summaryrefslogtreecommitdiffstats
path: root/experiments/ml.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'experiments/ml.pyx')
-rw-r--r--experiments/ml.pyx11
1 files changed, 5 insertions, 6 deletions
diff --git a/experiments/ml.pyx b/experiments/ml.pyx
index 858207f..0d72c44 100644
--- a/experiments/ml.pyx
+++ b/experiments/ml.pyx
@@ -11,7 +11,7 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
"""weight for successful infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
structural = delta ** dist
- temporal = log(exp(alpha)-1.) - alpha*dt/7.
+ temporal = log(exp(alpha)-1.) - alpha*dt/1.
result = log(structural) + temporal
return result
@@ -20,7 +20,7 @@ cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
"""weight for failed infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
structural = delta ** dist
- temporal = exp(-alpha * dt/7.)
+ temporal = exp(-alpha * dt/1.)
result = log(1. - structural + structural * temporal)
return result
@@ -31,7 +31,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
DTYPE_t beta, ll, beta_add, max_beta, max_beta_add
list parents, failures, successes
n_roots, n_victims = len(root_victims), len(victims)
- n_nodes = 148152
+ n_nodes = 5000
cdef:
np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
@@ -74,11 +74,10 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
ll = probs_fail.sum() # add probability that all edges to all victims fail
ll += probs_nv.sum() # add probability that all edges to non_victims fail
- # print 'probs', probs
max_beta_add = float('-inf')
# iterate over all victim nodes to find the optimal threshold
for beta in np.arange(0.01, 1., .01):
- thresh = log(beta/(3012.*(1.-beta)))
+ thresh = log(beta/(1000.*(1.-beta)))
seeds = probs<thresh
non_seeds = probs>=thresh
roots = n_roots + sum(seeds)
@@ -87,7 +86,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
# add probability for realized edges and subtract probability these edges fail
beta_add += (probs[non_seeds]).sum()
# add probability for the seeds and non-seeds
- beta_add += roots * log(beta/3012.) + (n_nodes-roots) * log(1. - beta)
+ beta_add += roots * log(beta/1000.) + (n_nodes-roots) * log(1. - beta)
if beta_add > max_beta_add:
max_beta = beta