diff options
Diffstat (limited to 'experiments/ml3.pyx')
| -rw-r--r-- | experiments/ml3.pyx | 120 |
1 files changed, 120 insertions, 0 deletions
diff --git a/experiments/ml3.pyx b/experiments/ml3.pyx new file mode 100644 index 0000000..d7f7ff1 --- /dev/null +++ b/experiments/ml3.pyx @@ -0,0 +1,120 @@ +# cython: boundscheck=False, cdivision=True +import numpy as np +cimport numpy as np +from libc.math cimport log, exp + +DTYPE = np.float64 +ctypedef np.float_t DTYPE_t + +cdef DTYPE_t plogis(DTYPE_t weight, DTYPE_t delta): + return 1./(1. + exp(-weight/delta)) + +cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, + DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): + """weight for successful infection, exponential time model""" + cdef DTYPE_t structural, temporal, result + structural = dist * log(delta) + # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) + temporal = log(exp(alpha)-1.) - alpha*dt + # temporal = 1 - exp(-alpha*dt) + # if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' + # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 + result = structural + temporal + # print 'st', structural, temporal + return result + + +cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, + DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): + """weight for failed infection, exponential time model""" + cdef DTYPE_t structural, temporal, result + structural = delta ** dist + # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) + temporal = exp(-alpha * dt) + # temporal = 1. - 1. / (1. + dt/alpha)**0.01 + result = log(1. - structural + structural * temporal) + # print 'stnv', structural, temporal + return result + +def ml3(dict root_victims, dict victims, dict non_victims, DTYPE_t age, + DTYPE_t alpha, DTYPE_t delta): + cdef: + int n_roots, n_victims, n_nodes, roots, i, dist, dt, t, l + DTYPE_t beta, ll, beta_add, max_beta, max_beta_add + list parents, failures, successes + n_roots, n_victims = len(root_victims), len(victims) + n_nodes = 148152 + cdef: + np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) + np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE) + + # loop through victims + for i, parents in enumerate(victims.itervalues()): + # for each victim node i, compute the probability that all its parents + # fail to infect it, also computes the probability that its most + # likely parent infects it + failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + for (dist, dt, w1, w2, w3) in parents] + # probs_fail[i] = sum(failures) + successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) + for (dist, dt, w1, w2, w3) in parents] + dists = [dist for (dist, dt, w1, w2, w3) in parents] + dts = [dt for (dist, dt, w1, w2, w3) in parents] + # find parent that maximizes log(p) - log(\tilde{p}) + # probs[i] = max(s - failures[l] for l, s in enumerate(successes)) + probs[i] = float("-inf") + for l, s in enumerate(successes): + prob = s - failures[l] + if prob > probs[i]: + probs[i] = prob + parent_dists[i] = dists[l] + parent_dts[i] = dts[l] + probs_fail[i] = failures[l] + + # loop through non-victims + # for i, parents in enumerate(non_victims.itervalues()): + # # for each non victim node, compute the probability that all its + # # parents fail to infect it + # failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + # for (dist, dt, w1, w2, w3) in parents] + # probs_nv[i] = sum(failures) + + # print successes + # print failures + # print probs + + # calculate log likelihood + # probs.sort(); probs = probs[::-1] # sort probs in descending order + # cdef: + # np.ndarray[DTYPE_t] cums = probs.cumsum() + ll = probs_fail.sum() # add probability that all edges to victims fail + # ll += probs_nv.sum() # add probability that all edges to non_victims fail + + # print 'probs', probs + max_beta_add = float('-inf') + # iterate over all victim nodes to find the optimal threshold + for beta in np.arange(0.09, 1., .05): + thresh = log(beta/(3012.*(1.-beta))) + # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) + roots = n_roots + len(probs[probs<thresh]) + + beta_add = 0. + # add probability for realized edges and subtract probability these edges fail + beta_add += (probs[probs>=thresh]).sum() + # add probability for the seeds and non-seeds + beta_add += roots * log(beta) + len(probs[probs>=thresh]) * log(1. - beta) + + if beta_add > max_beta_add: + max_beta = beta + max_roots = roots + max_beta_add = beta_add + # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots + + ll += max_beta_add + roots = max_roots + beta = max_beta + # print n_nodes, n_roots, n_victims, max_i, roots + return (beta, roots, ll) |
