summaryrefslogtreecommitdiffstats
path: root/experiments/ml.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'experiments/ml.pyx')
-rw-r--r--experiments/ml.pyx46
1 files changed, 21 insertions, 25 deletions
diff --git a/experiments/ml.pyx b/experiments/ml.pyx
index 853c934..67b561c 100644
--- a/experiments/ml.pyx
+++ b/experiments/ml.pyx
@@ -15,11 +15,12 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
cdef DTYPE_t structural, temporal, result
structural = delta ** dist
# structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- temporal = exp(-alpha*dt) * (exp(alpha)-1)
+ # temporal = exp(-alpha*dt) * (exp(alpha)-1)
+ temporal = 1 - exp(-alpha*dt)
if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
# temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
result = log(structural * temporal)
- print 'st', structural, temporal
+ # print 'st', structural, temporal
return result
cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
@@ -31,17 +32,17 @@ cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
temporal = exp(-alpha * dt)
# temporal = 1. - 1. / (1. + dt/alpha)**0.01
result = log(1. - structural + structural * temporal)
- print 'stnv', structural, temporal
+ # print 'stnv', structural, temporal
return result
def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
DTYPE_t alpha, DTYPE_t delta):
cdef:
int n_roots, n_victims, n_nodes, roots, i, dist, dt, t, l
- DTYPE_t beta, ll, beta2
+ DTYPE_t beta, ll
list parents, failures, successes
n_roots, n_victims = len(root_victims), len(victims)
- n_nodes = 4#148152
+ n_nodes = 11270
cdef:
np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
@@ -61,12 +62,12 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
probs[i] = max(s - failures[l] for l, s in enumerate(successes))
# loop through non-victims
- for i, parents in enumerate(non_victims.itervalues()):
- # for each non victim node, compute the probability that all its
- # parents fail to infect it
- failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
- for (dist, dt, w1, w2, w3) in parents]
- probs_nv[i] = sum(failures)
+ # for i, parents in enumerate(non_victims.itervalues()):
+ # # for each non victim node, compute the probability that all its
+ # # parents fail to infect it
+ # failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
+ # for (dist, dt, w1, w2, w3) in parents]
+ # probs_nv[i] = sum(failures)
# calculate log likelihood
# probs.sort(); probs = probs[::-1] # sort probs in descending order
@@ -75,32 +76,27 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
ll = probs_fail.sum() # add probability that all edges to victims fail
ll += probs_nv.sum() # add probability that all edges to non_victims fail
- print 'probs', probs
- max_i = -1
+ # print 'probs', probs
max_beta_add = float('-inf')
# iterate over all victim nodes to find the optimal threshold
- for i in xrange(0, n_victims+1, 1):
- print
- roots = n_roots + n_victims - i
- beta = 1. / (1. + exp(-probs[i]))
- # beta = float(roots)/float(n_nodes)
+ for beta in np.arange(0.001, .1, .001):
thresh = log(beta/(1.-beta))
- print 'thresh:', thresh
+ # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
+ roots = n_roots + len(probs[probs<thresh])
# add probability for realized edges and subtract probability these edges fail
beta_add = (probs[probs>=thresh]).sum()
- print 'len(probs[probs>=thresh]):', len(probs[probs>=thresh])
# add probability for the seeds and non-seeds
beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta)
if beta_add > max_beta_add:
- max_i = i
+ max_beta = beta
+ max_roots = roots
max_beta_add = beta_add
- print 'i:', max_i, 'add:', max_beta_add, 'roots:', roots
- else:
- print i
+ # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots
ll += max_beta_add
- roots = n_roots + n_victims - max_i
+ roots = max_roots
+ beta = max_beta
# print n_nodes, n_roots, n_victims, max_i, roots
return (beta, roots, ll)