diff options
Diffstat (limited to 'experiments/ml2.pyx')
| -rw-r--r-- | experiments/ml2.pyx | 86 |
1 files changed, 86 insertions, 0 deletions
diff --git a/experiments/ml2.pyx b/experiments/ml2.pyx new file mode 100644 index 0000000..9edc7e6 --- /dev/null +++ b/experiments/ml2.pyx @@ -0,0 +1,86 @@ +# cython: boundscheck=False, cdivision=True +import numpy as np +cimport numpy as np +from libc.math cimport log, exp + +DTYPE = np.float64 +ctypedef np.float_t DTYPE_t + +cdef DTYPE_t plogis(DTYPE_t weight, DTYPE_t delta): + return 1./(1. + exp(-weight/delta)) + +cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, + DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): + """weight for successful infection, exponential time model""" + cdef DTYPE_t structural, temporal, result + structural = delta ** dist + # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) + temporal = exp(-alpha*dt) * (exp(alpha)-1.) + # temporal = 1 - exp(-alpha*dt) + if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' + # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 + result = log(structural * temporal) + # print 'st', structural, temporal + return result + +cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, + DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): + """weight for failed infection, exponential time model""" + cdef DTYPE_t structural, temporal, result + structural = delta ** dist + # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) + temporal = exp(-alpha * dt) + # temporal = 1. - 1. / (1. + dt/alpha)**0.01 + result = log(1. - structural + structural * temporal) + # print 'stnv', structural, temporal + return result + +def ml2(dict root_victims, dict victims, dict non_victims, DTYPE_t age, + DTYPE_t alpha, DTYPE_t delta): + cdef: + int n_roots, n_victims, roots, i, dist, dt, t, l + DTYPE_t beta, ll + list parents, failures, successes + n_roots, n_victims = len(root_victims), len(victims) + cdef: + np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) + + # loop through victims + for i, parents in enumerate(victims.itervalues()): + # for each victim node i, compute the probability that all its parents + # fail to infect it, also computes the probability that its most + # likely parent infects it + failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + for (dist, dt, w1, w2, w3) in parents] + probs_fail[i] = sum(failures) + successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) + for (dist, dt, w1, w2, w3) in parents] + # find parent that maximizes log(p) - log(\tilde{p}) + probs[i] = max(s - failures[l] for l, s in enumerate(successes)) + + # loop through non-victims + for i, parents in enumerate(non_victims.itervalues()): + # for each non victim node, compute the probability that all its + # parents fail to infect it + failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + for (dist, dt, w1, w2, w3) in parents] + probs_nv[i] = sum(failures) + + # print successes + # print failures + # print probs + + # calculate log likelihood + # probs.sort(); probs = probs[::-1] # sort probs in descending order + # cdef: + # np.ndarray[DTYPE_t] cums = probs.cumsum() + ll = probs_fail.sum() # add probability that all edges to victims fail + ll += probs_nv.sum() # add probability that all edges to non_victims fail + ll += probs.sum() # add probability for realized edges and subtract probability these edges fail + + roots = n_roots + beta = 0 + # print n_nodes, n_roots, n_victims, max_i, roots + return (beta, roots, ll) |
