diff options
Diffstat (limited to 'experiments/ml.pyx')
| -rw-r--r-- | experiments/ml.pyx | 109 |
1 files changed, 0 insertions, 109 deletions
diff --git a/experiments/ml.pyx b/experiments/ml.pyx deleted file mode 100644 index e1bf26b..0000000 --- a/experiments/ml.pyx +++ /dev/null @@ -1,109 +0,0 @@ -# cython: boundscheck=False, cdivision=True -import numpy as np -cimport numpy as np -from libc.math cimport log, exp - -DTYPE = np.float64 -ctypedef np.float_t DTYPE_t - -cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda, - DTYPE_t t_scale, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): - """weight for successful infection, exponential time model""" - cdef DTYPE_t structural, temporal, result - # structural = delta ** (dist**1) - structural = delta * lmbda**(dist-1) - temporal = log(exp(alpha/t_scale)-1.) - alpha*dt/t_scale - # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 - result = log(structural) + temporal - return result - -cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda, - DTYPE_t t_scale, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): - """weight for failed infection, exponential time model""" - cdef DTYPE_t structural, temporal, result - # structural = delta ** (dist**1) - structural = delta * lmbda**(dist-1) - temporal = exp(-alpha * dt/t_scale) - # temporal = 1. - 1. / (1. + dt/alpha)**0.01 - result = log(1. - structural + structural * temporal) - return result - -def ml(dict root_victims, dict victims, dict non_victims, - DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda): - cdef: - int n_roots, n_victims, roots, i, dist, dt, t, l, n_days - DTYPE_t beta, ll, beta_add, max_beta, max_beta_add - list parents, failures, successes - n_roots, n_victims = len(root_victims), len(victims) - n_nodes = 148152 - n_days = 3012 - t_scale = 1. - cdef: - np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) - np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) - np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE) - np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE) - np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) - - # loop through victims - for i, parents in enumerate(victims.itervalues()): - # for each victim node i, compute the probability that all its parents - # fail to infect it, also computes the probability that its most - # likely parent infects it - failures = [weight_failure(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3) - for (prnt, dist, dt, w1, w2, w3) in parents] - probs_fail[i] = sum(failures) - successes = [weight_success(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3) - for (prnt, dist, dt, w1, w2, w3) in parents] - dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents] - dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents] - # find parent that maximizes log(p) - log(\tilde{p}) - probs[i] = float("-inf") - for l, s in enumerate(successes): - prob = s - failures[l] - if prob > probs[i]: - probs[i] = prob - parent_dists[i] = dists[l] - parent_dts[i] = dts[l] - # probs_fail[i] = failures[l] - - # loop through non-victims - for i, parents in enumerate(non_victims.itervalues()): - # for each non victim node, compute the probability that all its - # parents fail to infect it - failures = [weight_failure(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3) - for (prnt, dist, dt, w1, w2, w3) in parents] - probs_nv[i] = sum(failures) - - # calculate log likelihood - ll = probs_fail.sum() # add probability that all edges to all victims fail - ll += probs_nv.sum() # add probability that all edges to non_victims fail - - max_beta_add = float('-inf') - # iterate over all victim nodes to find the optimal threshold - for beta in np.arange(0.01, 1., 0.01): - thresh = log(beta/(n_days*(1.-beta))) - seeds = probs<thresh - non_seeds = probs>=thresh - roots = n_roots + sum(seeds) - - beta_add = 0. - # add probability for realized edges and subtract probability these edges fail - beta_add += (probs[non_seeds]).sum() - # add probability for the seeds and non-seeds - beta_add += roots * log(beta/n_days) + (n_nodes-roots) * log(1. - beta) - - if beta_add > max_beta_add: - max_beta = beta - max_roots = roots - max_beta_add = beta_add - pdists = (parent_dists[non_seeds]).mean() - pdts = (parent_dts[non_seeds]).mean() - # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots - - ll += max_beta_add - roots = max_roots - beta = max_beta - print 'dist:', pdists - print 'dt:', pdts - return (beta, roots, ll) |
