summaryrefslogtreecommitdiffstats
path: root/experiments/ml2.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'experiments/ml2.pyx')
-rw-r--r--experiments/ml2.pyx35
1 files changed, 22 insertions, 13 deletions
diff --git a/experiments/ml2.pyx b/experiments/ml2.pyx
index 99c9784..dd0e7a8 100644
--- a/experiments/ml2.pyx
+++ b/experiments/ml2.pyx
@@ -10,8 +10,8 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYP
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for successful infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
- # structural = delta ** dist
- structural = delta/(1. + 1./(w1*lmbda) + 1./(w2*lmbda) + 1./(w3*lmbda))
+ structural = delta ** dist
+ # structural = delta/(1. + 1./(w1*lmbda) + 1./(w2*lmbda) + 1./(w3*lmbda))
temporal = log(exp(alpha)-1.) - alpha*dt
# temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
result = log(structural) + temporal
@@ -22,8 +22,8 @@ cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYP
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for failed infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
- # structural = delta ** dist
- structural = delta/(1. + 1./(w1*lmbda) + 1./(w2*lmbda) + 1./(w3*lmbda))
+ structural = delta ** dist
+ # structural = delta/(1. + 1./(w1*lmbda) + 1./(w2*lmbda) + 1./(w3*lmbda))
temporal = exp(-alpha * dt)
# temporal = 1. - 1. / (1. + dt/alpha)**0.01
result = log(1. - structural + structural * temporal)
@@ -43,6 +43,7 @@ def ml2(dict root_victims, dict victims, dict non_victims,
np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] infectors = np.zeros(n_victims, dtype=DTYPE)
# loop through victims
for i, parents in enumerate(victims.itervalues()):
@@ -50,12 +51,13 @@ def ml2(dict root_victims, dict victims, dict non_victims,
# fail to infect it, also computes the probability that its most
# likely parent infects it
failures = [weight_failure(dist, dt, alpha, delta, lmbda, w1, w2, w3)
- for (dist, dt, w1, w2, w3) in parents]
+ for (prnt, dist, dt, w1, w2, w3) in parents]
probs_fail[i] = sum(failures)
successes = [weight_success(dist, dt, alpha, delta, lmbda, w1, w2, w3)
- for (dist, dt, w1, w2, w3) in parents]
- dists = [dist for (dist, dt, w1, w2, w3) in parents]
- dts = [dt for (dist, dt, w1, w2, w3) in parents]
+ for (prnt, dist, dt, w1, w2, w3) in parents]
+ dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents]
+ dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents]
+ prnts = [prnt for (prnt, dist, dt, w1, w2, w3) in parents]
# find parent that maximizes log(p) - log(\tilde{p})
# probs[i] = max(s - failures[l] for l, s in enumerate(successes))
probs[i] = float("-inf")
@@ -63,6 +65,7 @@ def ml2(dict root_victims, dict victims, dict non_victims,
prob = s - failures[l]
if prob > probs[i]:
probs[i] = prob
+ infectors[i] = prnts[l]
parent_dists[i] = dists[l]
parent_dts[i] = dts[l]
@@ -71,7 +74,7 @@ def ml2(dict root_victims, dict victims, dict non_victims,
# for each non victim node, compute the probability that all its
# parents fail to infect it
failures = [weight_failure(dist, dt, alpha, delta, lmbda, w1, w2, w3)
- for (dist, dt, w1, w2, w3) in parents]
+ for (prnt, dist, dt, w1, w2, w3) in parents]
probs_nv[i] = sum(failures)
# calculate log likelihood
@@ -81,8 +84,14 @@ def ml2(dict root_victims, dict victims, dict non_victims,
roots = n_roots
# print n_nodes, n_roots, n_victims, max_i, roots
- print parent_dists[1:100]
- print parent_dts[1:100]
- print np.mean(parent_dists)
- print np.mean(parent_dts)
+ # print parent_dists[1:100]
+ # print parent_dts[1:100]
+ # print victims.keys()
+ # print infectors
+ # print np.mean(parent_dists)
+ # print np.mean(parent_dts)
+
+ with open('../../Results/infectors.csv', 'w') as infectors_file:
+ for i, infector in enumerate(infectors):
+ infectors_file.write("%s, %s\n" % ((victims.keys())[i], infector))
return (lmbda, roots, ll)