653352354 0.55 8.76338000871e-07 2792 -154388.546342 -0.00142653352354 0.58 8.76338000871e-07 2792 -159127.873606 -0.00142653352354 0.61 8.76338000871e-07 2792 -164373.437033 -0.00142653352354 0.64 8.76338000871e-07 2792 -170174.262869 -0.00142653352354 0.67 8.76338000871e-07 2792 -176591.435797 -0.00142653352354 0.7 8.76338000871e-07 2792 -183701.023184 -0.00142653352354 0.73 8.76338000871e-07 2792 -191599.480417 -0.00142653352354 0.76 8.76338000871e-07 2792 -200411.288261 -0.00142653352354 0.79 8.76338000871e-07 2792 -210300.556173 -0.00142653352354 0.82 8.76338000871e-07 2792 -221490.076356 -0.00142653352354 0.85 8.76338000871e-07 2792 -234294.368329 -0.00142653352354 0.88 8.76338000871e-07 2792 -249181.472311 -0.0014064697609 0.01 2.14282218193e-06 6827 -148010.238267 -0.0014064697609 0.04 1.1089191107e-06 3533 -141663.991079 -0.0014064697609 0.07 9.1117808615e-07 2903 -135959.821443 -0.0014064697609 0.1 8.84812616209e-07 2819 -132608.933946 -0.0014064697609 0.13 8.7759349944e-07 2796 -130562.885536 -0.0014064697609 0.16 8.76338000871e-07 2792 -129377.023736 -0.0014064697609 0.19 8.76338000871e-07 2792 -128832.689603 -0.0014064697609 0.22 8.76338000871e-07 2792 -128809.151799 -0.0014064697609 0.25 8.76338000871e-07 2792 -129234.011735 -0.0014064697609 0.28 8.76338000871e-07 2792 -130063.847337 -0.0014064697609 0.31 8.76338000871e-07 2792 -131272.185966 -0.0014064697609 0.34 8.76338000871e-07 2792 -132843.736369 -0.0014064697609 0.37 8.76338000871e-07 2792 -134771.414753 -0.0014064697609 0.4 8.76338000871e-07 2792 -137055.462219 -0.0014064697609 0.43 8.76338000871e-07 2792 -139700.601872 -0.0014064697609 0.46 8.76338000871e-07 2792 -142716.408278 -0.0014064697609 0.49 8.76338000871e-07 2792 -146118.001755 -0.0014064697609 0.52 8.76338000871e-07 2792 -149925.147477 -0.0014064697609 0.55 8.76338000871e-07 2792 -154163.169947 -0.0014064697609 0.58 8.76338000871e-07 2792 -158863.514756 -0.0014064697609 0.61 8.76338000871e-07 2792 -164065.470011 -0.0014064697609 0.64 8.76338000871e-07 2792 -169817.328949 -0.0014064697609 0.67 8.76338000871e-07 2792 -176179.080608 -0.0014064697609 0.7 8.76338000871e-07 2792 -183225.75667 -0.0014064697609 0.73 8.76338000871e-07 2792 -191052.022752 -0.0014064697609 0.76 8.76338000871e-07 2792 -199780.180165 -0.0014064697609 0.79 8.76338000871e-07 2792 -209571.26235 -0.0014064697609 0.82 8.76338000871e-07 2792 -220643.591828 -0.0014064697609 0.85 8.76338000871e-07 2792 -233304.963711 -0.0014064697609 0.88 8.76338000871e-07 2792 -248012.312002 -0.00138696255201 0.01 2.14125280872e-06 6822 -148039.805716 -0.00138696255201 0.04 1.11048848391e-06 3538 -141716.150516 -0.00138696255201 0.07 9.10236462223e-07 2900 -136007.180008 -0.00138696255201 0.1 8.84184866925e-07 2817 -132650.633693 -0.00138696255201 0.13 8.7759349944e-07 2796 -130598.630429 -0.00138696255201 0.16 8.76338000871e-07 2792 -129405.85403 -0.00138696255201 0.19 8.76338000871e-07 2792 -128853.440153 -0.00138696255201 0.22 8.76338000871e-07 2792 -128820.322217 -0.00138696255201 0.25 8.76338000871e-07 2792 -129234.157911 -0.00138696255201 0.28 8.76338000871e-07 2792 -130051.356613 -0.00138696255201 0.31 8.76338000871e-07 2792 -131245.217462 -0.00138696255201 0.34 8.76338000871e-07 2792 -132800.663718 -0.00138696255201 0.37 8.76338000871e-07 2792 -134710.268676 -0.00138696255201 0.4 8.76338000871e-07 2792 -136973.89232 -0.00138696255201 0.43 8.76338000871e-07 2792 -139596.517831 -0.00138696255201 0.46 8.76338000871e-07 2792 -142587.301012 -0.00138696255201 0.49 8.76338000871e-07 2792 -145960.91684 -0.00138696255201 0.52 8.76338000871e-07 2792 -149736.987776 -0.00138696255201 0.55 8.76338000871e-07 2792 -153940.509061 -0.00138696255201 0.58 8.76338000871e-07 2792 -158602.354167 -0.00138696255201 0.61 8.76338000871e-07 2792 -163761.216657 -0.00138696255201 0.64 8.76338000871e-07 2792 -169464.707283 -0.00138696255201 0.67 8.76338000871e-07 2792 -175771.75078 -0.00138696255201 0.7 8.76338000871e-07 2792 -182756.24304 -0.00138696255201 0.73 8.76338000871e-07 2792 -190511.335026 -0.00138696255201 0.76 8.76338000871e-07 2792 -199157.017314 -0.00138696255201 0.79 8.76338000871e-07 2792 -208851.303994 -0.00138696255201 0.82 8.76338000871e-07 2792 -219808.238355 -0.00138696255201 0.85 8.76338000871e-07 2792 -232328.959397 -0.00138696255201 0.88 8.76338000871e-07 2792 -246859.654063 -0.00136798905609 0.01 2.13999731015e-06 6818 -148069.343583 -0.00136798905609 0.04 1.11362723033e-06 3548 -141768.075396 -0.00136798905609 0.07 9.08980963655e-07 2896 -136054.517841 -0.00136798905609 0.1 8.83870992283e-07 2816 -132692.277892 -0.00136798905609 0.13 8.77279624798e-07 2795 -130634.414213 -0.00136798905609 0.16 8.76338000871e-07 2792 -129434.808588 -0.00136798905609 0.19 8.76338000871e-07 2792 -128874.416837 -0.00136798905609 0.22 8.76338000871e-07 2792 -128831.716101 -0.00136798905609 0.25 8.76338000871e-07 2792 -129234.5967 -0.00136798905609 0.28 8.76338000871e-07 2792 -130039.179047 -0.00136798905609 0.31 8.76338000871e-07 2792 -131218.811577 -0.00136798905609 0.34 8.76338000871e-07 2792 -132758.323485 -0.00136798905609 0.37 8.76338000871e-07 2792 -134650.061587 -0.00136798905609 0.4 8.76338000871e-07 2792 -136893.479361 -0.00136798905609 0.43 8.76338000871e-07 2792 -139493.759241 -0.00136798905609 0.46 8.76338000871e-07 2792 -142459.825917 -0.00136798905609 0.49 8.76338000871e-07 2792 -145805.801542 -0.00136798905609 0.52 8.76338000871e-07 2792 -149551.203028 -0.00136798905609 0.55 8.76338000871e-07 2792 -153720.529396 -0.00136798905609 0.58 8.76338000871e-07 2792 -158344.366721 -0.00136798905609 0.61 8.76338000871e-07 2792 -163460.625504 -0.00136798905609 0.64 8.76338000871e-07 2792 -169116.290734 -0.00136798905609 0.67 8.76338000871e-07 2792 -175369.371421 -0.00136798905609 0.7 8.76338000871e-07 2792 -182292.462425 -0.00136798905609 0.73 8.76338000871e-07 2792 -189977.312126 -0.00136798905609 0.76 8.76338000871e-07 2792 -198541.649937 -0.00136798905609 0.79 8.76338000871e-07 2792 -208140.573965 -0.00136798905609 0.82 8.76338000871e-07 2792 -218983.855316 -0.00136798905609 0.85 8.76338000871e-07 2792 -231366.162222 -0.00136798905609 0.88 8.76338000871e-07 2792 -245723.239447 -0.00134952766532 0.01 2.13936956087e-06 6816 -148098.864195 -0.00134952766532 0.04 1.11582435283e-06 3555 -141819.86843 -0.00134952766532 0.07 9.0835321437e-07 2894 -136101.934751 -0.00134952766532 0.1 8.83557117641e-07 2815 -132733.990113 -0.00134952766532 0.13 8.77279624798e-07 2795 -130670.290126 -0.00134952766532 0.16 8.76338000871e-07 2792 -129463.838526 -0.00134952766532 0.19 8.76338000871e-07 2792 -128895.56416 -0.00134952766532 0.22 8.76338000871e-07 2792 -128843.326304 -0.00134952766532 0.25 8.76338000871e-07 2792 -129235.33291 -0.00134952766532 0.28 8.76338000871e-07 2792 -130027.436236 -0.00134952766532 0.31 8.76338000871e-07 2792 -131192.998968 -0.00134952766532 0.34 8.76338000871e-07 2792 -132716.655486 -0.00134952766532 0.37 8.76338000871e-07 2792 -134590.720755 -0.00134952766532 0.4 8.76338000871e-07 2792 -136814.273905 -0.00134952766532 0.43 8.76338000871e-07 2792 -139392.344737 -0.00134952766532 0.46 8.76338000871e-07 2792 -142333.905505 -0.00134952766532 0.49 8.76338000871e-07 2792 -145652.652113 -0.00134952766532 0.52 8.76338000871e-07 2792 -149367.694533 -0.00134952766532 0.55 8.76338000871e-07 2792 -153503.191932 -0.00134952766532 0.58 8.76338000871e-07 2792 -158089.446046 -0.00134952766532 0.61 8.76338000871e-07 2792 -163163.640084 -0.00134952766532 0.64 8.76338000871e-07 2792 -168772.064672 -0.00134952766532 0.67 8.76338000871e-07 2792 -174971.873557 -0.00134952766532 0.7 8.76338000871e-07 2792 -181834.359955 -0.00134952766532 0.73 8.76338000871e-07 2792 -189449.829172 -0.00134952766532 0.76 8.76338000871e-07 2792 -197933.992644 -0.00134952766532 0.79 8.76338000871e-07 2792 -207438.937876 -0.00134952766532 0.82 8.76338000871e-07 2792 -218170.26264 -0.00134952766532 0.85 8.76338000871e-07 2792 -230416.388764 -0.00134952766532 0.88 8.76338000871e-07 2792 -244602.805168 -0.00133155792277 0.01 2.13623081445e-06 6806 -148128.321699 -0.00133155792277 0.04 1.11833534997e-06 3563 -141871.569403 -0.00133155792277 0.07 9.0835321437e-07 2894 -136149.380837 -0.00133155792277 0.1 8.82929368356e-07 2813 -132775.674892 -0.00133155792277 0.13 8.76965750156e-07 2794 -130706.297133 -0.00133155792277 0.16 8.76338000871e-07 2792 -129493.021749 -0.00133155792277 0.19 8.76338000871e-07 2792 -128916.796581 -0.00133155792277 0.22 8.76338000871e-07 2792 -128855.094987 -0.00133155792277 0.25 8.76338000871e-07 2792 -129236.404501 -0.00133155792277 0.28 8.76338000871e-07 2792 -130016.193797 -0.00133155792277 0.31 8.76338000871e-07 2792 -131167.822146 -0.00133155792277 0.34 8.76338000871e-07 2792 -132675.643997 -0.00133155792277 0.37 8.76338000871e-07 2792 -134532.199811 -0.00133155792277 0.4 8.76338000871e-07 2792 -136736.179545 -0.00133155792277 0.43 8.76338000871e-07 2792 -139292.251591 -0.00133155792277 0.46 8.76338000871e-07 2792 -142209.576933 -0.00133155792277 0.49 8.76338000871e-07 2792 -145501.402112 -0.00133155792277 0.52 8.76338000871e-07 2792 -149186.394945 -0.00133155792277 0.55 8.76338000871e-07 2792 -153288.524689 -0.00133155792277 0.58 8.76338000871e-07 2792 -157837.590713 -0.00133155792277 0.61 8.76338000871e-07 2792 -162870.241788 -0.00133155792277 0.64 8.76338000871e-07 2792 -168431.979243 -0.00133155792277 0.67 8.76338000871e-07 2792 -174579.134786 -0.00133155792277 0.7 8.76338000871e-07 2792 -181381.850238 -0.00133155792277 0.73 8.76338000871e-07 2792 -188928.842235 -0.00133155792277 0.76 8.76338000871e-07 2792 -197333.9251 -0.00133155792277 0.79 8.76338000871e-07 2792 -206746.233792 -0.00133155792277 0.82 8.76338000871e-07 2792 -217367.326413 -0.00133155792277 0.85 8.76338000871e-07 2792 -229479.439203 -0.00133155792277 0.88 8.76338000871e-07 2792 -243498.116687 -0.00131406044678 0.01 2.13434756659e-06 6800 -148157.676317 -0.00131406044678 0.04 1.12116022175e-06 3572 -141923.098369 -0.00131406044678 0.07 9.0835321437e-07 2894 -136196.870193 -0.00131406044678 0.1 8.82615493714e-07 2812 -132817.371239 -0.00131406044678 0.13 8.76651875514e-07 2793 -130742.301155 -0.00131406044678 0.16 8.76338000871e-07 2792 -129522.29796 -0.00131406044678 0.19 8.76338000871e-07 2792 -128938.177177 -0.00131406044678 0.22 8.76338000871e-07 2792 -128867.079212 -0.00131406044678 0.25 8.76338000871e-07 2792 -129237.706882 -0.00131406044678 0.28 8.76338000871e-07 2792 -130005.35379 -0.00131406044678 0.31 8.76338000871e-07 2792 -131143.150326 -0.00131406044678 0.34 8.76338000871e-07 2792 -132635.321718 -0.00131406044678 0.37 8.76338000871e-07 2792 -134474.544138 -0.00131406044678 0.4 8.76338000871e-07 2792 -136659.160385 -0.00131406044678 0.43 8.76338000871e-07 2792 -139193.478825 -0.00131406044678 0.46 8.76338000871e-07 2792 -142086.769376 -0.00131406044678 0.49 8.76338000871e-07 2792 -145352.014811 -0.00131406044678 0.52 8.76338000871e-07 2792 -149007.332281 -0.00131406044678 0.55 8.76338000871e-07 2792 -153076.48191 -0.00131406044678 0.58 8.76338000871e-07 2792 -157588.714522 -0.00131406044678 0.61 8.76338000871e-07 2792 -162580.331804 -0.00131406044678 0.64 8.76338000871e-07 2792 -168095.968672 -0.00131406044678 0.67 8.76338000871e-07 2792 -174191.126419 -0.00131406044678 0.7 8.76338000871e-07 2792 -180934.861749 -0.00131406044678 0.73 8.76338000871e-07 2792 -188414.285745 -0.00131406044678 0.76 8.76338000871e-07 2792 -196741.315107 -0.00131406044678 0.79 8.76338000871e-07 2792 -206062.358505 -0.00131406044678 0.82 8.76338000871e-07 2792 -216574.886416 -0.00131406044678 0.85 8.76338000871e-07 2792 -228555.111594 -0.00131406044678 0.88 8.76338000871e-07 2792 -242408.934935 -0.00129701686122 0.01 2.13371981731e-06 6798 -148186.969876 -0.00129701686122 0.04 1.12272959496e-06 3577 -141974.518923 -0.00129701686122 0.07 9.07097715802e-07 2890 -136244.349788 -0.00129701686122 0.1 8.82301619072e-07 2811 -132859.13452 -0.00129701686122 0.13 8.76651875514e-07 2793 -130778.300909 -0.00129701686122 0.16 8.76338000871e-07 2792 -129551.695984 -0.00129701686122 0.19 8.76338000871e-07 2792 -128959.657886 -0.00129701686122 0.22 8.76338000871e-07 2792 -128879.338756 -0.00129701686122 0.25 8.76338000871e-07 2792 -129239.343987 -0.00129701686122 0.28 8.76338000871e-07 2792 -129994.879282 -0.00129701686122 0.31 8.76338000871e-07 2792 -131118.901789 -0.00129701686122 0.34 8.76338000871e-07 2792 -132595.672493 -0.00129701686122 0.37 8.76338000871e-07 2792 -134417.71116 -0.00129701686122 0.4 8.76338000871e-07 2792 -136583.198717 -0.00129701686122 0.43 8.76338000871e-07 2792 -139096.080586 -0.00129701686122 0.46 8.76338000871e-07 2792 -141965.507794 -0.00129701686122 0.49 8.76338000871e-07 2792 -145204.401848 -0.00129701686122 0.52 8.76338000871e-07 2792 -148830.474157 -0.00129701686122 0.55 8.76338000871e-07 2792 -152866.978662 -0.00129701686122 0.58 8.76338000871e-07 2792 -157342.831852 -0.00129701686122 0.61 8.76338000871e-07 2792 -162293.882744 -0.00129701686122 0.64 8.76338000871e-07 2792 -167763.993076 -0.00129701686122 0.67 8.76338000871e-07 2792 -173807.79663 -0.00129701686122 0.7 8.76338000871e-07 2792 -180493.266826 -0.00129701686122 0.73 8.76338000871e-07 2792 -187906.063092 -0.00129701686122 0.76 8.76338000871e-07 2792 -196156.093863 -0.00129701686122 0.79 8.76338000871e-07 2792 -205387.172076 -0.00129701686122 0.82 8.76338000871e-07 2792 -215792.761594 -0.00129701686122 0.85 8.76338000871e-07 2792 -227643.233255 -0.00129701686122 0.88 8.76338000871e-07 2792 -241335.011586 -0.00128040973111 0.01 2.13058107089e-06 6788 -148216.166883 -0.00128040973111 0.04 1.12618221602e-06 3588 -142025.773791 -0.00128040973111 0.07 9.06156091875e-07 2887 -136291.7299 -0.00128040973111 0.1 8.81673869788e-07 2809 -132900.836041 -0.00128040973111 0.13 8.76338000871e-07 2792 -130814.323246 -0.00128040973111 0.16 8.76338000871e-07 2792 -129581.161368 -0.00128040973111 0.19 8.76338000871e-07 2792 -128981.229989 -0.00128040973111 0.22 8.76338000871e-07 2792 -128891.855314 -0.00128040973111 0.25 8.76338000871e-07 2792 -129241.232242 -0.00128040973111 0.28 8.76338000871e-07 2792 -129984.76031 -0.00128040973111 0.31 8.76338000871e-07 2792 -131095.178347 -0.00128040973111 0.34 8.76338000871e-07 2792 -132556.738723 -0.00128040973111 0.37 8.76338000871e-07 2792 -134361.686141 -0.00128040973111 0.4 8.76338000871e-07 2792 -136508.218988 -0.00128040973111 0.43 8.76338000871e-07 2792 -138999.971938 -0.00128040973111 0.46 8.76338000871e-07 2792 -141845.761191 -0.00128040973111 0.49 8.76338000871e-07 2792 -145058.607724 -0.00128040973111 0.52 8.76338000871e-07 2792 -148655.749387 -0.00128040973111 0.55 8.76338000871e-07 2792 -152659.974877 -0.00128040973111 0.58 8.76338000871e-07 2792 -157099.938311 -0.00128040973111 0.61 8.76338000871e-07 2792 -162010.826432 -0.00128040973111 0.64 8.76338000871e-07 2792 -167435.989086 -0.00128040973111 0.67 8.76338000871e-07 2792 -173429.065889 -0.00128040973111 0.7 8.76338000871e-07 2792 -180057.017675 -0.00128040973111 0.73 8.76338000871e-07 2792 -187404.094118 -0.00128040973111 0.76 8.76338000871e-07 2792 -195578.181737 -0.00128040973111 0.79 8.76338000871e-07 2792 -204720.53073 -0.00128040973111 0.82 8.76338000871e-07 2792 -215020.824888 -0.00128040973111 0.85 8.76338000871e-07 2792 -226743.609895 -0.00128040973111 0.88 8.76338000871e-07 2792 -240276.105333 -0.00126422250316 0.01 2.12712844982e-06 6777 -148245.257377 -0.00126422250316 0.04 1.12932096244e-06 3598 -142076.839229 -0.00126422250316 0.07 9.06156091875e-07 2887 -136339.059868 -0.00126422250316 0.1 8.81673869788e-07 2809 -132942.481406 -0.00126422250316 0.13 8.76338000871e-07 2792 -130850.365956 -0.00126422250316 0.16 8.76338000871e-07 2792 -129610.65228 -0.00126422250316 0.19 8.76338000871e-07 2792 -129002.916375 -0.00126422250316 0.22 8.76338000871e-07 2792 -128904.559282 -0.00126422250316 0.25 8.76338000871e-07 2792 -129243.380423 -0.00126422250316 0.28 8.76338000871e-07 2792 -129975.049426 -0.00126422250316 0.31 8.76338000871e-07 2792 -131072.031018 -0.00126422250316 0.34 8.76338000871e-07 2792 -132518.518875 -0.00126422250316 0.37 8.76338000871e-07 2792 -134306.4604 -0.00126422250316 0.4 8.76338000871e-07 2792 -136434.235024 -0.00126422250316 0.43 8.76338000871e-07 2792 -138905.103259 -0.00126422250316 0.46 8.76338000871e-07 2792 -141727.521982 -0.00126422250316 0.49 8.76338000871e-07 2792 -144914.549745 -0.00126422250316 0.52 8.76338000871e-07 2792 -148483.121826 -0.00126422250316 0.55 8.76338000871e-07 2792 -152455.481533 -0.00126422250316 0.58 8.76338000871e-07 2792 -156859.950309 -0.00126422250316 0.61 8.76338000871e-07 2792 -161731.131248 -0.00126422250316 0.64 8.76338000871e-07 2792 -167111.880965 -0.00126422250316 0.67 8.76338000871e-07 2792 -173054.885557 -0.00126422250316 0.7 8.76338000871e-07 2792 -179626.054453 -0.00126422250316 0.73 8.76338000871e-07 2792 -186908.248131 -0.00126422250316 0.76 8.76338000871e-07 2792 -195007.467909 -0.00126422250316 0.79 8.76338000871e-07 2792 -204062.339971 -0.00126422250316 0.82 8.76338000871e-07 2792 -214258.912025 -0.00126422250316 0.85 8.76338000871e-07 2792 -225856.035372 -0.00126422250316 0.88 8.76338000871e-07 2792 -239231.991245 -0.00124843945069 0.01 2.12493132733e-06 6770 -148274.216781 -0.00124843945069 0.04 1.13402908207e-06 3613 -142127.690155 -0.00124843945069 0.07 9.05214467949e-07 2884 -136386.300559 -0.00124843945069 0.1 8.81673869788e-07 2809 -132984.058496 -0.00124843945069 0.13 8.76338000871e-07 2792 -130886.325714 -0.00124843945069 0.16 8.76338000871e-07 2792 -129640.177292 -0.00124843945069 0.19 8.76338000871e-07 2792 -129024.705466 -0.00124843945069 0.22 8.76338000871e-07 2792 -128917.414597 -0.00124843945069 0.25 8.76338000871e-07 2792 -129245.750268 -0.00124843945069 0.28 8.76338000871e-07 2792 -129965.679485 -0.00124843945069 0.31 8.76338000871e-07 2792 -131049.388073 -0.00124843945069 0.34 8.76338000871e-07 2792 -132480.893453 -0.00124843945069 0.37 8.76338000871e-07 2792 -134252.032353 -0.00124843945069 0.4 8.76338000871e-07 2792 -136361.24493 -0.00124843945069 0.43 8.76338000871e-07 2792 -138811.479755 -0.00124843945069 0.46 8.76338000871e-07 2792 -141610.841067 -0.00124843945069 0.49 8.76338000871e-07 2792 -144772.259105 -0.00124843945069 0.52 8.76338000871e-07 2792 -148312.522449 -0.00124843945069 0.55 8.76338000871e-07 2792 -152253.458021 -0.00124843945069 0.58 8.76338000871e-07 2792 -156622.791801 -0.00124843945069 0.61 8.76338000871e-07 2792 -161454.793724 -0.00124843945069 0.64 8.76338000871e-07 2792 -166791.63199 -0.00124843945069 0.67 8.76338000871e-07 2792 -172685.208046 -0.00124843945069 0.7 8.76338000871e-07 2792 -179200.294176 -0.00124843945069 0.73 8.76338000871e-07 2792 -186418.455493 -0.00124843945069 0.76 8.76338000871e-07 2792 -194443.859166 -0.00124843945069 0.79 8.76338000871e-07 2792 -203412.50052 -0.00124843945069 0.82 8.76338000871e-07 2792 -213506.861899 -0.00124843945069 0.85 8.76338000871e-07 2792 -224980.348268 -0.00124843945069 0.88 8.76338000871e-07 2792 -238202.428574 -0.00123304562269 0.01 2.1239897034e-06 6767 -148303.098326 -0.00123304562269 0.04 1.13654007921e-06 3621 -142178.308363 -0.00123304562269 0.07 9.04586718665e-07 2882 -136433.471965 -0.00123304562269 0.1 8.81359995146e-07 2808 -133025.690871 -0.00123304562269 0.13 8.76338000871e-07 2792 -130922.260517 -0.00123304562269 0.16 8.76338000871e-07 2792 -129669.793285 -0.00123304562269 0.19 8.76338000871e-07 2792 -129046.635894 -0.00123304562269 0.22 8.76338000871e-07 2792 -128930.425078 -0.00123304562269 0.25 8.76338000871e-07 2792 -129248.392329 -0.00123304562269 0.28 8.76338000871e-07 2792 -129956.670646 -0.00123304562269 0.31 8.76338000871e-07 2792 -131027.204885 -0.00123304562269 0.34 8.76338000871e-07 2792 -132443.82264 -0.00123304562269 0.37 8.76338000871e-07 2792 -134198.418725 -0.00123304562269 0.4 8.76338000871e-07 2792 -136289.215307 -0.00123304562269 0.43 8.76338000871e-07 2792 -138719.017327 -0.00123304562269 0.46 8.76338000871e-07 2792 -141495.639405 -0.00123304562269 0.49 8.76338000871e-07 2792 -144631.695237 -0.00123304562269 0.52 8.76338000871e-07 2792 -148143.981275 -0.00123304562269 0.55 8.76338000871e-07 2792 -152053.826307 -0.00123304562269 0.58 8.76338000871e-07 2792 -156388.4639 -0.00123304562269 0.61 8.76338000871e-07 2792 -161181.765655 -0.00123304562269 0.64 8.76338000871e-07 2792 -166475.163527 -0.00123304562269 0.67 8.76338000871e-07 2792 -172319.921687 -0.00123304562269 0.7 8.76338000871e-07 2792 -178779.670781 -0.00123304562269 0.73 8.76338000871e-07 2792 -185934.644989 -0.00123304562269 0.76 8.76338000871e-07 2792 -193887.22292 -0.00123304562269 0.79 8.76338000871e-07 2792 -202770.884258 -0.00123304562269 0.82 8.76338000871e-07 2792 -212764.550511 -0.00123304562269 0.85 8.76338000871e-07 2792 -224116.353617 -0.00123304562269 0.88 8.76338000871e-07 2792 -237187.173408 -0.00121802679659 0.01 2.12179258091e-06 6760 -148331.896982 -0.00121802679659 0.04 1.1431314467e-06 3642 -142228.680041 -0.00121802679659 0.07 9.03331220096e-07 2878 -136480.564836 -0.00121802679659 0.1 8.81046120504e-07 2807 -133067.287133 -0.00121802679659 0.13 8.76338000871e-07 2792 -130958.233571 -0.00121802679659 0.16 8.76338000871e-07 2792 -129699.518706 -0.00121802679659 0.19 8.76338000871e-07 2792 -129068.663572 -0.00121802679659 0.22 8.76338000871e-07 2792 -128943.59736 -0.00121802679659 0.25 8.76338000871e-07 2792 -129251.356245 -0.00121802679659 0.28 8.76338000871e-07 2792 -129948.027801 -0.00121802679659 0.31 8.76338000871e-07 2792 -131005.468559 -0.00121802679659 0.34 8.76338000871e-07 2792 -132407.38493 -0.00121802679659 0.37 8.76338000871e-07 2792 -134145.651692 -0.00121802679659 0.4 8.76338000871e-07 2792 -136218.123348 -0.00121802679659 0.43 8.76338000871e-07 2792 -138627.702037 -0.00121802679659 0.46 8.76338000871e-07 2792 -141381.867168 -0.00121802679659 0.49 8.76338000871e-07 2792 -144492.84622 -0.00121802679659 0.52 8.76338000871e-07 2792 -147977.414345 -0.00121802679659 0.55 8.76338000871e-07 2792 -151856.55017 -0.00121802679659 0.58 8.76338000871e-07 2792 -156156.935012 -0.00121802679659 0.61 8.76338000871e-07 2792 -160911.965192 -0.00121802679659 0.64 8.76338000871e-07 2792 -166162.465035 -0.00121802679659 0.67 8.76338000871e-07 2792 -171959.004926 -0.00121802679659 0.7 8.76338000871e-07 2792 -178364.130386 -0.00121802679659 0.73 8.76338000871e-07 2792 -185456.731633 -0.00121802679659 0.76 8.76338000871e-07 2792 -193337.462473 -0.00121802679659 0.79 8.76338000871e-07 2792 -202137.381658 -0.00121802679659 0.82 8.76338000871e-07 2792 -212031.853594 -0.00121802679659 0.85 8.76338000871e-07 2792 -223263.864495 -0.00121802679659 0.88 8.76338000871e-07 2792 -236186.015684 -0.00120336943442 0.01 2.11990933305e-06 6754 -148360.592082 -0.00120336943442 0.04 1.14972281418e-06 3663 -142278.759985 -0.00120336943442 0.07 9.02075721527e-07 2874 -136527.545137 -0.00120336943442 0.1 8.80732245861e-07 2806 -133108.857376 -0.00120336943442 0.13 8.76338000871e-07 2792 -130994.205752 -0.00120336943442 0.16 8.76338000871e-07 2792 -129729.241768 -0.00120336943442 0.19 8.76338000871e-07 2792 -129090.817881 -0.00120336943442 0.22 8.76338000871e-07 2792 -128956.90077 -0.00120336943442 0.25 8.76338000871e-07 2792 -129254.614797 -0.00120336943442 0.28 8.76338000871e-07 2792 -129939.720979 -0.00120336943442 0.31 8.76338000871e-07 2792 -130984.220759 -0.00120336943442 0.34 8.76338000871e-07 2792 -132371.620326 -0.00120336943442 0.37 8.76338000871e-07 2792 -134093.690256 -0.00120336943442 0.4 8.76338000871e-07 2792 -136147.994714 -0.00120336943442 0.43 8.76338000871e-07 2792 -138537.564612 -0.00120336943442 0.46 8.76338000871e-07 2792 -141269.527191 -0.00120336943442 0.49 8.76338000871e-07 2792 -144355.756445 -0.00120336943442 0.52 8.76338000871e-07 2792 -147812.852951 -0.00120336943442 0.55 8.76338000871e-07 2792 -151661.577674 -0.00120336943442 0.58 8.76338000871e-07 2792 -155928.154111 -0.00120336943442 0.61 8.76338000871e-07 2792 -160645.336683 -0.00120336943442 0.64 8.76338000871e-07 2792 -165853.512778 -0.00120336943442 0.67 8.76338000871e-07 2792 -171602.361756 -0.00120336943442 0.7 8.76338000871e-07 2792 -177953.571909 -0.00120336943442 0.73 8.76338000871e-07 2792 -184984.629376 -0.00120336943442 0.76 8.76338000871e-07 2792 -192794.494772 -0.00120336943442 0.79 8.76338000871e-07 2792 -201511.851646 -0.00120336943442 0.82 8.76338000871e-07 2792 -211308.621561 -0.00120336943442 0.85 8.76338000871e-07 2792 -222422.721056 -0.00120336943442 0.88 8.76338000871e-07 2792 -235198.718958 -0.00118906064209 0.01 2.11865383448e-06 6750 -148389.20324 -0.00118906064209 0.04 1.15600030702e-06 3683 -142328.536871 -0.00118906064209 0.07 9.02075721527e-07 2874 -136574.483848 -0.00118906064209 0.1 8.79790621935e-07 2803 -133150.414749 -0.00118906064209 0.13 8.76338000871e-07 2792 -131030.152672 -0.00118906064209 0.16 8.76338000871e-07 2792 -129758.977891 -0.00118906064209 0.19 8.76338000871e-07 2792 -129113.072881 -0.00118906064209 0.22 8.76338000871e-07 2792 -128970.348754 -0.00118906064209 0.25 8.76338000871e-07 2792 -129258.113471 -0.00118906064209 0.28 8.76338000871e-07 2792 -129931.715614 -0.00118906064209 0.31 8.76338000871e-07 2792 -130963.428878 -0.00118906064209 0.34 8.76338000871e-07 2792 -132336.467603 -0.00118906064209 0.37 8.76338000871e-07 2792 -134042.42602 -0.00118906064209 0.4 8.76338000871e-07 2792 -136078.804282 -0.00118906064209 0.43 8.76338000871e-07 2792 -138448.553077 -0.00118906064209 0.46 8.76338000871e-07 2792 -141158.548764 -0.00118906064209 0.49 8.76338000871e-07 2792 -144220.349848 -0.00118906064209 0.52 8.76338000871e-07 2792 -147650.248449 -0.00118906064209 0.55 8.76338000871e-07 2792 -151468.919957 -0.00118906064209 0.58 8.76338000871e-07 2792 -155702.064542 -0.00118906064209 0.61 8.76338000871e-07 2792 -160381.875824 -0.00118906064209 0.64 8.76338000871e-07 2792 -165548.224552 -0.00118906064209 0.67 8.76338000871e-07 2792 -171249.961144 -0.00118906064209 0.7 8.76338000871e-07 2792 -177547.931559 -0.00118906064209 0.73 8.76338000871e-07 2792 -184518.268686 -0.00118906064209 0.76 8.76338000871e-07 2792 -192258.225418 -0.00118906064209 0.79 8.76338000871e-07 2792 -200894.172849 -0.00118906064209 0.82 8.76338000871e-07 2792 -210594.722211 -0.00118906064209 0.85 8.76338000871e-07 2792 -221592.76623 -0.00118906064209 0.88 8.76338000871e-07 2792 -234225.05674 -0.00117508813161 0.01 2.11708446127e-06 6745 -148417.723679 -0.00117508813161 0.04 1.15976680273e-06 3695 -142378.042517 -0.00117508813161 0.07 9.02075721527e-07 2874 -136621.352945 -0.00117508813161 0.1 8.79476747293e-07 2802 -133191.922722 -0.00117508813161 0.13 8.76338000871e-07 2792 -131066.151386 -0.00117508813161 0.16 8.76338000871e-07 2792 -129788.740284 -0.00117508813161 0.19 8.76338000871e-07 2792 -129135.35852 -0.00117508813161 0.22 8.76338000871e-07 2792 -128983.924342 -0.00117508813161 0.25 8.76338000871e-07 2792 -129261.828177 -0.00117508813161 0.28 8.76338000871e-07 2792 -129924.036152 -0.00117508813161 0.31 8.76338000871e-07 2792 -130943.054592 -0.00117508813161 0.34 8.76338000871e-07 2792 -132301.882968 -0.00117508813161 0.37 8.76338000871e-07 2792 -133991.864627 -0.00117508813161 0.4 8.76338000871e-07 2792 -136010.564677 -0.00117508813161 0.43 8.76338000871e-07 2792 -138360.661666 -0.00117508813161 0.46 8.76338000871e-07 2792 -141048.897265 -0.00117508813161 0.49 8.76338000871e-07 2792 -144086.580327 -0.00117508813161 0.52 8.76338000871e-07 2792 -147489.584793 -0.00117508813161 0.55 8.76338000871e-07 2792 -151278.497104 -0.00117508813161 0.58 8.76338000871e-07 2792 -155478.605148 -0.00117508813161 0.61 8.76338000871e-07 2792 -160121.53602 -0.00117508813161 0.64 8.76338000871e-07 2792 -165246.523875 -0.00117508813161 0.67 8.76338000871e-07 2792 -170901.769712 -0.00117508813161 0.7 8.76338000871e-07 2792 -177147.145228 -0.00117508813161 0.73 8.76338000871e-07 2792 -184057.562038 -0.00117508813161 0.76 8.76338000871e-07 2792 -191728.553577 -0.00117508813161 0.79 8.76338000871e-07 2792 -200284.2451 -0.00117508813161 0.82 8.76338000871e-07 2792 -209890.001137 -0.00117508813161 0.85 8.76338000871e-07 2792 -220773.822206 -0.00117508813161 0.88 8.76338000871e-07 2792 -233264.822557 -0.00116144018583 0.01 2.11488733878e-06 6738 -148446.13546 -0.00116144018583 0.04 1.17797153197e-06 3753 -142427.138869 -0.00116144018583 0.07 9.01134097601e-07 2871 -136668.125157 -0.00116144018583 0.1 8.79476747293e-07 2802 -133233.425536 -0.00116144018583 0.13 8.76338000871e-07 2792 -131102.153019 -0.00116144018583 0.16 8.76338000871e-07 2792 -129818.538994 -0.00116144018583 0.19 8.76338000871e-07 2792 -129157.700703 -0.00116144018583 0.22 8.76338000871e-07 2792 -128997.666864 -0.00116144018583 0.25 8.76338000871e-07 2792 -129265.750593 -0.00116144018583 0.28 8.76338000871e-07 2792 -129916.698485 -0.00116144018583 0.31 8.76338000871e-07 2792 -130923.163555 -0.00116144018583 0.34 8.76338000871e-07 2792 -132267.852463 -0.00116144018583 0.37 8.76338000871e-07 2792 -133942.058014 -0.00116144018583 0.4 8.76338000871e-07 2792 -135943.304174 -0.00116144018583 0.43 8.76338000871e-07 2792 -138273.87445 -0.00116144018583 0.46 8.76338000871e-07 2792 -140940.602251 -0.00116144018583 0.49 8.76338000871e-07 2792 -143954.442528 -0.00116144018583 0.52 8.76338000871e-07 2792 -147330.89834 -0.00116144018583 0.55 8.76338000871e-07 2792 -151090.33492 -0.00116144018583 0.58 8.76338000871e-07 2792 -155257.751447 -0.00116144018583 0.61 8.76338000871e-07 2792 -159864.250571 -0.00116144018583 0.64 8.76338000871e-07 2792 -164948.376526 -0.00116144018583 0.67 8.76338000871e-07 2792 -170557.727901 -0.00116144018583 0.7 8.76338000871e-07 2792 -176751.130509 -0.00116144018583 0.73 8.76338000871e-07 2792 -183602.414493 -0.00116144018583 0.76 8.76338000871e-07 2792 -191205.392061 -0.00116144018583 0.79 8.76338000871e-07 2792 -199681.961585 -0.00116144018583 0.82 8.76338000871e-07 2792 -209194.308944 -0.00116144018583 0.85 8.76338000871e-07 2792 -219965.726285 -0.00116144018583 0.88 8.76338000871e-07 2792 -232317.814436 -0.00114810562572 0.01 2.11143471772e-06 6727 -148474.41037 -0.00114810562572 0.04 1.1908403923e-06 3794 -142475.762627 -0.00114810562572 0.07 9.00820222959e-07 2870 -136714.733084 -0.00114810562572 0.1 8.78848998009e-07 2800 -133274.8848 -0.00114810562572 0.13 8.76338000871e-07 2792 -131138.07787 -0.00114810562572 0.16 8.76338000871e-07 2792 -129848.275504 -0.00114810562572 0.19 8.76338000871e-07 2792 -129180.138374 -0.00114810562572 0.22 8.76338000871e-07 2792 -129011.568315 -0.00114810562572 0.25 8.76338000871e-07 2792 -129269.897222 -0.00114810562572 0.28 8.76338000871e-07 2792 -129909.752422 -0.00114810562572 0.31 8.76338000871e-07 2792 -130903.687109 -0.00114810562572 0.34 8.76338000871e-07 2792 -132234.402676 -0.00114810562572 0.37 8.76338000871e-07 2792 -133893.036899 -0.00114810562572 0.4 8.76338000871e-07 2792 -135876.961453 -0.00114810562572 0.43 8.76338000871e-07 2792 -138188.18239 -0.00114810562572 0.46 8.76338000871e-07 2792 -140833.625409 -0.00114810562572 0.49 8.76338000871e-07 2792 -143823.87221 -0.00114810562572 0.52 8.76338000871e-07 2792 -147174.116438 -0.00114810562572 0.55 8.76338000871e-07 2792 -150904.378625 -0.00114810562572 0.58 8.76338000871e-07 2792 -155039.488391 -0.00114810562572 0.61 8.76338000871e-07 2792 -159609.980526 -0.00114810562572 0.64 8.76338000871e-07 2792 -164653.754855 -0.00114810562572 0.67 8.76338000871e-07 2792 -170217.751837 -0.00114810562572 0.7 8.76338000871e-07 2792 -176359.852862 -0.00114810562572 0.73 8.76338000871e-07 2792 -183152.765202 -0.00114810562572 0.76 8.76338000871e-07 2792 -190688.657462 -0.00114810562572 0.79 8.76338000871e-07 2792 -199087.201545 -0.00114810562572 0.82 8.76338000871e-07 2792 -208507.525374 -0.00114810562572 0.85 8.76338000871e-07 2792 -219168.30228 -0.00114810562572 0.88 8.76338000871e-07 2792 -231383.815576 -0.0011350737798 0.01 2.11112084307e-06 6726 -148502.575868 -0.0011350737798 0.04 1.20684799905e-06 3845 -142523.902086 -0.0011350737798 0.07 8.99878599032e-07 2867 -136761.20994 -0.0011350737798 0.1 8.78848998009e-07 2800 -133316.296804 -0.0011350737798 0.13 8.76338000871e-07 2792 -131173.94617 -0.0011350737798 0.16 8.76338000871e-07 2792 -129877.975562 -0.0011350737798 0.19 8.76338000871e-07 2792 -129202.681882 -0.0011350737798 0.22 8.76338000871e-07 2792 -129025.618596 -0.0011350737798 0.25 8.76338000871e-07 2792 -129274.240286 -0.0011350737798 0.28 8.76338000871e-07 2792 -129903.150568 -0.0011350737798 0.31 8.76338000871e-07 2792 -130884.639348 -0.0011350737798 0.34 8.76338000871e-07 2792 -132201.531505 -0.0011350737798 0.37 8.76338000871e-07 2792 -133844.738822 -0.0011350737798 0.4 8.76338000871e-07 2792 -135811.43359 -0.0011350737798 0.43 8.76338000871e-07 2792 -138103.590431 -0.0011350737798 0.46 8.76338000871e-07 2792 -140727.947982 -0.0011350737798 0.49 8.76338000871e-07 2792 -143694.838353 -0.0011350737798 0.52 8.76338000871e-07 2792 -147019.193192 -0.0011350737798 0.55 8.76338000871e-07 2792 -150720.60887 -0.0011350737798 0.58 8.76338000871e-07 2792 -154823.74169 -0.0011350737798 0.61 8.76338000871e-07 2792 -159358.643884 -0.0011350737798 0.64 8.76338000871e-07 2792 -164362.609496 -0.0011350737798 0.67 8.76338000871e-07 2792 -169881.772703 -0.0011350737798 0.7 8.76338000871e-07 2792 -175973.264517 -0.0011350737798 0.73 8.76338000871e-07 2792 -182708.512055 -0.0011350737798 0.76 8.76338000871e-07 2792 -190178.224805 -0.0011350737798 0.79 8.76338000871e-07 2792 -198499.862796 -0.0011350737798 0.82 8.76338000871e-07 2792 -207829.5231 -0.0011350737798 0.85 8.76338000871e-07 2792 -218381.370594 -0.0011350737798 0.88 8.76338000871e-07 2792 -230462.621152 -0.00112233445567 0.01 2.10955146986e-06 6721 -148530.660339 -0.00112233445567 0.04 1.22724985079e-06 3910 -142571.522126 -0.00112233445567 0.07 8.99878599032e-07 2867 -136807.600729 -0.00112233445567 0.1 8.78848998009e-07 2800 -133357.59837 -0.00112233445567 0.13 8.76338000871e-07 2792 -131209.784693 -0.00112233445567 0.16 8.76338000871e-07 2792 -129907.71029 -0.00112233445567 0.19 8.76338000871e-07 2792 -129225.311656 -0.00112233445567 0.22 8.76338000871e-07 2792 -129039.817822 -0.00112233445567 0.25 8.76338000871e-07 2792 -129278.774246 -0.00112233445567 0.28 8.76338000871e-07 2792 -129896.862974 -0.00112233445567 0.31 8.76338000871e-07 2792 -130865.978615 -0.00112233445567 0.34 8.76338000871e-07 2792 -132169.173668 -0.00112233445567 0.37 8.76338000871e-07 2792 -133797.128832 -0.00112233445567 0.4 8.76338000871e-07 2792 -135746.766823 -0.00112233445567 0.43 8.76338000871e-07 2792 -138020.111837 -0.00112233445567 0.46 8.76338000871e-07 2792 -140623.535523 -0.00112233445567 0.49 8.76338000871e-07 2792 -143567.345914 -0.00112233445567 0.52 8.76338000871e-07 2792 -146866.113145 -0.00112233445567 0.55 8.76338000871e-07 2792 -150539.052546 -0.00112233445567 0.58 8.76338000871e-07 2792 -154610.52863 -0.00112233445567 0.61 8.76338000871e-07 2792 -159110.239515 -0.00112233445567 0.64 8.76338000871e-07 2792 -164074.858796 -0.00112233445567 0.67 8.76338000871e-07 2792 -169549.766264 -0.00112233445567 0.7 8.76338000871e-07 2792 -175591.276594 -0.00112233445567 0.73 8.76338000871e-07 2792 -182269.605305 -0.00112233445567 0.76 8.76338000871e-07 2792 -189674.029241 -0.00112233445567 0.79 8.76338000871e-07 2792 -197919.846708 -0.00112233445567 0.82 8.76338000871e-07 2792 -207160.163325 -0.00112233445567 0.85 8.76338000871e-07 2792 -217604.782464 -0.00112233445567 0.88 8.76338000871e-07 2792 -229554.020258 -0.00110987791343 0.01 2.10923759522e-06 6720 -148558.653115 -0.00110987791343 0.04 1.24200195897e-06 3957 -142618.503997 -0.00110987791343 0.07 8.98623100464e-07 2863 -136853.898044 -0.00110987791343 0.1 8.78535123366e-07 2799 -133398.873529 -0.00110987791343 0.13 8.76338000871e-07 2792 -131245.639527 -0.00110987791343 0.16 8.76338000871e-07 2792 -129937.455876 -0.00110987791343 0.19 8.76338000871e-07 2792 -129247.966189 -0.00110987791343 0.22 8.76338000871e-07 2792 -129054.153873 -0.00110987791343 0.25 8.76338000871e-07 2792 -129283.518784 -0.00110987791343 0.28 8.76338000871e-07 2792 -129890.862101 -0.00110987791343 0.31 8.76338000871e-07 2792 -130847.740401 -0.00110987791343 0.34 8.76338000871e-07 2792 -132137.394568 -0.00110987791343 0.37 8.76338000871e-07 2792 -133750.192898 -0.00110987791343 0.4 8.76338000871e-07 2792 -135682.983388 -0.00110987791343 0.43 8.76338000871e-07 2792 -137937.73635 -0.00110987791343 0.46 8.76338000871e-07 2792 -140520.410261 -0.00110987791343 0.49 8.76338000871e-07 2792 -143441.37479 -0.00110987791343 0.52 8.76338000871e-07 2792 -146714.829812 -0.00110987791343 0.55 8.76338000871e-07 2792 -150359.639475 -0.00110987791343 0.58 8.76338000871e-07 2792 -154399.793245 -0.00110987791343 0.61 8.76338000871e-07 2792 -158864.718073 -0.00110987791343 0.64 8.76338000871e-07 2792 -163790.465581 -0.00110987791343 0.67 8.76338000871e-07 2792 -169221.675088 -0.00110987791343 0.7 8.76338000871e-07 2792 -175213.807852 -0.00110987791343 0.73 8.76338000871e-07 2792 -181835.984512 -0.00110987791343 0.76 8.76338000871e-07 2792 -189175.96523 -0.00110987791343 0.79 8.76338000871e-07 2792 -197347.024387 -0.00110987791343 0.82 8.76338000871e-07 2792 -206499.320046 -0.00110987791343 0.85 8.76338000871e-07 2792 -216838.381295 -0.00110987791343 0.88 8.76338000871e-07 2792 -228657.796099 -0.00109769484083 0.01 2.10735434737e-06 6714 -148586.558389 -0.00109769484083 0.04 1.40804164467e-06 4486 -142663.023494 -0.00109769484083 0.07 8.98623100464e-07 2863 -136900.066827 -0.00109769484083 0.1 8.78221248724e-07 2798 -133440.030853 -0.00109769484083 0.13 8.76338000871e-07 2792 -131281.456662 -0.00109769484083 0.16 8.76338000871e-07 2792 -129967.186141 -0.00109769484083 0.19 8.76338000871e-07 2792 -129270.657759 -0.00109769484083 0.22 8.76338000871e-07 2792 -129068.570821 -0.00109769484083 0.25 8.76338000871e-07 2792 -129288.453843 -0.00109769484083 0.28 8.76338000871e-07 2792 -129885.142517 -0.00109769484083 0.31 8.76338000871e-07 2792 -130829.936807 -0.00109769484083 0.34 8.76338000871e-07 2792 -132106.141557 -0.00109769484083 0.37 8.76338000871e-07 2792 -133703.944792 -0.00109769484083 0.4 8.76338000871e-07 2792 -135620.111262 -0.00109769484083 0.43 8.76338000871e-07 2792 -137856.389745 -0.00109769484083 0.46 8.76338000871e-07 2792 -140418.540685 -0.00109769484083 0.49 8.76338000871e-07 2792 -143316.886415 -0.00109769484083 0.52 8.76338000871e-07 2792 -146565.301983 -0.00109769484083 0.55 8.76338000871e-07 2792 -150182.322969 -0.00109769484083 0.58 8.76338000871e-07 2792 -154191.509365 -0.00109769484083 0.61 8.76338000871e-07 2792 -158622.026005 -0.00109769484083 0.64 8.76338000871e-07 2792 -163509.354234 -0.00109769484083 0.67 8.76338000871e-07 2792 -168897.438921 -0.00109769484083 0.7 8.76338000871e-07 2792 -174840.798687 -0.00109769484083 0.73 8.76338000871e-07 2792 -181407.571398 -0.00109769484083 0.76 8.76338000871e-07 2792 -188683.946742 -0.00109769484083 0.79 8.76338000871e-07 2792 -196781.2946 -0.00109769484083 0.82 8.76338000871e-07 2792 -205846.872199 -0.00109769484083 0.85 8.76338000871e-07 2792 -216082.006443 -0.00109769484083 0.88 8.76338000871e-07 2792 -227773.75831 -0.00108577633008 0.01 2.10578497416e-06 6709 -148614.347466 -0.00108577633008 0.04 2.03327993182e-06 6478 -142575.313846 -0.00108577633008 0.07 8.97995351179e-07 2861 -136946.142508 -0.00108577633008 0.1 8.78221248724e-07 2798 -133481.122942 -0.00108577633008 0.13 8.76338000871e-07 2792 -131317.2436 -0.00108577633008 0.16 8.76338000871e-07 2792 -129996.920703 -0.00108577633008 0.19 8.76338000871e-07 2792 -129293.407879 -0.00108577633008 0.22 8.76338000871e-07 2792 -129083.090531 -0.00108577633008 0.25 8.76338000871e-07 2792 -129293.619775 -0.00108577633008 0.28 8.76338000871e-07 2792 -129879.719893 -0.00108577633008 0.31 8.76338000871e-07 2792 -130812.593317 -0.00108577633008 0.34 8.76338000871e-07 2792 -132075.422699 -0.00108577633008 0.37 8.76338000871e-07 2792 -133658.390882 -0.00108577633008 0.4 8.76338000871e-07 2792 -135558.078854 -0.00108577633008 0.43 8.76338000871e-07 2792 -137776.016108 -0.00108577633008 0.46 8.76338000871e-07 2792 -140317.928756 -0.00108577633008 0.49 8.76338000871e-07 2792 -143193.870902 -0.00108577633008 0.52 8.76338000871e-07 2792 -146417.510654 -0.00108577633008 0.55 8.76338000871e-07 2792 -150007.077766 -0.00108577633008 0.58 8.76338000871e-07 2792 -153985.695183 -0.00108577633008 0.61 8.76338000871e-07 2792 -158382.157898 -0.00108577633008 0.64 8.76338000871e-07 2792 -163231.51917 -0.00108577633008 0.67 8.76338000871e-07 2792 -168576.990343 -0.00108577633008 0.7 8.76338000871e-07 2792 -174472.209319 -0.00108577633008 0.73 8.76338000871e-07 2792 -180984.274331 -0.00108577633008 0.76 8.76338000871e-07 2792 -188197.906448 -0.00108577633008 0.79 8.76338000871e-07 2792 -196222.559606 -0.00108577633008 0.82 8.76338000871e-07 2792 -205202.684802 -0.00108577633008 0.85 8.76338000871e-07 2792 -215335.501514 -0.00108577633008 0.88 8.76338000871e-07 2792 -226901.712761 -0.00107411385607 0.01 2.10515722487e-06 6707 -148642.038696 -0.00107411385607 0.04 2.03327993182e-06 6478 -142597.751319 -0.00107411385607 0.07 8.97681476537e-07 2860 -136992.103648 -0.00107411385607 0.1 8.77907374082e-07 2797 -133522.143723 -0.00107411385607 0.13 8.76338000871e-07 2792 -131353.039551 -0.00107411385607 0.16 8.76338000871e-07 2792 -130026.702825 -0.00107411385607 0.19 8.76338000871e-07 2792 -129316.213805 -0.00107411385607 0.22 8.76338000871e-07 2792 -129097.741484 -0.00107411385607 0.25 8.76338000871e-07 2792 -129298.976482 -0.00107411385607 0.28 8.76338000871e-07 2792 -129874.569158 -0.00107411385607 0.31 8.76338000871e-07 2792 -130795.666006 -0.00107411385607 0.34 8.76338000871e-07 2792 -132045.195964 -0.00107411385607 0.37 8.76338000871e-07 2792 -133613.478075 -0.00107411385607 0.4 8.76338000871e-07 2792 -135496.864678 -0.00107411385607 0.43 8.76338000871e-07 2792 -137696.652937 -0.00107411385607 0.46 8.76338000871e-07 2792 -140218.592183 -0.00107411385607 0.49 8.76338000871e-07 2792 -143072.316057 -0.00107411385607 0.52 8.76338000871e-07 2792 -146271.459802 -0.00107411385607 0.55 8.76338000871e-07 2792 -149833.873181 -0.00107411385607 0.58 8.76338000871e-07 2792 -153782.281473 -0.00107411385607 0.61 8.76338000871e-07 2792 -158145.062989 -0.00107411385607 0.64 8.76338000871e-07 2792 -162956.887762 -0.00107411385607 0.67 8.76338000871e-07 2792 -168260.26932 -0.00107411385607 0.7 8.76338000871e-07 2792 -174107.974034 -0.00107411385607 0.73 8.76338000871e-07 2792 -180566.009569 -0.00107411385607 0.76 8.76338000871e-07 2792 -187717.769679 -0.00107411385607 0.79 8.76338000871e-07 2792 -195670.701954 -0.00107411385607 0.82 8.76338000871e-07 2792 -204566.626681 -0.00107411385607 0.85 8.76338000871e-07 2792 -214598.716605 -0.00107411385607 0.88 8.76338000871e-07 2792 -226041.463808 -0.00106269925611 0.01 2.1039017263e-06 6703 -148669.641207 -0.00106269925611 0.04 2.03327993182e-06 6478 -142620.218919 -0.00106269925611 0.07 8.97053727253e-07 2858 -137037.927873 -0.00106269925611 0.1 8.7759349944e-07 2796 -133563.06802 -0.00106269925611 0.13 8.76338000871e-07 2792 -131388.816379 -0.00106269925611 0.16 8.76338000871e-07 2792 -130056.477828 -0.00106269925611 0.19 8.76338000871e-07 2792 -129338.991537 -0.00106269925611 0.22 8.76338000871e-07 2792 -129112.528748 -0.00106269925611 0.25 8.76338000871e-07 2792 -129304.547674 -0.00106269925611 0.28 8.76338000871e-07 2792 -129869.679533 -0.00106269925611 0.31 8.76338000871e-07 2792 -130779.135486 -0.00106269925611 0.34 8.76338000871e-07 2792 -132015.475872 -0.00106269925611 0.37 8.76338000871e-07 2792 -133569.230734 -0.00106269925611 0.4 8.76338000871e-07 2792 -135436.451026 -0.00106269925611 0.43 8.76338000871e-07 2792 -137618.312958 -0.00106269925611 0.46 8.76338000871e-07 2792 -140120.48721 -0.00106269925611 0.49 8.76338000871e-07 2792 -142952.197024 -0.00106269925611 0.52 8.76338000871e-07 2792 -146127.101726 -0.00106269925611 0.55 8.76338000871e-07 2792 -149662.653796 -0.00106269925611 0.58 8.76338000871e-07 2792 -153581.2193 -0.00106269925611 0.61 8.76338000871e-07 2792 -157910.708076 -0.00106269925611 0.64 8.76338000871e-07 2792 -162685.427312 -0.00106269925611 0.67 8.76338000871e-07 2792 -167947.213946 -0.00106269925611 0.7 8.76338000871e-07 2792 -173748.015911 -0.00106269925611 0.73 8.76338000871e-07 2792 -180152.728027 -0.00106269925611 0.76 8.76338000871e-07 2792 -187243.433933 -0.00106269925611 0.79 8.76338000871e-07 2792 -195125.640609 -0.00106269925611 0.82 8.76338000871e-07 2792 -203938.587585 -0.00106269925611 0.85 8.76338000871e-07 2792 -213871.504483 -0.00106269925611 0.88 8.76338000871e-07 2792 -225192.818097 -0.00105152471083 0.01 2.10358785166e-06 6702 -148697.139003 -0.00105152471083 0.04 2.03327993182e-06 6478 -142642.710552 -0.00105152471083 0.07 8.97053727253e-07 2858 -137083.641139 -0.00105152471083 0.1 8.7759349944e-07 2796 -133603.930383 -0.00105152471083 0.13 8.76338000871e-07 2792 -131424.571908 -0.00105152471083 0.16 8.76338000871e-07 2792 -130086.196447 -0.00105152471083 0.19 8.76338000871e-07 2792 -129361.773589 -0.00105152471083 0.22 8.76338000871e-07 2792 -129127.460721 -0.00105152471083 0.25 8.76338000871e-07 2792 -129310.323024 -0.00105152471083 0.28 8.76338000871e-07 2792 -129865.0812 -0.00105152471083 0.31 8.76338000871e-07 2792 -130762.967107 -0.00105152471083 0.34 8.76338000871e-07 2792 -131986.273802 -0.00105152471083 0.37 8.76338000871e-07 2792 -133525.645544 -0.00105152471083 0.4 8.76338000871e-07 2792 -135376.845218 -0.00105152471083 0.43 8.76338000871e-07 2792 -137541.01743 -0.00105152471083 0.46 8.76338000871e-07 2792 -140023.542108 -0.00105152471083 0.49 8.76338000871e-07 2792 -142833.512859 -0.00105152471083 0.52 8.76338000871e-07 2792 -145984.422112 -0.00105152471083 0.55 8.76338000871e-07 2792 -149493.392763 -0.00105152471083 0.58 8.76338000871e-07 2792 -153382.478597 -0.00105152471083 0.61 8.76338000871e-07 2792 -157679.100003 -0.00105152471083 0.64 8.76338000871e-07 2792 -162417.105019 -0.00105152471083 0.67 8.76338000871e-07 2792 -167637.80469 -0.00105152471083 0.7 8.76338000871e-07 2792 -173392.278532 -0.00105152471083 0.73 8.76338000871e-07 2792 -179744.358705 -0.00105152471083 0.76 8.76338000871e-07 2792 -186774.80468 -0.00105152471083 0.79 8.76338000871e-07 2792 -194587.285683 -0.00105152471083 0.82 8.76338000871e-07 2792 -203318.430927 -0.00105152471083 0.85 8.76338000871e-07 2792 -213153.697829 -0.00105152471083 0.88 8.76338000871e-07 2792 -224355.589854 -0.00104058272633 0.01 2.10264622774e-06 6699 -148724.551079 -0.00104058272633 0.04 2.03327993182e-06 6478 -142665.22049 -0.00104058272633 0.07 8.97053727253e-07 2858 -137129.204583 -0.00104058272633 0.1 8.7759349944e-07 2796 -133644.739887 -0.00104058272633 0.13 8.76338000871e-07 2792 -131460.294169 -0.00104058272633 0.16 8.76338000871e-07 2792 -130115.879437 -0.00104058272633 0.19 8.76338000871e-07 2792 -129384.617436 -0.00104058272633 0.22 8.76338000871e-07 2792 -129142.462445 -0.00104058272633 0.25 8.76338000871e-07 2792 -129316.265809 -0.00104058272633 0.28 8.76338000871e-07 2792 -129860.729602 -0.00104058272633 0.31 8.76338000871e-07 2792 -130747.167602 -0.00104058272633 0.34 8.76338000871e-07 2792 -131957.61333 -0.00104058272633 0.37 8.76338000871e-07 2792 -133482.683535 -0.00104058272633 0.4 8.76338000871e-07 2792 -135318.055147 -0.00104058272633 0.43 8.76338000871e-07 2792 -137464.684919 -0.00104058272633 0.46 8.76338000871e-07 2792 -139927.7348 -0.00104058272633 0.49 8.76338000871e-07 2792 -142716.260944 -0.00104058272633 0.52 8.76338000871e-07 2792 -145843.38826 -0.00104058272633 0.55 8.76338000871e-07 2792 -149326.096298 -0.00104058272633 0.58 8.76338000871e-07 2792 -153186.032761 -0.00104058272633 0.61 8.76338000871e-07 2792 -157450.170181 -0.00104058272633 0.64 8.76338000871e-07 2792 -162151.877004 -0.00104058272633 0.67 8.76338000871e-07 2792 -167331.959021 -0.00104058272633 0.7 8.76338000871e-07 2792 -173040.678904 -0.00104058272633 0.73 8.76338000871e-07 2792 -179340.835253 -0.00104058272633 0.76 8.76338000871e-07 2792 -186311.799385 -0.00104058272633 0.79 8.76338000871e-07 2792 -194055.532546 -0.00104058272633 0.82 8.76338000871e-07 2792 -202706.048752 -0.00104058272633 0.85 8.76338000871e-07 2792 -212445.164942 -0.00104058272633 0.88 8.76338000871e-07 2792 -223529.5994 -0.0010298661174 0.01 2.10264622774e-06 6699 -148751.866405 -0.0010298661174 0.04 2.03327993182e-06 6478 -142687.743341 -0.0010298661174 0.07 8.97053727253e-07 2858 -137174.63889 -0.0010298661174 0.1 8.77279624798e-07 2795 -133685.435992 -0.0010298661174 0.13 8.76338000871e-07 2792 -131495.982201 -0.0010298661174 0.16 8.76338000871e-07 2792 -130145.538106 -0.0010298661174 0.19 8.76338000871e-07 2792 -129407.503804 -0.0010298661174 0.22 8.76338000871e-07 2792 -129157.551676 -0.0010298661174 0.25 8.76338000871e-07 2792 -129322.367215 -0.0010298661174 0.28 8.76338000871e-07 2792 -129856.668353 -0.0010298661174 0.31 8.76338000871e-07 2792 -130731.745533 -0.0010298661174 0.34 8.76338000871e-07 2792 -131929.486937 -0.0010298661174 0.37 8.76338000871e-07 2792 -133440.351475 -0.0010298661174 0.4 8.76338000871e-07 2792 -135260.035272 -0.0010298661174 0.43 8.76338000871e-07 2792 -137389.308654 -0.0010298661174 0.46 8.76338000871e-07 2792 -139833.09685 -0.0010298661174 0.49 8.76338000871e-07 2792 -142600.435303 -0.0010298661174 0.52 8.76338000871e-07 2792 -145704.000602 -0.0010298661174 0.55 8.76338000871e-07 2792 -149160.718527 -0.0010298661174 0.58 8.76338000871e-07 2792 -152991.820591 -0.0010298661174 0.61 8.76338000871e-07 2792 -157223.868109 -0.0010298661174 0.64 8.76338000871e-07 2792 -161889.702919 -0.0010298661174 0.67 8.76338000871e-07 2792 -167029.65158 -0.0010298661174 0.7 8.76338000871e-07 2792 -172693.171468 -0.0010298661174 0.73 8.76338000871e-07 2792 -178942.066112 -0.0010298661174 0.76 8.76338000871e-07 2792 -185854.355342 -0.0010298661174 0.79 8.76338000871e-07 2792 -193530.273362 -0.0010298661174 0.82 8.76338000871e-07 2792 -202101.331599 -0.0010298661174 0.85 8.76338000871e-07 2792 -211745.754475 -0.0010298661174 0.88 8.76338000871e-07 2792 -222714.649811 -0.00101936799185 0.01 2.10139072917e-06 6695 -148779.081133 -0.00101936799185 0.04 2.03327993182e-06 6478 -142710.274037 -0.00101936799185 0.07 8.96739852611e-07 2857 -137219.951478 -0.00101936799185 0.1 8.77279624798e-07 2795 -133726.054252 -0.00101936799185 0.13 8.76338000871e-07 2792 -131531.600983 -0.00101936799185 0.16 8.76338000871e-07 2792 -130175.218969 -0.00101936799185 0.19 8.76338000871e-07 2792 -129430.409607 -0.00101936799185 0.22 8.76338000871e-07 2792 -129172.739781 -0.00101936799185 0.25 8.76338000871e-07 2792 -129328.624721 -0.00101936799185 0.28 8.76338000871e-07 2792 -129852.885939 -0.00101936799185 0.31 8.76338000871e-07 2792 -130716.678283 -0.00101936799185 0.34 8.76338000871e-07 2792 -131901.853161 -0.00101936799185 0.37 8.76338000871e-07 2792 -133398.615569 -0.00101936799185 0.4 8.76338000871e-07 2792 -135202.787249 -0.00101936799185 0.43 8.76338000871e-07 2792 -137314.865473 -0.00101936799185 0.46 8.76338000871e-07 2792 -139739.628165 -0.00101936799185 0.49 8.76338000871e-07 2792 -142485.985119 -0.00101936799185 0.52 8.76338000871e-07 2792 -145566.231654 -0.00101936799185 0.55 8.76338000871e-07 2792 -148997.235126 -0.00101936799185 0.58 8.76338000871e-07 2792 -152799.809308 -0.00101936799185 0.61 8.76338000871e-07 2792 -157000.157437 -0.00101936799185 0.64 8.76338000871e-07 2792 -161630.577445 -0.00101936799185 0.67 8.76338000871e-07 2792 -166730.82861 -0.00101936799185 0.7 8.76338000871e-07 2792 -172349.713306 -0.00101936799185 0.73 8.76338000871e-07 2792 -178547.99296 -0.00101936799185 0.76 8.76338000871e-07 2792 -185402.389105 -0.00101936799185 0.79 8.76338000871e-07 2792 -193011.403508 -0.00101936799185 0.82 8.76338000871e-07 2792 -201504.171016 -0.00101936799185 0.85 8.76338000871e-07 2792 -211055.320201 -0.00101936799185 0.88 8.76338000871e-07 2792 -221910.566226 -0.00100908173562 0.01 2.09982135596e-06 6690 -148806.186628 -0.00100908173562 0.04 2.03327993182e-06 6478 -142732.807807 -0.00100908173562 0.07 8.95798228684e-07 2854 -137265.120639 -0.00100908173562 0.1 8.77279624798e-07 2795 -133766.521027 -0.00100908173562 0.13 8.76338000871e-07 2792 -131567.141707 -0.00100908173562 0.16 8.76338000871e-07 2792 -130204.893669 -0.00100908173562 0.19 8.76338000871e-07 2792 -129453.341512 -0.00100908173562 0.22 8.76338000871e-07 2792 -129188.032309 -0.00100908173562 0.25 8.76338000871e-07 2792 -129335.07072 -0.00100908173562 0.28 8.76338000871e-07 2792 -129849.367048 -0.00100908173562 0.31 8.76338000871e-07 2792 -130701.953395 -0.00100908173562 0.34 8.76338000871e-07 2792 -131874.706962 -0.00100908173562 0.37 8.76338000871e-07 2792 -133357.500613 -0.00100908173562 0.4 8.76338000871e-07 2792 -135146.325719 -0.00100908173562 0.43 8.76338000871e-07 2792 -137241.359672 -0.00100908173562 0.46 8.76338000871e-07 2792 -139647.338319 -0.00100908173562 0.49 8.76338000871e-07 2792 -142372.835123 -0.00100908173562 0.52 8.76338000871e-07 2792 -145430.071528 -0.00100908173562 0.55 8.76338000871e-07 2792 -148835.609593 -0.00100908173562 0.58 8.76338000871e-07 2792 -152609.999717 -0.00100908173562 0.61 8.76338000871e-07 2792 -156779.013189 -0.00100908173562 0.64 8.76338000871e-07 2792 -161374.432009 -0.00100908173562 0.67 8.76338000871e-07 2792 -166435.448913 -0.00100908173562 0.7 8.76338000871e-07 2792 -172010.22098 -0.00100908173562 0.73 8.76338000871e-07 2792 -178158.525769 -0.00100908173562 0.76 8.76338000871e-07 2792 -184955.814528 -0.00100908173562 0.79 8.76338000871e-07 2792 -192498.843186 -0.00100908173562 0.82 8.76338000871e-07 2792 -200914.440526 -0.00100908173562 0.85 8.76338000871e-07 2792 -210373.73309 -0.00100908173562 0.88 8.76338000871e-07 2792 -221117.175084 +1.0 0.01 3.82496925296e-05 10927 -123894.745252 +1.0 0.11 3.69615176554e-05 10559 -146433.341002 +1.0 0.21 3.66569763128e-05 10472 -191235.823611 +1.0 0.31 3.64469478007e-05 10412 -260465.254415 +1.0 0.41 3.61669097846e-05 10332 -358572.455236 +1.0 0.51 3.61669097846e-05 10332 -493346.776777 +1.0 0.61 3.5879870818e-05 10250 -678702.795812 +1.0 0.71 3.5879870818e-05 10250 -941793.902677 +1.0 0.81 3.56243361283e-05 10177 -1345861.15169 +0.00990099009901 0.01 3.45181859646e-05 9861 -123434.443377 +0.00990099009901 0.11 1.80484501403e-05 5156 -138449.306153 +0.00990099009901 0.21 1.45689777897e-05 4162 -175475.261761 +0.00990099009901 0.31 1.32527991139e-05 3786 -237994.762027 +0.00990099009901 0.41 1.26192131023e-05 3605 -329318.903778 +0.00990099009901 0.51 1.21921551277e-05 3483 -456389.667272 diff --git a/experiments/plot3d.py b/experiments/plot3d.py index 64c144d..2158588 100644 --- a/experiments/plot3d.py +++ b/experiments/plot3d.py @@ -7,7 +7,7 @@ with open("out.log") as fh: values = [map(float, line.strip().split()) for line in fh] #values = [(b, a, l) for (b, a, l) in values if b >= 0.04] am = max(values, key=lambda x: x[4]) - am[0] = 1./am[0] + # am[0] = 1./am[0] print am alpha, delta, beta, _ , l = zip(*values) alpha = 1./np.array(alpha) diff --git a/experiments/process.py b/experiments/process.py index ec25d8e..5c4c215 100644 --- a/experiments/process.py +++ b/experiments/process.py @@ -6,21 +6,16 @@ from itertools import product from math import exp -def print_ll(alpha, delta): - beta, roots, ll = ml(root_victims, victims, non_victims, alpha, delta) - print "\t".join(map(str, [alpha, delta, beta, roots, ll, exp(ll)])) + "\n" - - if __name__ == "__main__": if len(sys.argv) < 2: sys.exit("usage: {0} <file>".format(sys.argv[0])) root_victims, victims, non_victims, age = load(open(sys.argv[1])) - alpha = 1. / np.arange(1., 1000., 10.) # parameter of the time component - delta = np.arange(0.01, 0.9, 0.03) # parameter of the structural component - with open("out.log", "a") as fh: + alpha = 1. / np.arange(1., 1000., 100.) # parameter of the time component + delta = np.arange(0.01, 0.9, 0.1) # parameter of the structural component + with open("out.log", "w") as fh: for a, d in product(alpha, delta): beta, roots, ll = ml(root_victims, victims, non_victims, age, a, d) - print beta + print "\t".join(map(str, [a, d, beta, roots, ll, exp(ll)])) fh.write("\t".join(map(str, [a, d, beta, roots, ll])) + "\n") fh.flush() |
