summaryrefslogtreecommitdiffstats
path: root/experiments/ml.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'experiments/ml.pyx')
-rw-r--r--experiments/ml.pyx57
1 files changed, 33 insertions, 24 deletions
diff --git a/experiments/ml.pyx b/experiments/ml.pyx
index c6291c5..48d4549 100644
--- a/experiments/ml.pyx
+++ b/experiments/ml.pyx
@@ -1,59 +1,68 @@
# cython: boundscheck=False, cdivision=True
import numpy as np
cimport numpy as np
-from libc.math cimport log
+from libc.math cimport log, exp
DTYPE = np.float64
ctypedef np.float_t DTYPE_t
-cdef DTYPE_t weight_victim(int dist, int dt, DTYPE_t alpha,
+cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha,
DTYPE_t delta, DTYPE_t gamma):
- cdef DTYPE_t structural, temporal
+ cdef DTYPE_t structural, temporal, result
structural = delta ** dist
- temporal = (gamma - 1. / alpha) * 1. / (1. + dt / alpha) ** gamma
- return structural * temporal
+ temporal = exp(-alpha * dt) * (1 - exp(-alpha))
+ result = structural * temporal
+ return result
-cdef DTYPE_t weight_non_victim(int dist, int t, DTYPE_t alpha,
+cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha,
DTYPE_t delta, DTYPE_t gamma):
- cdef DTYPE_t structural, temporal
+ cdef DTYPE_t structural, temporal, result
structural = delta ** dist
- temporal = 1. - 1. / (1. + (3012. - t) / alpha) ** gamma
- return 1. - structural * temporal
+ temporal = 1. - exp(-alpha * dt)
+ result = 1. - structural * temporal
+ return result
def ml(dict root_victims, dict victims, dict non_victims,
- DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma=1.01):
+ DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma=10):
cdef:
int n_roots, n_victims, n_nodes, roots, i, dist, dt, t
- DTYPE_t beta
- list parents, parents_weights
+ DTYPE_t beta, all_failures
+ list parents, failures, successes
n_roots, n_victims = len(root_victims), len(victims)
n_nodes = n_victims + len(non_victims)
cdef:
np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
for i, parents in enumerate(victims.itervalues()):
- parents_weights = [weight_victim(dist, dt, alpha, delta, gamma)
+ failures = [log(weight_failure(dist, dt, alpha, delta, gamma))
for (dist, dt) in parents]
- probs[i] = max(parents_weights)
+ all_failures = sum(failures)
+ successes = [log(weight_success(dist, dt, alpha, delta, gamma))
+ for (dist, dt) in parents]
+ probs[i] = max(s - failures[i] for i, s in enumerate(successes))
+ probs_fail[i] = all_failures
+
for i, parents in enumerate(non_victims.itervalues()):
- parents_weights = [weight_non_victim(dist, t, alpha, delta, gamma)
- for (dist, t) in parents]
- probs_nv[i] = max(parents_weights)
+ failures = [log(weight_failure(dist, dt, alpha, delta, gamma))
+ for (dist, dt) in parents]
+ probs_nv[i] = sum(failures)
probs.sort()
probs = probs[::-1]
cdef:
- np.ndarray[DTYPE_t] betas = probs / (1. + probs)
- np.ndarray[DTYPE_t] cums = np.log(probs.cumsum())
+ np.ndarray[DTYPE_t] cums = probs.cumsum()
for i in xrange(n_victims - 1, 0, -1):
- roots = n_roots + n_victims - 1 - i
- if betas[i] > roots / float(n_nodes):
+ roots = n_victims - 1 - i
+ beta = 1. / (1. + exp(-probs[i]))
+ if beta > float(roots) / float(n_nodes):
break
else:
print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta)
- roots = n_roots + n_victims
- beta = roots / float(n_nodes)
+ roots = n_victims
+ beta = float(roots) / float(n_nodes)
return (beta, roots,
roots * log(beta) + (n_nodes - roots) * log(1 - beta) + cums[i]
- + np.log(probs_nv).sum())
+ + probs_nv.sum()
+ + probs_fail.sum())